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Chemistry. — “lIn-, mono- and divariant equilibria”. XV. By
Prof. F. A. H. SCHREINEMAKERS. ‘ '

(Communicated in“the meeting of February 24, 1917).

The occurrence of two indifferent phases; the equilibrium M is
variable singular. ‘

. Now we consider the case that the singular equilibrium (M) is
no more constant, but variable; one or more phases of M have,
therefore, a variable composition. (Comm. X).

When (M) is constant singular, then, as we have deduced in
communication X, the following propositions hold:

1. When the two indifferent phases have the same sign, then M
is transformable.

2. When the two indifferent phases have opposite sign, then M
is not transformable.

It is evident that the same rules arve valid also when M is a
variable singular equilibrium.

In order to examine what P,7-diagrams can occur now, we
take an invariant point with the phases F,...F, 1. in which
F, and F, 4+, are the indifferent — and consequently the other
ones are the singular phases. Then we have the singular equilibria:

M=F+..+F, 1+ Fpe+.. Fise
(Fy=M)+ Fpy1 and (F, )= M)=F,

in which (M) now contains one or more phases of variable composition.

When (M) is constant singular, then curve (M) is monodirection-
able [fig. 1(X)] or bidirectionable [fig. 2 (X)]; in the first case
the 3 singular curves coincide in the same direction, in the second
case (Fp) and (F,+1) coincide in opposite direction.

When (M) is however variable singular then the three singular
curves can no more coincide. Let viz. P, and 7', be the pressure
and temperature of the invariant equilibrium and let us assume that
in (M) and consequently also in (F)) and (F,41) the phases F,, F,
etc. of variable composition occur. Under P, and at T, F, and F,
have then the same composition in (M) and (F,). Now we take a
temperature 7,. When we bring (M) to the temperature 7, and
under the corresponding pressure, then F, and F, get another
cowposition F,’ and F,. Those compositions are of course such
compositions that between the phases of (3/) the phases-reaction is
still always possible.

‘When we bring (F)) to the temperature 7', and under the corres-
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ponding pressure, then F, and F, do not get the composition F,’
and F,’, but another composition ¥;" and F,). '

When we take away at 7', the phase F, 4, from (F,) = (M)
+ F, 41, then we do not obtain the equilibrium (M), but, as F."
and F," have another composition than F.' and Fy,, an equilibrium
different from (M). Consequently curves (M) and (£,) do not coin-
cide. The same is true for (M) and (F,41) and for (F,) and By
the singular curves do not coincide, therefore. They form, as is
drawn in the figs. 1—5, three separate curves. Now we can show:

1. the three singular curves touch one another in the point i.

2. (F,) and (F,4,) are situated on the same side of the (M)-curve.

The first follows immediately from the relation

' dp AW
ar = AV
In the point ¢ viz. the reaction, which occurs in the three singular

.dF
equilibria, is the same, so that in the pointzﬁ

v

is the same also

for the three curves.
In order to show the second, we consider the bivariant equilibrinm :

(F,,FP.,_I):F‘+...+F,+F_,,+...+F;,_1+FP+2...F,,+,. )]

This region bas a turning-line (3), which is defined by the fact
that- in (1) the variable phases Fp,F,,... have such a composition
that a phases-reaction is possible between those n phases. The
singular curve (M) is, therefore, the same as the turning-line of the
region (F, F,.); consequently we have here the special case, which
we have already mentioned in (V1II) viz. that the point ¢ in fig. 5
(VILI) is situated on the turning-line zyzu of the region (F, F,q,).
As (F,) and (F,4;) must be situated within the turning-line of this
region, they are situated, therefore, on the same side of the (M )-curve.

In order to deduce the P, T-diagrams, we are able to apply again
the rules of the isovolumetrical and isentropical reaction to the
curves (M), (F,) and (F,4,). In this application with respect to the
(M)-curve we have, however, to bear in mind the following.

When we have a constant singular curve (M), then we are able
to realise always a whole series of equilibria (for instance between
the temperatures T, and 7)) of the (M)-curve with the aid of one
single complex K of definite composition. When (M) is however
variable singnlar, then this not always remains possible. Then we
may have the case, that we can obtain only one single equilibrium
of the (M)-curve (e.g. that of a temperature T) with each definite
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complex K; in order to realise the equilibrium of a temperature
T+ dT, we have to take then a complex of another composition.

When the latter is the case and when T, is the temperature and
P, the pressure of the invariant point, then we can not obtain with
a same complex K an equilibrium of the temperature 7, and
T, +dT or of the pressures P, and P, + dP; the rules of the
isovolumetrical and of the isentropical’%;eaction, therefore, are then
not applicable. |

In the first case we have:

the two indifferent phases have the same sign; the equilibrium
(M) is, therefore, transformable. "

2, ~ (5
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// /(M)
(M)

Fig. 1. Fig. 2.

The stable parts of the curves (#y) and (F,44) go in the same
direction, starting from the point ¢; then we obtain P,T-diagrams
as in figs. 1 and 2.

[In those and the following figures only the stable part of the
curves (F,) and (F,4.) is drawn; the metastable part of the (M)-
curve is dotted.] In fig. 1 the one part of the (M )-curve is stable,
the other part metastable; in fig. 2 the (M)-curve is only stable in
the point 7.

In the second case we have:

the two indifferent phases have opposite sign, the equilibrium (M)
is therefore, not transformable.

The stable parts of the curves { ») and (F,) proceed in opposite
direction, starting from the point ¢; then we obtain P,T-diagrams
as in the figs. 3, 4 and 5. In fig. 3 the (M)-curve is bidirection-
able, in fig. 4 monodirectionable, in fig. 5 it is metastable, except in
the point 1. ‘ o

[In a following communication we shall show that the (M)-curve
can also have a turning-point. When this is casually situated in the
point ¢, then the diagrams under consideration will be changed by
this in some respect.]
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The stable part of the region (F,F,4) extends itself belween the
carves (F)) and (F,4). This region is indicated in the figures by
some horizontal lines and little ares.

In fig. 1 it extends from (F)) and {F,4{) up to the (M)-curve;
the stable part of the region (F, F,1,) consists, therefore, of two
leaves, which cover one another partly.

In fiz. 2 the stable part of the region (£, F,1.) cannot extend
as far as the part of the (M)-curve, which is sitnated in the
vicinity of the point i It may be situated, as is drawn in fig. 2
and then it has one leaf. .

I leave to the reader the deduction of the regions in the figs. 3—5.

Now we shall consider some cases, which we can easily deduce
from fig. 1 (VII) and the corresponding fig. 2 (VIIl). We imagine
in fig. 1 (VIIl) the ligunid L on the line GZ, so that L and d
coincide. Then we have the variable singular equilibrium: -

M=Z,4+ L+ G
which is transformable. This equilibrium (M) is represented in fig. 1
(VII}) by the line GdZ,= GLZ,, the turning-line of the region
Z,L{, the stable part of which is situated between the curves La
and Lb. Now we distinguish two cases:

I. Curve La is situated at the left and curve Lb at the right
side of GZ, (viz. when we go from  towards Z,). The part
dZ,= LZ, of the equilibrium (M) is, therefore, stable, the part
dG = LG is metastable.

Let us imagine in fig. 2 (V1) the (M)-curve to be drawn also,
which starts from ¢ in accordance with fig. 1 (VIiI) and which must
be- situated above the curves iz and z). The three singular curves
(M), (Z,) and (Z,) must then touch one another in i. The three -
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curves are then situated with respect to-one another as in fig. 1.

We are able to deduce the position of the three curves also from
fig. 3 (VIII). Curve (M)=dg, which touches iz in d, represents the
turning-line of the region (Z,Z,)= Z, LG. When we let coincide
d with ¢, then d{g, ia and ib must touch one another in i. Hence
we see also that the position of the three singular curves and that
of the region (7, Z,) = Z, LG is in accordance with fig. 1.

As long as point L is situated in fig. 1 (VIII) at the right side
of the line GZ,, in figs. 2 (VII) and 3 (VII) curve iz is situated
above 16. When, however, in fig. 1 (VIIl) L falls on G/Z,, then in
the figs. 2 (VIII) and 3 (VIL]) ia and ¢ touch one another in i, but
ta may be situated as well above as Lelow ¢b. This appears at once
from fig. 1 (VIII).

We may consider the position of L on the line GZ, as a transition
case viz. between the case that L is citnated at the right [fig. 1
(VIII)] and that L is situated at the left of the line GZ,. In the
first case ia is situated above ib [fig. 2 (VIID], in the second case
tb must be situated above ia.

[When we wish to_consider this transition more in detail, then
we have to bear in mind the following. When L is situated as in
fig. 1 (VIll), then in fig. 2 (VII) curve (Z,) must be sitnated above
(Z). This is only true, however, in so far as we consider points
of those curves in the vicinity of point ¢. It is apparent from fig.1
(VIII; that this is certainly true for points on Ld and Lm. At a
further distance from ¢ the curves (Z,) and (Z,) in fig. 2 (VII]) may,
however, intersect one another. It appears viz. from the direction of
the little arrows e.g. on curve agb in fig. 1 (VIII) that the pressure
in a and b might be the same. When this is the case, then in
fig. 2 (VIII) the points @ and b must coincide and consequently the
curves (Z,) and (Z,) have a point of intersection.]

II. Both the curves La and Lb are situated in fig. 1 (VIII) at
the right side of he line GZ,. The equilibrium (M) is, thexefone
metastable, except in the point L.

Now we imagine in fig. 2 (VIII) to be also drawn the metastable
(M)-curve. It appears from fig. 1(VIIl) that the (M)-curve must be
situated above curve (Z,) and this curve above curve (Z,). Those
three curves must then touch one another in ¢ The position cf the
three singular curves and of the region (£,7,) = Z,L(G is then in
accordance with fig. 2.

Now we imagine in fig. 1 (VIII) the liquid L on the line GZ,, so
that. L and ¢ coincide. Then we have the variable singular equxhbuum

M)y=2,+ L+ G
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which is, however, no more transfermable now. This equilibrium
(M) is represented in fig. 1 (VIH) by the line GeZ, = GLZ,, the
turning-line of the region Z,L(, the stable part of which is situated
between the curves Lb and Lc. According to the position of the
curves La, Lb and Le¢ with respect to the line GLZ, in the P,T-
diagram of fig. 2(VIIl) different cases follow which are in accordance
with the figs. 3—5.

At the deduction of the figs. 1—5 we have assumed the following.
When we bring the equilibria (M), (F,) and (F,4) from 7', and P,
to the temperature 7, and corresponding pressures, then the variable
phases (e.g. Fr) get other compositions in each of the three equili-
bria [e.g. F,, F," and F,"]. This is however not always the case.
Let us assume viz. that in the invariant point the phases of the
singalar equilibrium : :

My=F,+F +...4+F.4...+ Fppy
contain together only n—1 of the components, in the equilibrium (M)
then one of the n components is missing; we call this component X.

The variable phase F: contains, therefore, also only n—1 compo-
- nents (or less) and this is not only the case at 7', and under P, but
also at other 7' and P; this is not only the case in the equilibrium
(M), but also in the other equilibria. ,

This is e.g. the case when F, is a gas and K a substance which
is not volatile or when F, is a mixed-crystal and K not miscible
with this.

In the equilibrium:

(F!F,)Z.I",+F‘+...
we have now n—1 components in n phases, consequently it is not
bivariant, but monovariant; in the P, T-diagram it is, therefore, not
represented by a region, but by a curve. The equilibria (M), (F)
and (F,) coincide, therefore, with this curve. As the equilibrium (M)
of course is not transformable (viz. the substance K is missing), the
(M)-curve is bidirectionable and the curves (F,) and (F,) coincide,
therefore, in opposite direction. Then we obtain fig. 2 'X). A similar
case shall occur e.g. in a ternary system with the components 4, B
and C, when in the invariant point exists the equilibrium

A4+ B4+ CH+ L4 G

in which the gas-phase ' contains only two substances e.g. Band C.

Summary of the P, T-diagramtypes..

When we take an invariant point with the phases F, ... B te,
then different cases may occur.
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I. Reactions are possible, in which all phases of the invariant
point may participate. We write thosé reactions : ‘
a,F,-l—a,F,—{-....+a,,+2Fn+2=O. o
and
ua, F, +F:aslﬂs+'-"+l‘n+2an+21{7§+220 )]
Now we distinguish the following cases.
A. g, p,, ... are all different. Consequently there are no indifferent
phases, then we obtain the general P, T-diagramtypes. '
B. u,=u,=p. Consequently there are two indifferent phases
viz. F, and F, and three singular curves viz. (M), (F,) and (F,).
In the equilibrium (F, F)) may occur the reaction :

(u—(l,)(l,F.—{"(M_(l,)a. Fi+....=0 . . . 3)

This equilibrium (¥, ¥,) may be mono- or bivariant (not invariant).
When (F, F,) is monovariant, then it is represented in the P,7-
diagram by a curve, then the singular curves coincide [Figs. 1 (X)
and 2 (XO]. ‘

When (F, F,) is bivariant, then it is represented in the P,7-
diagram by a region, the 3 singular curves touch one another in
the invariant point [figs. 1--5 (X V).

C. p=p,=up,=u Consequently there are thre¢ indifferent
phases viz. F\, F, and F, and four singular curves viz (M), (F),
(F,) and (F,). In the equilibrium (F, F, F,) may occur the reaction:

—w)a, F,+@—p)a, F,4...=0. . . . (4
This equilibrium (F, F, F,) is tri-, bi- or monovariant.
When it is monovariant, then the singular eurves coincide. An
example is discussed in Cominunication XIV.
D. u,=p,=...=p,=upu; in which r<n. Consequently there
are r indifferent phases and r--1 singular equilibria. In the equi-
librium (F, F,... F,) may occur the reaction: -

(u~ pr41) Ar 4 F,+1+...:0.. e (5)

This equilibrium may be from r- to monovariant.

E py=...=w=u andppr=.. . =wy,=4u,in which K < [
Consequently there are two groups of indifferent phases. To the
first group belong K -1, to the second group m - 1 singular curves.

For K= [ FE passes into D. .

Also three and more groups of indifferent phases may occur. We
find an example in the system water + a salt A -+ a salt B, when
"in the invariant point occur the phases G + A + B 4 A, + B, in
which A. and B, represent hydrates.

64
Proceedings Royal Acad. Amsterdam, Vol. XIX.
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II. No reaction is pessible, in which all phases of the invariant
point may participate.

When e.g. the phase F, cannot take part into one single reaction,
then in (1) and (2) “a, becomes — 0. Then we have an invariant
point with n -4 1 phases, for which the considerations sub / are true.

Leiden, Inorg. Chem. Lab. (To be continued).

Phygics. — “Erperimental Inquiry into the Laws of the Brownian
Movement in a Gas.” By Miss A.Sneranace. (Communicated -
by Prof. P. Zxrman). '

(Communicated in the meeting of Feb. 24, 1917).

1. In a former paper') some -objections have been advanced
to Emstein’s formula for the Brownian movement by Prof. Vax
DER WaaLs Jr. and me. According to this formula:

— 2RT

Al=—B, . . . ... ..
& M

in which A* represents the mean square of the displacement which
a “Brownian particle obtains per second in a definite direction.
Equation (1) bas been derived on the supposition that the particle
meets in its movement with a resistance of friction. Accordingly B
is the inverse value of the factor of resistance which is found when
the particle travels with constant velocity under influence of an -
external force. Statistical mechanics, however, teaches that a particle,
in equilibrium with the surrounding molecules, does not experience
a force dependent on its velocity, hence no ordinary friction. We
have written the equation of motion in the form:

_ u...—pu—{»q T 3]
and derived a value for A?, which does not lay claim to great
accuracy, but leads, at least for the Brownian movement in a

— 1
gas, to A® being proportional with prt when a represents the radius

_of the particle.
According to Sroxkes’ formula with CuNNINGHAM'S correction :
: 1
F=6akat. . . ... ... @

in which § represents the coefficient of friction of the medium and

k= (1 + Aé)q

5) These Proc. 18, 1916, p. 1822,
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