Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

Walstra, K.W., On a representation of the plane of circles on point-space, in:
KNAW, Proceedings, 19 II, 1917, Amsterdam, 1917, pp. 1130-1133

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'
curve Δ of Jacobi, which' is of order $3(n-1)$. The third group consists of ($18 n-33$) points, where a c^{n} has four consecutive points in common with its tangent. From this it ensues that the points of undulation of a net form a curve of order ($18 n-33$). ${ }^{1}$)

The curve (P) is of order $3(n-1$) and has a triple point in P; through P pass consequenily ($9 n^{3}-21 n$) of its tangents. They now form two groups: the first consists of base tangents t, the second of tangents u in points of undulation.
(P) now intersects the curve \triangle in $3(n-1)(2 n-3)$ points D, of which one of the two tangents passes through P (class of the curve of Zeuthen $)^{2}$), consequently in $9(n-1)^{\prime}-3(n-1)(2 n-3)$ or $3 n(n-1)$ points D, for which the base tangent t passes through P.

From this it then ensues, that P lies on $\left(6 n^{2}-18 n\right)$ tangents u. The four-point tangents, therefore, envelop a curve of class $\left.6 n(n-3) .^{2}\right)$

Mathematics. "On a Representation of the Plane Field of Circles on Point-Space". By Dr. K. W. Walstra. (Communicated by Prof. Jan de Vries).
(Communicated in the meeting of January 27, 1917).
§ 1. The circles in the plane $X O Y$ are represented by

$$
C \equiv X^{2}+Y^{2}-2 a X-2 b Y+c=0 .
$$

If we consider a, b, and c as the co-ordinates x, y, z of a point, a correspondence $(1,1)$ is obtained between the circles of a plane and the points of space. The image of a circle is obtained by placing a perpendicular in the centre on the.plane and by taking on it as co-ordinate the power of the point O with regard to the circle.

For the radius we have $r^{2}=a^{3}+b^{2}-c$.
Circles with equal radii are therefore represented by the points of a paraboloid of revolution, with equation $x^{2}+y^{2}-z=r^{2}$.

The images of the point-circles lie on the limiting surface G,

$$
x^{2}+y^{2}=z
$$

a paraboloid of revolution, touching the plane $X O Y$ in O.
$\$ 2$. A pencil of circles is indicated by $C_{1}+2 C_{1}=0$. For the circle λ we have

[^0]$$
(1+\lambda) a=a_{1}+\lambda a_{2},(1+\lambda) b=b_{1}+\lambda b_{2},(1+\lambda) c=c_{1}+\lambda c_{2} .
$$

From this we find for the images

$$
\frac{x-x_{1}}{x_{1}-x_{2}}=\frac{y-y_{1}}{y_{1}-y_{2}}=\frac{z-z_{1}}{z_{1}-z_{2}} .
$$

A pencil of circles is therefore represented by a straight line.
Its intersections with G are the images of the point-circles of the pencil. The point at infinity of the line represents the axis of the pencil.

A tangent at G is the image of a pencil of circles of which the limiting points have coincided; any two points of a tangent are therefore the images of two touching circles.

This may be confirmed as follows. Let d be the distance of the centres of two circles with radii r and r^{\prime}; we have then $d=r \pm r^{\prime}$ or $\sqrt{\left(a-a^{\prime}\right)^{2}+\left(b-b^{\prime}\right)^{2}}=V \overline{a^{2}+b^{2}-c} \pm \sqrt{a^{\prime 2}-b^{\prime 2}-c^{\prime}}$.

After some reduction we find for the images

$$
\left(x x^{\prime}+y y^{\prime}-\frac{z+z^{\prime}}{2}\right)^{2}=\left(x^{\prime 2}+y^{\prime 2}-z^{\prime}\right)\left(x^{2}+y^{2}-z\right)
$$

which relation expresses that the images lie on a tangent of G.
§3. A net of circles is represented by $C_{1}+\lambda C_{2}+\mu C_{3}=0$.
From this it ensues for the images
$(1+\lambda+\mu) x=x_{1}+\lambda x_{2}+\mu x_{2}$ etc. consequently

$$
\left|\begin{array}{cccc}
x & x_{1} & x_{2} & x_{3} \\
y & y_{1} & y_{3} & y_{3} \\
z & z_{1} & z_{3} & z_{3} \\
1 & 1 & 1 & 1
\end{array}\right|=0
$$

A net of circles is therefore represented by a plane.
Plane sections of G have circles as horizontal projections. For the section of $x^{2}+y^{3}=z$ with $z=\alpha x+\beta \bar{y}+\gamma$ has as projection the figure represented by $x^{2}+y^{2}-a x-\beta y-\gamma=0$.

The point-circles of a net of circles lie therefore on a circle; this proposition is reversible.

The net that corresponds to $z=\alpha x+\beta y+\gamma$, has as equation

$$
X^{2}+Y^{2}-2 a X-2 b Y+(a a+\beta b+\gamma)=0,
$$

where a and b are variable parameters. If we write for this

$$
X^{2}+Y^{2}+a(\alpha-2 X)+b(\beta-2 Y)+\gamma=0
$$

it appears that all circles have in the point ($\frac{1}{2} a, \frac{1}{8} \beta$) equal power viz. $\frac{1}{4}\left(\alpha^{2}+\beta^{2}\right)+\gamma$; this point is the centre of the circle that contains the point-circles of the net.

To a tangent plane of G corresponds a net of circles that pass through a fixed point. For, to $2 x_{1} x+2 y_{1} y=z+z_{1}$ corresponds a
net of which all the circles have in $\left(x_{1}, y_{1}\right)$ the power $x_{1}{ }^{2}+y_{1}{ }^{2}-z_{1}=0$.
Two pencils of circles are in general represented by two skew straight lines. If, however, they have a circle in common their images lie in a plane and their four point circles lie on a circle; the pencils belong to a net.
§4. For two orthogonal circles we have $d^{3}=r_{1}{ }^{3}+r_{2}{ }^{2}$, so

$$
\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}=\left(a_{1}^{2}+b_{1}{ }^{2}-c_{1}\right)+\left(a_{2}^{2}+b_{2}^{2}-c_{2}\right)
$$

or

$$
2 a_{1} a_{2}+2 b_{1} b_{2}=c_{1}+c_{3} .
$$

For the images we have consequently $2 x_{1} x_{2}+2 y_{1} y_{3}=z_{1}+z_{2}$, i. e. the imuges of two orthoyonal circles are harmonically separated by the limiting surface.

To the connection between pole and polar plane corresponds the fact that all circles intersecting a given circle orthogonally form a net.

To the relation between two associated polar lines corresponds the fact that pencils of circles may be arranged in pairs, so that any circle of a pencil is intersected orthogonally by any circle of the other.

To a polar tetrahedron corresponds a group of four circles that are orthogonal in pairs. (Of them only three are real).
§5. If the circle C intersects the circle C_{1} diametrically we have $d^{2}=r^{2}-r_{i}{ }^{2}$ or

$$
\left(a_{1}-a\right)^{2}+\left(b_{1}-b\right)^{2}=\left(a^{2}+b^{2}-c\right)-\left(a_{1}^{2}+b_{1}^{2}-c_{1}\right) .
$$

We consequently have for the images

$$
2 x_{1} x+2 y_{1} y-z=2 x_{1}^{2}+2 y_{2}^{3}-z_{1} .
$$

The circles that intersect a given circle diametrically form a net.
According to $\$ 3$ this net has as radical centre $\frac{1}{2} a=x_{1}, \frac{1}{2} \beta=y_{1}$, i. e. the centre of C_{1} (which was to be expected), and in that point the power $z_{1}-x^{2}, y^{2}=-r_{1}{ }_{1}$.
$\$ 6$. The circles touching at a given C_{1}, have their images on the enveloping cone of G, which bas the image of C_{1} as vertex ($\$ 2$). Three enveloping cones have eight points in common; they are the images of eight circles which touch at three given circles.

The circles touching at two circles C_{1} and C_{3} are represented by a twisted curve ρ^{4} of the fourth degree, a net of circles consequently contains four circles that touch at C_{1} and C_{2}. The enveloping cones that have the images of C_{1} and C_{2} as vertices touch at G along conics that have two points in common, viz. the images of the intersections of C_{t} and C_{s}.

The intersections of ρ^{4} with a tangent plane of G are the images of four circles passing through a given point and touching at C_{1}, $C_{2}(\$ 3)$.

The circles touching at a given straight line are represented by a cylindrical surface that envelops G and of which the straight lines are perpendicular to the given straight line consequently parallel to the plane $X O Y$.

Mathematics. - "A Quadruply Infinite System of Point Groups in Space". By Dr. Chs. H. van Os. (Communicated by Prof. Jan de Vries).
(Communicated in the meeting of January 27, 1917).
Let a pencil (a^{3}) be given, consisting of cubic surfaces a^{3}. An arbitrary straight line l is touched by four surfaces a^{3} of the pencil. As the space contains ∞^{4} lines l, there are ∞^{4} groups of four points of contact. We shall indicate this system of groups of four points by S^{4}.
§1. If we take for the line l a line g lying on one of the surfaces a^{3}, the four surfaces mentioned coincide with this surface a^{3}, while the points of contact become indefinite. These straight lines g are therefore singular lines of S^{4}. They form a ruled surface R, of which we shall determine the order.

A line g intersects a second surface a^{3} in three points lying on the base-curve ρ^{9} of the pencil $\left(a^{8}\right)$; the lines g are therefore trisecants of the curve ρ^{9}. If on the other hand we consider a trisecant of ρ°, the surface a^{3}, which passes through an arbitrary point of this trisecant will have four, consequently an infinitely great number of points in common with it, so that the trisecant is a straight line g.

Through an arbitrary point pass 18 bisecants of ϱ^{91}), the genus of. \sum^{8} amounts consequently to $\frac{1}{2} \times 8 \times 7-18=10$. If we therefore project the curve ϱ^{9} out of one of its points, we get as projection a curve of order eight with $\frac{1}{2} \times 7 \times 6-10=11$ nodes. Through the said point pass therefore 11 trisecants of $\varrho^{\mathfrak{y}}$, so that the surface R has the curve ρ^{9} as 11 -fold curve.

A surface a^{3} intersects the surface R along the curve σ^{9} and according to the 27 straight lines g lying on a^{3}, the order of R amounts to 42.
§2. Any line l passing through a given point P contains one

1) Cf. e.g. Zeuthen, Lehrbuch der abzählenden Geometrie, page 46.

[^0]: ${ }^{1}$) Another deduction of this number is to be found in my paper: "Characteristic numbers for nets of algebraic curves". (These Proceedings XVII, 937).
 ${ }^{2}$) Cf. my paper "On nets of algebraic plane curves". (These Proc. VIl, 633).
 ${ }^{8}$) These Proc. XVII, 936.

