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8. The diffraction tells us something of the size of the crystals
and by this means possibly of the temperature at which they have
been formed: “with falling temperature the size of the crystals dimi-
nishes” '). In that way the halo-colours, which have been too much
neglected, may possibly contribute to a better knowledge of the
higher atmosphere. ’

V1. Conclusions.

The above investigation seems to me to justify the following
conclusions: :

1. The simple refraction-theory cannot explain the halo-phenomena
completely, in particular as regards the great variety of the colours.

2. The diffraction-theory gives a simple explanation of the colours
which appear and allows special conclusions to be drawn regarding
the influence of the size and the shape of the crystals. It alone
gives the ordinary circle its correct place of 22°.

3. The rings which have been observed in the neighbourhood of
22° are secondary diffraction-rings: their radii are not constant.

4. The diffraction-theory will probably be able to afford a better
insight into the formation of the circumzenithic arc.

5. It is necessary that the colours be accurately recorded by
each observer in order to permit a further testing of the theory and
a complete deduction of the origin of the observed phenomenon.

Chemistry. — “/n-, mono- and divariant eéuz‘[ibria”. XVI. By
Prof. F. A. H. ScHREINEMAKERS.

(Communicated in the meeting of March 81, 1917).

The regions in the P,T-diagram.

In communication VIII we have already briefly discussed those
regions; now we shall consider them more in detail. When the
equilibrium ’ .

) E=F+F+....4+F. . . . . . @
consists of n components, then it is generally divariant; consequently
it is generally represented in the P£,7-diagram by a region. We
shall consider this region £ in its whole extensity, viz. without
taking into consideration that some parts may become metastable
by the occurrence of other phases.

With a definite equilibrium E we may distinguish : g

1) Pernrer, L. c. p. 289.
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1. the total composition of E.

2. the composition of each of the phases, of which the equilibrium
E consists. .

We shall say that two equilibria have the same phases-compo-
sition when the phases of both equilibria have the same composition.

We now take a definite point x of the region E (consequently
the equilibrium Z under P, and at 7%). Then the equilibrium £
has either only one definite phase-composition £z, or two phase-
compositions F; and E’; or three viz. E,, E', and E''. etc. We
may express this by saying that either one, or two or more equilibria
E belong to the point z of the region E.

When only one single equilibrium E: belongs to each point 2 of
the regian E, then we call the region one-leafed; when in a part
of the region two equilibria (£, and E’,) belong to each point
then we call that part two-leafed etc.

As the equilibrium E:, which belongs to a definite point of the
region E, may be as well stable as unstable, the region £ may
consist, besides of stable, yet also of unstable leaves.

When the point x traces the region £ of the P,7T-diagram or in
other words, when we give to the equilibvium £ all possible phase-
compositions, then equilibria may occur, which show ‘something
particular. .

1. The equilibriom £ of n componems in n phases passes into
an equilibrinm %, of n—1 components in n phases. [The index
0 indicates that the quantity of one of the components has
become zero].

2. Between the n phases of the equlhbnum E a phase-reaction

AR+ F 4. ... 4+ 4LF,=0. . . . . (2
may occur. We call this equilibrium E,. [The index R indicates
that a reaction may occur].

3. Critical phenomena occur between two phases; we call this
equilibrium £,

The first case occurs when the quantity of one of the components
e.g. K, may become zero in all phases. It is evident that the phases
with constant composmon are not allowed to contain this component
K,, therefore. :

The equilibrium E, contains n—1 components in n phases and
is, therefore, monovariant; consequently it is represented in the
P,T'diagram by a curve, which we shall call curve E,. This curve
E, -is, therefore, nothing else but a monovariant curve of a system
with n—1 components. Consequently it is defined by:
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dP _KH
T=EV

Herein & H represents the increase of entropy and & V the increase
of volume with the reaction, which may occur in the equilibrium E,.

As on curve E, the quantity of one of the components becomes
zero, the region E must terminate (or begin) in curve E,; for this
.-reason we call E, the limit-line of the region E. We shall refer to
this later. In fig. 1 ad and cd are the limitlines of a region
abecd; on curve ab one of the components is missing e.g. K,, on
curve ¢ d an other component e.g. K, is missing in the equilibrium
E. When we go, starting from a point 2 of a limit-line towards a
point !/ or m within the region, then the equilibrium E, passes
into the equilibrium E. ‘ '

Let us take now the second case, viz. that an equilibrium Ep
occurs. The equilibrium Ep consists of n components in n phases,
between which the phase-reaction (2) may occur. Ep is, therefore,
a monovariant equilibrium and it may be represented by a curve
in the P,7T-diagram. It is defined by (3)in which AH and AV relate
now to reaction (2). In order to examine the position of the region
in the vicinity of this curve, we use the property: when in a system
of » components in n phases a phases-reaction may occur, then at
constant 7 the - pressure and under constant P the temperature is
maximum or minimum'’). ‘

Let ¢f be in fig. 2 a curve ER. When we trace the region along
a horizontal line (P constant) then in the point of intersection of
this line with ¢f the temperature must be maximum or minimum,
Let ¢ be this point of intersection and let us assume that 73 is a
maximum, then consequently the region must be situated at the left
of curve ¢f. At Ty, -+ dT(dT > 0) then viz. no equilibrium £ exists,
at 7,—dT two different equilibria E exist, however; consequently
the region is two-leafed in the vicinity of curve EgR. In fig. 2 the
one leaf of the region is dotted, the other leaf is striped. When we
trace the region along a vertical line, then the pressure on ef is a
minimum.

Consequently curve Eg is also a limit-line of the region F, but
in connection with the property of the region in the vicinity of this
curve, we call it “turning line” of the region E. -

Also on the turning-line Eg the conceniration of one of the
components may become zero at a definite 7'(and corresponding P);

T &1

) F. A. H. Scurenesaxers, Die heterogenen Gle:chgewxchte von Bakuuis
Roozesoou. III. 285, -
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then we obtain an equilibrium FEg o, which t;élongs as well to the .
" tarning-line ER as to the limit-line E,. Turning-line and limit line
touth one another in the point Fgo.

-

In the case mentioned under 3 critical phenomena appear between
2 phases. This is the case when in the equilibrium E two liquids
L, and L, get the same composition or when a liquid and a gas
become  identical. Then we obtain an equilibrinm Ag of n components
in n phases, of which 2 phases are in critical condition. This
equilibrium Kx is represented in the P,7-diagram by a curve Eg
which we call the critical curve of the region. In the vicinity of
this curve Eg the region is one-leafed.

Consequently it is apparent from the previous that a bivariant
region is one-leafed in the vicinity of a limit-line or eritical-line, in
“the vicinity of a turning-line it is two-leafed. We shall refer to
this later. ‘ .

One- and two-leafed regions.

A one-leafed region may be limited by limit-lines and critical
lines, but it may also be unlimited. When the equilibrium & contains
e.g. only phases of invariable composition, then neither limit-line, nor
critical line, nor turning-line exists. Consequently the region F is
unlimited. [Of course a part of this region becomes metastable at
higher 7, because another phase is formed e.g. a liquid by melting
or transformation of solids. When we leave out of consideration
however the occurrence of other phases, then the region extends
itself uiﬂimited]. The region may also be unlimited when in the
equilibrium, besides invariable phases also variable phases occur,
which do not contain all components [ e. g. mixed crystals or a gas].

We take an equilibrium E= L 4 G of a binary system with
‘the components A and B, which occur both in the vapour G. Then
the region E has two limit-lines E,. When in L and @ the com-
ponent A is missing, then we have the limit-line E4_o, when Bis
missing, then we have the limit-line Eg—, Consequently curve
E 4= is the boiling-point-line of the substance B, curve Eg— that
of the substance A. ;

When L and G have always different composition, then the region
E=L-+ G has no turning-line; then it may be represented by
fig. 1 in which ad and cd are the limit-lines. When L and @
may get the same composition, so that a reaction L 2> G may occur,
then also a turning-line ER exists. Then the region may be repre-




Fig. 1. Fig. 2.

senfed by fig. 2, in which ad and ¢d are the limit-lines and ¢/
the turning-line.

The same is true for an equilibrium E=M + L or M+ G of
a binary system A -+ B [ M represents mixed crystals]. ‘

The region E exists in fig. 2 of two leaves, viz.a e fband cefd.
On the one leaf the liquid contains more A4, on the other leaf more
B than the vapour.

Let us assume that in the binary system 4 4 B a compound F
occurs. The region E = F 4+ L has then no limit-line E,, but a
turning-line ER; this is the melting-line, of the compound F. The
region E = F - [ is, therefore two-leafed, in the one leaf are situ-
ated the liquids, which contain a surplus of 4 with respect to F,
in the other leaf are situated the liquids, which contain a surplus of B.

The region E= F + G of the binary equilibrium A 4+ B has
also no limit-line, but a turning-line EgR; this is the sublimation-
curve of the compound F.

We take a ternary system with the three volatile components
A, B, and C, in which occurs a binary compound F of B and C.
We now take the equilibrium £= F 4 L 4 @, in which conse-
quently ¢/ contains also the 3 components. [Compare also “Equili-
bria in ternary systems XI”; in fig. 6 of this communication the
arrow in the vicinity of point # on the curve going through the
point F has to point in the other direction].

This region E has a limit-line E4—p; conseqnently this represents
the equilibrium F -4 L 4 G of the binary system B 4 C and it
is indicated in fig. 3 by curve acd; it has in b a maximum of
pressure and in ¢ a maximum-teinperature.

When no equilibrium EgR occurs, then the region E is one-leafed
and consequently it must be situated in fig. 3 withif curve abed.
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[Therefore, it does not extend itself, as is drawn in fig. 3 over af).

When an equilibrium Eg exists [this is the case when the 3
phases in the concentration-diagram are situated on a straight line]
then also a turning-line ER exists, this is represented in fig. 3 by
e f. This point of contact /' represents the equilibrium EgR4—..

The region E is now two-leafed, a fe is the one, dc¢ fe is the
other leaf. ’

When we consider the equilibrium E — F 4 L 4 G at a constant
T, lower than 77, then the pressure on the turning-line ef is a
maximum; when the turning-line was represented by ¢/, then the
pressure would be a minimum.

7

Fig. 3.

On curve acd is situated in the Vicinity of ¢ a solution s, which
has the same composition as the compound #." When F melts with
increase of volume, then s is situated on branch de, as in fig. 3.

It is apparent from formula 17 of the communication on “Equi-
libria in ternary systems X1”: when we enter atconstant I'starting
from the point s the region £ —= F -4 L -+ G, then the pressure
must increase.

Hence it follows, that the point of contact 4 of curve g/ must
always be situated on branch ds and that of curve ¢ f always on
branch as. In the latter case the point of contact may, therefore,
also be situated between s and ¢ e.g. in f,; then we get a limit-
curve like ef,. The equilibrium E = I"+4 L + (7 then still exists
at temperatures above 7, the highest temperature at which the
equilibrium E4—¢ may occur.

Let us now consider the equilibrium E= B+ L 4 G of the
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ternary system A 4 B4 C. [Compare also “Equilibria in ternary
systems XIII” Februoary 1914]. The region £ has then two limit-
lines E4—¢ and E—, The first represents the monovariant
equilibrium B +4 L 4 G of the binary system B -4 C; the second
the same monovariant ‘equilibrium of the binary system 4 4 B.
Each of those curves may either have a point of maximum-pressure
or not, so that we may distinguish three cases. When in the
equilibrium E does not occur an equilibrium Ep, then the region
E is situaled completely within the limit-lines and it is, therefore,
one-leafed; when an equilibrium Epg occurs, then also a turning-
line exists and the region is, therefore, two-leafed.

Two limit-lines ah and cd may intersect one another in a point
s (fig. 4); this means that the two equilibria E, have the same
pressure [’ at the temperature 7. In this case there is always a
limit-curve ef (fig. 4), which may be sitnated as well above as
below the point s. The turning-line ¢ f may touch the curves ¢s
and sé in fig. 4.

Fig. 4. ' Fig. 5.

Let us now consider the equilibrium E== L, 4 L, 4 G, in which
L, and L, represent two liquid-phases. [In a similar way we may
also discuss the equilibria L, + L, + F, M, + M, + L and
M, 4+ M, 4+ G, ete., in which M, and M, represent mixed crystals].
When in the equilibrinm E= L, 4 L, + G the two liquids become
identical, then a critical equilibrium exists: Ex = Lx -+ G. Curve
Ex may have a form, like curve acd!) in fig, 3. When in the
~equilibrium Eg the quantity of one of the components e.g. of 4,
approaches to zero, then curve Ex has a terminating-point Ex 4—o¢.

When acd represents in fig. 3 the critical curve Ex, then the
region E= L, + L, 4+ G is situated either completely within curve

1) Compare also F. A. H. ScHREinEMAKERS, Archives Néerl. Serie IL VL 170
{1901), .
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acd or it is parily two-leafed with the turning-line ¢/ or gh. Also
in fig. 5 a critical curve Ey is represented by acd; the region E
is situated here, however, completely outside the critical curve and
it may have a turning-line also in this case.

We take in figs. 3 and 5 two points [/ and m on a vertical line;
consequently we have 7 = T,,. At the temperature 7 = 7}, two
equilibria Ex exist, therefore, the one [£'x = L'y + '] under the
pressure P, the other [E'x— L"x+ ("] under the pressure P,.

The critical liquids L'y and L"g may now belong either or not
to the same region of un-mixing under its own vapour-pressure of
the temperature 7y —= T,,. When they belong to the same region
of un-mixing, then the region E is situated as in fig. 3; when
they belong to different regions of un-mixing, then the region E is
situated as in fig. 5; in both cases either a tnrning~line may
occur or not,

We might think that in point ¢ of figs. 3 or 5 two critical liquids
get the same composition, so that L. should be a critical liquid of
the 274 order. This is, however, not the case in the point ¢, but in
. another point K of the curve; this is drawn in fig. 5 on branch
de¢. Curve acd touches in this point a curve KK, (not drawn in
the figure); the points of this curve KK, represent critical liquids
of the 2nd ovder. Of all those liquids only the liquid K can be in
equilibrinm with vapour.

More-leafed regions. : _

-Besides one- and two-leafed regions, of which we have considered
above some examples, also more-leafed regions may occur. This
inay take place e.g. when in the region E occur two turning-lines.
We shall consider a definite case for fixing the ideas. For this we
take the equilibrium £ = B+ L 4 G of a ternary system with
"the three volatile components 4, B, and (. This equilibrium £ has
two limit-lines FE4-—¢ and E¢—y; these are represented in the con-
centration-diagram (fig. 6) by the sides BC and B4 of the triangle
A B C, in the P,T-diagram (fig. 7) by the curves aeil and dhkn.
When we imagine in fig. 7 those two curves to be prolonged towards
higher 7, then both curves terminate in a point B, which represeats
the P and 7 of the melting-point under its own vapour-pressure of
the substance B. Above we have already said that these curves
may have a maximum of pressure or not.

The equilibrium E= B 4+ L 4 G consists at a temperature T, of
a series of solutions, which are saturated with solid B and a series
of corresponding vapours. This series of solutions forms the saturation

77

Proceedings Royal Acad. Amsterdam. Vol. XIX.
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curve under its own vapour-pressure of B, the corresponding vapours
form the vapoursaturationenrve. |Compare also: Equilibria in ternary
systems XIII, February 1914]. In fig. 6 curve a b cd represents a
saturation-curve of B under its own vapour-pressure, the corresponding
vapoursaturationcurve has not been drawn. Now we assume that
on curve a d occurs a point of minimum-pressure & and a point of
maximum-pressure c¢; then the pressure increases along a d in the
direction of the little arrows.

Now we imagine in the P,7-diagram (fig. 7)a vertical line, which
corresponds with the temperature 7,. It appears from fig. G that
the points a,b,c¢ and d must be situated in the P,7-diagram with
respect to one another as in fig. 7; of conrse those four points
must be situated on the same vertical line; for the sake of clearness
a small deviation from the true position has been allowed in fig 7.

In accordance with fig. 6, therefore also in fig. 7 at the tempe-
rature 7, the pressure first decreases starting from a as far asind,
afterwards it increases start-
ing from b up to ¢ and
further it decreases again
" starting from ¢ as far as in d.
The points b and ¢ are drawn
in fig. 7 within both the
limit-lines ; it is apparent,
however, that & might be
sitnated also below curve
dn and that ¢ might be
situated also above curve a /.

Now we take a tempera-
tare 7.; the saturation-curve

Fig. 6. under its own vapour-pres-
sure is represented in fig. 6 by curve ek; it has a point of minimum-
pressure in f, or point of maximum-pressure in g. We find the
corresponding points in fig. 7.

Now we assume that on increase of 7 the point of minimum-
and the point of maximum pressure of the saturation-curve under
its own vapour-pressure come nearer to each other and that they
coincide at 7; in the point S. Then the pressure increases along
curve iSK (figs. 6 and 7) starting from K towards i. In the P,7T-
diagram the points ¢, S and K must then be situated with respect
to one another, as in fig. 7; it is evident that the point § must be
situated between the points ¢ and K.

At temperatures above T, eg. at 77, the saturation-curves under

-10 -
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Fig. 7.
its own vapour-pressure have no more a point of minimum- or maxi-
mum-pressure, the pressure increases from n towards / (figs. 6 and 7).

The point of minimum pressure follows therefore,in figs. 6 and 7
a curve mS, the point of maximum-pressure follows a curve MS.
The equilibrium ER consists, therefore, of two branches, which meet
in S; we may, however, also say that only one single turning-line
exists Ep — mSM, which has a singular point in 3.

Later we shall show in general that the two branches mS and
MS of a turning-line ER touch one another in the singular point S
and that the tangent in S is situated between the two branches.

The region E in fig. 7 is now one-leafed, except in the part,
situated within the turning-line, which is three-leafed. "} course this
is only true in so far as this part is situated between the limit-lines.

Leiden, Inorg. Chem. Lab. (To be continued).

Chemistry. -— “/n-, mono- and divariant equilibria” XVII. By
Prof. F. A. H. SCHREINEMAKERS.

{Communicated in the meeting of April 28, 1917).
Equilibria of n components in n phases.

Now we shall consider more in detail the equilibrinm:
E=F +F, +...+F, . . . ...
which we have already discussed in the previous co;ﬁmunication.
We represent the composition of:
77*

-11 -



