Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

F.A.H. Schreinemakers, In-, mono- and divariant equilibria XVI, in:

KNAW, Proceedings, 19 II, 1917, Amsterdam, 1917, pp. 1196-1205

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'
8. The diffraction tells us something of the size of the crystals and by this means possibly of the temperature at which they have been formed: "with falling temperature the size of the crystals diminishes" ${ }^{1}$). In that way the halo-colours, which have been too much neglected, may possibly contribute to a better knowledge of the higher atmosphere.

VI. Conclusions.

The above investigation seems to me to justify the following conclusions:

1. The simple refraction-theory cannot explain the halo-phenomena completely, in particular as regards the great variety of the colouts.
2. The diffraction-theory gives a simple explanation of the colours which appear and allows special conclusions to be drawn regarding the influence of the size and the shape of the crystals. It alone gives the ordinary circle its correct place of 22°.
3. The rings which have been observed in the neighbourhood of 22° are secondary diffraction-rings: their radii are not constant.
4. The diffraction-theory will probably be able to afford a better insight into the formation of the circumzenithic arc.
5. It is necessary that the colours be accurately recorded by each observer in order to permit a further testing of the theory and a complete deduction of the origin of the observed phenomenon.

Chemistry. - "In-, mono- and divariant equilibria". XVI. By Prof. F. A. H. Schreinemakers.
(Communicated in the meeting of March 31, 1917).
The regions in the P, T-diagram.
In communication VIII we have already briefly discussed those regions; now we shall consider them more in detail. When the equilibrium

$$
\begin{equation*}
E=F_{1}+F_{2}+\ldots+F_{n} \tag{1}
\end{equation*}
$$

consists of n components, then it is generally divariant; consequently it is generally represented in the P, T-diagram by a region. We shall consider this region E in its whole extensity, viz. without taking into consideration that some parts may become metastable by the occurrence of other phases.

With a definite equilibrium E we may distinguish:

[^0]1. the total composition of E.
2. the composition of each of the phases, of which the equilibrium E consists.

We shall say that two equilibria have the same phases-composition when the phases of both equilibria have the same composition.

We now take a definite point x of the region E (consequently the equilibrium E under P_{x} and at T_{x}. Then the equilibrium E has either only one definite phase-composition $E x$, or two phasecompositions E_{x} and E_{x}^{\prime} or three viz. E_{x}, E_{x}^{\prime} and $E^{\prime \prime} x_{x}$ etc. We may express this by saying that either one, or two or more equilibria E belong to the point x of the region E.

When only one single equilibrium E_{x} belongs to each point x of the region E, then we call the region one-leafed; when in a part of the region two equilibria (E_{x} and E_{x}^{\prime}) belong to each point x, then we call that part two-leafed etc.

As the equilibrium $E x$, which belongs to a definite point of the region E, may be as well stable as unstable, the region E may consist, besides of stable, yet also of unstable leaves.

When the point x traces the region E of the P, T-diagram or in other words, when we give to the equilibrium E all possible phasecompositions, then equilibria may occur, which show something particular.

1. The equilibrium E of n components in n phases passes into an equilibrium E_{0} of $n-1$ components in n phases. [The index 0 indicates that the quantity of one of the components has become zero].
2. Between the n phases of the equilibrium E a phase-reaction $\lambda_{1} F_{1}+\lambda_{2} F_{2}+\ldots+\lambda_{n} F_{n}=0 . . . \quad . \quad . \quad(2)$ may occur. We call this equilibrium E_{R}. [The index R indicates that a reaction may occur].
3. Critical phenomena occur between two phases; we call this equilibrium E_{K}.

The first case occurs when the quantity of one of the components e.g. K_{1} may become zero in all phases. It is evident that the phases with constant composition are not allowed to contain this component K_{1}, therefore.

The equilibrium E_{0} contains $n-1$ components in n phases and is, therefore, monovariant; consequently it is represented in the P, T-diagram by a curve, which we shall call curve E_{0}. This curve E_{8} is, therefore, nothing else but a monovariant curve of a system with $n-1$ components. Consequently it is defined by:

$$
\begin{equation*}
\frac{d P}{d T}=\frac{\Delta H}{\Delta V} \tag{3}
\end{equation*}
$$

Herein $\angle H$ represents the increase of entropy and ΔV the increase of volume with the reaction, which may occur in the equilibrium E_{0}.

As on curve E_{0} the quantity of one of the components becomes zero, the region E must terminate (or begin) in curve E_{0}; for this reason we call E_{0} the limit-line of the region E : We shall refer to this later. In fig. $1 a b$ and $c d$ are the limit-lines of a region $a b c d$; on curve $a b$ one of the components is missing e.g. K_{2}, on curve $c d$ an other component e.g. K_{2} is missing in the equilibrium E. When we go, starting from a point h of a limit-line towards a point l or m within the region, then the equilibrium E, passes into the equilibrium E.

Let us take now the second case, viz. that an equilibrium E_{R} occurs. The equilibrium E_{R} consists of n components in n phases, between which the phase-reaction (2) may occur. E_{R} is, therefore, a monovariant equilibrium and it may be represented by a curve in the P, T-diagram. It is defined by (3) in which ΔH and ΔV relate now to reaction (2). In order to examine the position of the region in the vicinity of this curve, we use the property: when in a system of n components in n phases a phases-reaction may occur, then at constant T the pressure and under constant P the temperature is maximum or minimum ${ }^{1}$).

Let $e f$ be in fig. 2 a curve E_{R}. When we trace the region along a borizontal line (P constant) then in the point of intersection of this line wilh of the temperature must be maximum or minimum. Let g be this point of intersection and let us assume that T_{g} is a maximom, then consequently the region must be situated at the left of curve ef. At $T_{g}+d T(d T>0)$ then viz. no equilibrium E exists, at $T_{g}-d T$ two different equilibria E exist, however; consequently the region is two-leafed in the vicinity of curve E_{R}. In fig. 2 the one leaf of the region is dotted, the other leaf is striped. When we trace the region along a vertical line, then the pressure on ef is a minimum.

Consequently curve E_{R} is also a limit-line of the region E, but in connection with the property of the region in the vicinity of this curve, we call it "turning tine" of the region E.

Also on the turning-line E_{R} the concentration of one of the components may become zero at a definite T (and corresponding P);

[^1]then we obiain an equilibrium $E_{R .0}$, which belongs as well to the . turning-line E_{R} as to the limit-line E_{0}. Turning-line and limit line touch one another in the point $E_{R .0}$.

In the case mentioned under 3 critical phenomena appear between 2 phases. This is the case when in the equilibrium E two liquids L_{i} and L_{z} get the same composition or when a liquid and a gas become identical. Then we obtain an equilibrium E_{K} of n components in n phases, of which 2 phases are in critical condition. This equilibrium E_{K} is represented in the P, T-diagram by a curve E_{K} which we call the critical curve of the region. In the vicinity of this curve E_{K} the region is one-leafed.

Consequently it is apparent from the previous that a bivariant region is one-leafed in the vicinity of a limit-line or critical-line, in the vicinity of a turning-line it is two-leafed. We shall refer to this later.

One- and two-leafed regions.
A one-leafed region may be limited by limit-lines and critical lines, but it may also be unlimited. When the equilibrium E contains e.g. only phases of invariable composition, then neither limit-line, nor critical line, nor turning-line exists. Consequently the region E is unlimited. [Of course a part of this region becomes metastable at higher T, because another phase is formed e.g. a liquid by melting or transformation of solids. When we leave out of consideration however the occurrence of other phases, then the region extends itself unlimited]. The region may also be unlimited when in the equilibrium, besides invariable phases also variable phases occur, which do not contain all components [e.g. mixed crystals or a gas].

We take an equilibrium $E=L+G$ of a binary system with the components A and B, which occur both in the vapour G. Then the region E has two limit-lines E_{0}. When in L and G the component A is missing, then we have the limit-line $E_{A=0}$, when B is missing, then we have the limit-line $E_{B=0}$. Consequently curve $E_{A=0}$ is the boiling-point-line of the substance B, curve $E_{B=0}$ that of the substance A.

When L and G have always different composition, then the region $E=L+G$ has no turning-line; then it may be represented by fig. 1 in which $a b$ and $c d$ are the limit-lines. When L and G may get the same composition, so that a reaction $L \rightleftarrows G$ may occur, then also a turning-line E_{R} exists. Then the region may be repre-

Fig. 1.

Fig. 2.
sented by fig. 2, in which $a b$ and $c d$ are the limit-lines and $e f$ the turning-line.

The same is true for an equilibrium $E=M+L$ or $M+G$ of a binary system $A+B$ [M represents mixed crystals]

The region E exists in fig. 2 of two leaves, viz. a efb and cefd. On the one leaf the liquid contains more A, on the other leaf more B than the vapour.

Let us assume that in the binary system $A+B$ a compound F occurs. The region $E=F+L$ has then no limit-line E_{0}, but a turning-line E_{R}; this is the melting-line of the compound F. The region $E=F+L$ is, therefore two-leafed, in the one leaf are situated the liquids, which contain a surplus of A with respect to F, in the other leaf are situated the liquids, which contain a surplus of B.

The region $E=F+G$ of the binary equilibrium $A+B$ has also no limit-line, but a turning-line E_{R}; this is the sublimationcurve of the compound F.

We take a ternary system with the three volatile components A, B, and C, in which occurs a binary compound F of B and C. We now take the equilibrium $E=F+L+G$, in which consequently G contains also the 3 components. 「Compare also "Equilibria in ternary systems XI"; in fig. 6 of this communication the arrow in the vicinity of point F on the curve going through the point F has to point in the other direction].

This region E has a limit-line $E_{A=0}$; consequently this represents the equilibrium $F+L+G$ of the binary system $B+C$ and it is indicated in fig. 3 by curve $a c d$; it has in b a maximum of pressure and in c a maximum-teinperature.

When no equilibrium E_{R} occurs, then the region E is one-leafed and consequently it must be situated in fig. 3 within curve abcd.
[Therefore, it does not extend itself, as is drawn in fig. 3 over $a f$].
When an equilibrium E_{R} exists [this is the case when the 3 phases in the concentration-diagram are situated on a straight line] then also a turning-line E_{R} exists, this is represented in fig. 3 by $e f$. This point of contact f represents the equilitrium $E_{R A}=:$

The region E is now two-leafed, $a f e$ is the one, $d c f e$ is the other leaf.

When we consider the equilibrium $E=F+L+G$ at a constant T, lower than T_{f}, then the pressure on the turning-line ef is a maximum; when the turning-line was represented by $g h$, then the pressure would be a minimum.

Fig. 3.
On curve $a c d$ is situated in the vicinity of c a solution s, which has the same composition as the compound F. When F melts with increase of volume, then s is situated on branch $d c$, as in fig. 3.

It is apparent from formula 17 of the communication on "Equilibria in ternary systems XI": when we enter at constant T starting from the point s the region $E=F+L+G$, then the pressure must increase.

Hence it follows, that the point of contact h of curve $g h$ must always be situated on branch $d s$ and that of curve ef always on branch as. In the latter case the point of contact may, therefore, also be situated between s and c e.g. in f_{1}; then we get a limitcurve like $e f_{1}$. The equilibrium $E=F+L+G$ then still exists at temperatures above T_{c}, the highest temperature at which the equilibrium $E_{A=0}$ may occur.

Let us now consider the equilibrium $E=B+L+G$ of the
ternary system $A+B+C$. [Compare also "Equilibria in ternary systems XIII" February 1914]. The region E has then two limitlines $E_{A=0}$ and $E_{C=0}$. The first represents the monovariant equilibrium $B+L+G$ of the hinary system $B+C$; the second the same monovariant equilibrium of the binary system $A+B$. Each of those curves may either have a point of maximum-pressure or not, so that we may distinguish three cases. When in the equilibrium E does not occur an equilibrium E_{R}, then the region E is situated completely within the limit-lines and it is, therefore, one-leafed; when an equilibrium E_{R} occurs, then also a turningline exists and the region is, therefore, two-leafed.

Two limit-lines $a b$ and $c d$ may intersect one another in a point s (fig. 4); this means that the two equilibria E_{0} have the same pressure P_{s} at the temperature T_{s}. In this case there is always a limit-curve ef (fig. 4), which may be situated as well above as below the point s. The turning-line of may touch the curves cs and $s b$ in fig. 4.

Fig. 4.

Fig. 5.

Let us now consider the equilibrium $E=L_{1}+L_{1}+G$, in which L_{1} and L_{2} represent two liquid-phases. [In a similar way we may also discuss the equilibria $L_{1}+L_{1}+F, M_{1}+M_{1}+L$ and $M_{1}+M_{2}+G$, etc., in which M_{1} and M_{2} represent mixed crystals]. When in the equilibrium $E=L_{1}+L_{2}+G$ the two liquids become identical, then a critical equilibrium exists : $E_{K}=L_{K}+G$. Curve E_{K} may have a form, like curve acd!) in fig. 3. When in the equilibrium E_{K} the quantity of one of the components e.g. of A, approaches to zero, then curve E_{K} has a terminating-point $E_{K . A}=0$.

When acd represents in fig. 3 the critical curve E_{K}, then the region $E=L_{1}+L_{2}+G$ is situated either completely within curve

[^2]acd or it is partly two-leafed with the turning-line $e f$ or $g h$. Also in fig. 5 a critical curve E_{K} is represented by $a c d$; the region E is situated here, however, completely ousside the critical curve and it may have a turning-line also in this case.

We take in figs. 3 and 5 two points l and m on a vertical line; consequently we have $T_{i}=T_{m}$. At the temperature $T_{l}=T_{m}$ two equilibria E_{K} exist, therefore, the one $\left[E_{K}^{\prime}=L_{K}^{\prime}+G^{\prime}\right]$ under the pressure P_{l}, the other $\left[E_{K}^{\prime \prime}=L_{K}^{\prime \prime}+G^{r}\right]$ under the pressure P_{m}.

The critical liquids L_{K}^{\prime} and $L_{K}^{\prime \prime}$ may now belong either or not to the same region of un-mixing under its own vapour-pressure of the lemperature $T_{l}=T_{n}$. When they belong to the same region of un-mixing, then the region E is situated as in fig. 3; when they belong to different regions of un-mixing, then the region E is situated as in fig. 5 ; in both cases either a turning-line may occur or not.
We might think that in point c of figs. 3 or 5 two critical liquids get the same composition, so that L_{c} should be a critical liquid of the $2^{\text {nd }}$ order. This is, however, not the case in the point c, but in another point K of the curve; this is drawn in fig. 5 on branch $d c$. Curve acd touches in this point a curve $K K_{1}$ (not drawn in the figure); the points of this curve $K K_{1}$ represent critical liquids of the $2^{\text {nd }}$ order. Of all those liquids only the liquid K can be in equilibrium with vapour.

More-leafed regions.

Besides one- and two-leafed regions, of which we have considered above some examples, also more-leafed regions may occur. This may take place e.g. when in the region E occur two turning-lines. We shall consider a definite case for fixing the ideas. For this we take the equilibrium $E=B+L+G$ of a ternary system with the three volatile components A, B, and C. This equilibrium E has two limit-lines $E_{A=0}$ and $E_{C=0}$; these are represented in the con-centration-diagram (fig. 6) by the sides $B C$ and $B A$ of the triangle $A B C$, in the P, T-diagram (fig. 7) by the curves aeil and $d h k n$. When we imagine in fig. 7 those two curves to be prolonged towards higher T, then both curves terminate in a point B, which represents the P and T of the melting-point under its own vapour-pressure of the substance B. Above we have already said that these curves may have a maximum of pressure or not.

The equilibrium $E=B+L+G$ consists at a temperature T_{e} of a series of solutions, which are saturated with solid B and a series of corresponding vapours. This series of solutions forms the saturation

Proceedings Royal Acad. Amsterdam. Vol. XIX.
curve under its own vapour-pressure of B, the corresponding vapours form the vapoursaturationcurve. \Compare also: Equilibria in ternary systems XIII, February 1914]. In fig. 6 curve abcd represents a saturation-curve of B under its own vapour-pressure, the corresponding vapoursaturationcurve has not been drawn. Now we assume that on curve a d occurs a point of minimum-pressure b and a point of maximum-pressure c; then the pressure increases along ad in the direction of the little arrows.

Now we imagine in the P, T-diagram (fig. 7) a vertical line, which corresponds with the temperature T_{a}. It appears from fig. 6 that the points a, b, c and d must be situated in the P, T-diagram with respect to one another as in fig. 7; of course those four points must be situated on the same vertical line; for the sake of clearness a small deviation from the true position has been allowed in fig 7.

In accordance with fig. 6, therefore also in fig. 7 at the temperature T_{a} the pressure first decreases starting from a as far as in b, afterwards it increases start-

Fig. 6. ing from b up to c and further it decreases again starting from c as far as in d. The points b and c are drawn in fig. 7 within both the limit-lines; it is apparent, however, that b might be situated also below curve $d n$ and that c might be situated also above curve a l.

Now we take a temperature T_{e}; the saturation-curve under its own vapour-pressare is represented in fig. 6 by curve eh; it has a point of minimumpressure in f, or point of maximum-pressure in g. We find the corresponding points in fig. 7.

Now we assume that on increase of T the point of minimumand the point of maximum pressure of the saturation-curve under its own vapour-pressure come nearer to each other and that they coincide at T_{i} in the point S. Then the pressure increases along curve $i S K$ (figs. 6 and 7) starting from K towards i. In the P, T diagram the points i, S and K must then be situated with respect to one another, as in fig. 7; it is evident that the point S must be situaled between the points i and K.

At temperatures above T_{i}, e.g. at T_{l}, the saturation-curves under

Fig. 7.
its own vapour-pressure have no more a point of minimum- or maxi-mum-pressure, the pressure increases from n towards l (figs. 6 and 7).

The point of minimum pressure follows therefore, in figs. 6 and 7 a curve $m S$, the point of maximum-pressure follows a curve $M S$. The equilibrium E_{R} consists, therefore, of two branches, which meet in S; we may, however, also say that only one single turning-line exists $E_{R}=m S M$, which has a singular point in S.

Later we shall show in general that the two branches $m S$ and $M S$ of a turuing-line E_{R} touch one another in the singular point S and that the tangent in S is situated between the two branches.

The region E in fig. 7 is now one-leafed, except in the part, situated within the furning-line, which is three-leafed. 'If course this is only true in so far as this part is situated between the limit-lines.

Leiden, Inory. Chem. Lab.
(To be continued).

Chemistry. -- "/n-, mono- and divaviant equilibria" XVII. By Prof. F. A. H. Schreinemakehs.
(Communicated in the meeting of April 28, 1917).
Equilibria of n components in n phases.
Now we shall consider more in detail the equilibrinm:

$$
\begin{equation*}
E=F_{1}+F_{2}+\ldots+F_{n} \tag{1}
\end{equation*}
$$

which we have already discussed in the previous communication. We represent the composition of:

[^0]: ${ }^{1}$) Pernter, l. c. p. 289.

[^1]: ${ }^{1}$) F. A. H. Schreinemakers, Die heterogenen Gleichgewichte von Baxauis Roozeboom. III. 285.

[^2]: ${ }^{1}$) Compare also F. A. H. Schreinemakers, Archives Néerl. Serie II. VI. 170 (1901).

