Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

F.A.H. Schreinemakers, In-, mono- and divariant equilibria. XVII, in:

KNAW, Proceedings, 19 II, 1917, Amsterdam, 1917, pp. 1205-1217

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Fig. 7.
its own vapour-pressure have no more a point of minimum- or maxi-mum-pressure, the pressure increases from n towards l (figs. 6 and 7).

The point of minimum pressure follows therefore, in figs. 6 and 7 a curve $m S$, the point of maximum-pressure follows a curve $M S$. The equilibrium E_{R} consists, therefore, of two branches, which meet in S; we may, however, also say that only one single turning-line exists $E_{R}=m S M$, which has a singular point in S.

Later we shall show in general that the two branches $m S$ and $M S$ of a turuing-line E_{R} touch one another in the singular point S and that the tangent in S is situated between the two branches.

The region E in fig. 7 is now one-leafed, except in the part, situated within the furning-line, which is three-leafed. 'If course this is only true in so far as this part is situated between the limit-lines.

Leiden, Inory. Chem. Lab.
(To be continued).

Chemistry. -- "/n-, mono- and divaviant equilibria" XVII. By Prof. F. A. H. Schreinemakehs.
(Communicated in the meeting of April 28, 1917).
Equilibria of n components in n phases.
Now we shall consider more in detail the equilibrinm:

$$
\begin{equation*}
E=F_{1}+F_{2}+\ldots+F_{n} \tag{1}
\end{equation*}
$$

which we have already discussed in the previous communication. We represent the composition of:

$$
\begin{array}{ccc}
F_{1} & \text { by } & x_{1} y_{1} z_{1} \ldots 1 .-x_{1}-y_{1}-z_{1} \ldots \\
F_{2} & \because & x_{2} y_{2} z_{2} \ldots 1-x_{2}-y_{2}-z_{2} \ldots
\end{array}
$$

The ζ, the entropy and the volume of F_{1} we call $Z_{1} H_{1}$ and V_{1}; those of F_{3} we call $Z_{3} H_{2}$ and V_{2}; etc.

Then we may write the conditions for equilibrium :

$$
\left.\begin{array}{l}
Z_{1}-x_{1} \frac{\partial Z_{1}}{\partial x_{1}}-y_{1} \frac{\partial Z_{1}}{\partial y_{1}} \ldots=K \tag{2}\\
Z_{1}-x_{3} \frac{\partial Z_{3}}{\partial x_{3}}-y_{2} \frac{\partial Z_{3}}{\partial y_{3}} \ldots=K=K
\end{array}\right\}
$$

via. n equations (2) of which we only have written two. Further we have:

$$
\left.\begin{array}{l}
\frac{\partial Z_{1}}{\partial x_{i}}=\frac{\partial Z_{2}}{\partial x_{1}}=\ldots=\frac{\partial Z_{n}}{\partial x_{n}}=K_{x} \tag{3}\\
\frac{\partial Z_{1}}{\partial y_{2}}=\frac{\partial Z_{z}}{\partial y_{3}}=\ldots=\frac{\partial Z_{n}}{\partial y_{n}}=K_{y}
\end{array}\right\}
$$

The corresponding equations for the variables $z_{1} z_{2} \ldots u_{1} u_{2} \ldots$ etc. have still to be added to (3).

We find in (2) n, in (3) $n(n-1)$, consequently in total n^{2} equations. Besides the $n(n-1)$ variables $x_{1} y_{1} \ldots x_{2} y_{2} \ldots$ etc. we have still the $n+2$ variables $T P K K_{x} K_{y} \ldots$ consequently in total $n^{2}+2$ variables. The equilibrium E has, therefore, two degrees of freedom and consequently it is bivariant.

We have assumed in (2) and (3) the general case that all phases have a variable composition and that each phase contains all components. When this is not the case, then we are able to make at once the necessary alterations in (2) and (3). When e.g. F_{1} has a constant composition $x_{1}=\alpha, y_{1}=\beta$, etc., then the first equation (2) passes into:

$$
\begin{equation*}
Z_{1}-\alpha \frac{\partial Z_{i}}{\partial x_{i}}-\beta \frac{\partial Z_{i}}{\partial y_{i}} \ldots=K \tag{4}
\end{equation*}
$$

in which the index i relates then to a phase F_{i} of variable composition. Then Z_{1} is only still a function of P and T; in (3) then $\frac{\partial Z_{1}}{\partial x_{1}}, \frac{\partial Z_{1}}{\partial y_{1}}$ etc. disappear.

When we give to $P T x y \ldots$ the differentials $\Delta P \Delta T \Delta x \Delta y \ldots$: then we have:

$$
\begin{aligned}
& \Delta Z=V d P-H d T+\frac{\partial Z}{\partial x} \Delta x+\frac{\partial Z}{\partial y} \Delta y+\ldots+\frac{1}{2} d^{3} Z+\frac{1}{6} d^{3} Z+\ldots \\
& \Delta\left(x \frac{\partial Z}{\partial x}\right)=\frac{\partial Z}{\partial x} \Delta x+(x+\Delta x)\left[d \frac{\partial Z}{\partial x}+\frac{1}{2} d^{2} \frac{\partial Z}{\partial x}+\ldots\right]
\end{aligned}
$$

$$
\left.\Delta \dot{(y} \frac{\partial Z}{\partial y}\right)=\frac{\partial Z}{\partial y} \Delta y+(y+\Delta y)\left[d \frac{\partial Z}{\partial y}+\frac{1}{2} d^{2} \frac{\partial Z}{\partial y}+\cdots\right]
$$

Herein the sign d indicates that we have to differentiate according to all variables, which the function contains. Further is:

$$
\begin{aligned}
& d^{2} Z=d \frac{\partial Z}{\partial P} \cdot \Delta P+d \frac{\partial Z}{\partial T} \cdot \Delta T+d \frac{\partial Z}{\partial x} \cdot \Delta x+d \frac{\partial Z}{\partial y} \cdot \Delta y+\ldots \\
& d^{3} Z=d^{\mathbf{y}} \frac{\partial Z}{\partial P} \cdot \Delta P+d^{3} \frac{\partial Z}{\partial T} \cdot \Delta T+d^{2} \frac{\partial Z}{\partial x} \cdot \Delta x+d^{y} \frac{\partial Z}{\partial y} \cdot \Delta y+\ldots
\end{aligned}
$$

When we neglect in $d^{2} Z$ and $d^{2} Z$ the terms which are infinitely small with respect to $\triangle P$ and ΔT, then we may write:

$$
\begin{aligned}
& d^{2} Z=d \frac{\partial Z}{\partial x} \cdot \Delta x+d \frac{\partial Z}{\partial y} \cdot \Delta y+\ldots \\
& d^{2} Z=d^{2} \frac{\partial Z}{\partial x} \cdot \Delta x+d^{2} \frac{\partial Z}{\partial y} \cdot \Delta y+\ldots
\end{aligned}
$$

From a form:

$$
Z-x \frac{\partial Z}{\partial x}-y \frac{\partial Z}{\partial y}-\cdots=K
$$

it follows, therefore:

$$
\begin{gather*}
\left.-V \Delta P+H \Delta T+(x+\Delta x)\left(d \frac{\partial Z}{\partial x}+. .\right)+(y+\Delta y)\left(d \frac{\partial Z}{\partial y}+\ldots\right)-\right\} \tag{5}\\
\text { Now is } \quad-\frac{1}{2} d^{3} Z-\frac{1}{6} d^{3} Z-\ldots=-\Delta K \\
\Delta x\left[d \frac{\partial Z}{\partial x}+\frac{1}{2} d^{2} \frac{\partial Z}{\partial x}+\ldots\right]+\Delta y\left[d \frac{\partial Z}{\partial y}+\frac{1}{2} d^{2} \frac{\partial Z}{\partial y}+\ldots\right]=d^{2} Z+\frac{1}{2} d^{3} Z+\ldots
\end{gather*}
$$

so that we may write for (5)

$$
\begin{gather*}
-V d P+H d T+x\left[d \frac{\partial Z}{\partial x}+\ldots\right]+y\left[d \frac{\partial Z}{\partial y}+\ldots\right]+\cdots\{ \tag{6}\\
+\frac{1}{2} d^{2} Z+\frac{1}{3} d^{3} Z+\ldots=-\Delta K
\end{gather*}
$$

Now we apply this to the n equations (2) and we differentiate further also the $n(n-1)$ equations (3). First, however, we shall introduce the following notation; we put viz:

$$
\frac{\partial Z_{1}}{\partial x_{1}}=(x)_{1} ; \frac{\partial Z_{3}}{\partial y_{3}}=(y)_{2} ; \frac{\partial^{2} Z_{3}}{\partial x_{3}^{3}}=\left(x^{2}\right)_{2} ; \frac{\partial^{3} Z_{4}}{\partial x_{4}^{2} \partial y_{4}}=\left(x^{2} y\right)_{4} \text { enz. }
$$

The index outside the parentheses indicates, therefore, which of the functions $Z_{1} \ldots Z_{n}$ has to be differentiated; the letters within the parentheses indicate according to which variables we have to differentiate.

Then it follows from the n equations (2):

$$
\left.\begin{array}{c}
-V_{1} \Delta P+H_{1} \Delta T+x_{1}\left[d(x)_{1}+\ldots\right]+y_{1}\left[d(y)_{1}+\ldots\right]+\ldots \tag{7}\\
\quad+\frac{1}{\frac{1}{2} d^{3} Z_{1}+\frac{1}{3} d^{3} Z_{1}+\ldots=-\Delta K} \\
-V_{2} \Delta P+H_{2} \Delta T+x_{3}\left[d(x)_{3}+\ldots\right]+y_{1}\left[d(y)_{3}+\ldots\right]+\ldots \\
\\
\quad+\frac{1}{2} d^{2} Z_{1}+\frac{1}{3} d^{2} Z_{2}+\ldots=-\Delta K
\end{array}\right\} .
$$

and still $n-2$ other equations. It follows from (3)

$$
\left.\begin{array}{l}
d(x)_{1}+\frac{1}{2} d^{2}(x)_{1}+\ldots=d(x)_{2}+\frac{1}{2} d^{2}(x)_{2}+\ldots=\Delta K_{x} \tag{8}\\
d(y)_{2}+\frac{1}{2} d^{2}(y)_{1}+\ldots=d(y)_{2}+\frac{1}{2} d^{2}(y)_{2}+\ldots=\Delta K_{y}
\end{array}\right\} .
$$

etc. In accordance with our notation is e.g.
or

$$
\begin{gathered}
d(x)_{1}=(P x)_{1} \Delta P+(T x)_{1} \Delta T+\left(x^{2}\right)_{1} \Delta x_{1}+(x y)_{1} \Delta y_{i}+\ldots \\
\frac{\partial V_{1}}{\partial x_{1}} \Delta P-\frac{\partial H_{1}}{\partial x_{1}} \Delta T+\frac{\partial^{2} Z_{1}}{\partial x_{1}{ }^{2}} \Delta x_{1}+\frac{\partial^{2} Z_{1}}{\partial x_{1} \partial y_{1}} \Delta y_{1}+\ldots \\
d(y)_{1}=(P y)_{1} \Delta P+(T y)_{1} \Delta T+(x y)_{1} \Delta x_{1}+\left(y^{3}\right)_{1} \Delta y_{1}+\ldots \\
\frac{\partial V_{1}}{\partial y_{1}} \Delta P-\frac{\partial H_{1}}{\partial y_{1}} \Delta T+\frac{\partial^{2} Z_{1}}{\partial x_{1} \partial y_{1}} \Delta x_{1}+\frac{\partial^{2} Z_{1}}{\partial y_{1}^{2}} \Delta y_{1}+\ldots
\end{gathered}
$$

When a phase e.g. F_{1} has a constant composition, then for this (\pm) is true; instead of the first equation (7) we tind then:
$-V_{1} \Delta P+H_{1} \Delta T+\boldsymbol{}\left[d(x)_{i}+.\right]+\beta\left[d(y)_{i}+\ldots\right]=-\Delta K$.
Consequently in the first equation (7) are missing then the terms $d^{3} Z_{1}, d^{3} Z_{1}$ etc.

Equilibria of n components in n phases under constant pressure.
When we keep the pressure constant, then we have to omit in (7) and (8) all the terms with $\triangle P$; the sign d indicates then that we have to differentiate according to all variables, except P.

Now we have in (7) and (8) n^{2} equations and $n^{2}+1$ differentials $\angle T, \Delta x_{1} \ldots$, so that their relations are defined. Consequently to each definite differential of one of the variables e.g. Δr_{1} belongs a definite differential of each of the other variables, therefore, e.g. also of ΔT. On change of x_{1} (or one of the other variables) the equilibrium E follows, therefore, in the P,T-diagram a straight line, parallel to the T-axis.

Now we shall put the question: when will the temperature be maximum or minimum?

For this it is necessary that ΔT is of the second order; then it follows from (7) and (8) that it must be possible to salisfy:

$$
\begin{array}{r}
x_{1} d(x)_{1}+y, d(y)_{1}+\ldots=\Delta K \tag{9}\\
x, d(x)_{2}+y_{2} d(y)_{2}+\ldots=\Delta K \\
x_{2}+.
\end{array}
$$

and

$$
\left.\begin{array}{l}
d(x)_{2}=d(x)_{2}=\ldots=d(x)_{n}=\Delta K_{x} \\
d(y)_{1}=d(y)_{2}=\ldots=d(y)_{n}=\Delta K_{y} \tag{10}\\
\text {. }
\end{array}\right\}
$$

in which d indicates now that we have to differentiate according to all variables except P and T.

It must be possible to solve the ratios between the n^{2} differentials $\Delta x_{1} \Delta x_{2} \ldots \Delta y_{1} \Delta y_{2} \ldots \Delta K, \Delta K_{x}, \ldots$ from the n^{2} equations (9) and (10); this is only then possible, when a relation exists between the coefficients. With the aid of (10) we write for (9):

$$
\left.\begin{array}{l}
x_{1} \Delta K_{x}+y_{1} \Delta K_{y}+\ldots=\Delta K \tag{11}\\
x_{2} \Delta K_{x}+y_{2} \Delta K_{y}+\ldots=\Delta K \\
\text {. }
\end{array}\right\}
$$

so that we must be able to satisfy (10) and (11). Here this is the case when we are able to satisfy (11).

When we add the n equations (11) after having multiplied the first one by λ_{1}, the second one by λ_{2}, etc., then we obtain:

$$
\begin{equation*}
\Sigma(\lambda x) \Delta K_{x}+\Sigma(\lambda y) \Delta K_{y}+\Sigma(\lambda) \Delta K \tag{12}
\end{equation*}
$$

Hence it is apparent that we are able to solve the ratios between - $\Delta x_{1} \Delta x, \ldots$ from (9) and (10), when

$$
\left.\begin{array}{l}
\leq(\lambda)=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}=0 \tag{13}\\
\leq(\lambda x)=\lambda_{1} x_{1}+\lambda_{2} x_{2}+\ldots+\lambda_{n} x_{n}=0 \\
\Sigma(\lambda y)=\lambda_{1} y_{1}+\lambda_{2} y_{2}+\ldots+\lambda_{n} y_{n}=0 \\
. \quad \text {. }
\end{array}\right\}
$$

can be satisfied.
We might also satisfy (12) by putting equal to zero $\Delta K_{x}, \Delta K_{y}, \ldots$; now, however, we leave this case out of consideration and we shall refer to this later; then we sball see that the equilibrium is situated on the limit of its stability.
[Mr. W. van der Woude has drawn my attention to the fact that we can easily express the condition that (9) and (10) can be satisfied in a determinant. It appears that this can be written like the product of different other determinants, so that we know at once all the conditions looked for.

We have in (13) n equations between the $n-1$ ratios of $\lambda_{1} \lambda_{2} \ldots \lambda_{n}$; consequently (13) can only be satisfied when a ratio exists between the variables. We may find it by eliminating from the equations (13) $\lambda_{1} \ldots \lambda_{n}$; we may also write this equation in the form of the tollowing determinant;

$$
\left|\begin{array}{ccccc}
1 & 1 & 1 & 1 & \cdots \\
x_{1} & x_{3} & x_{3} & x_{4} & \ldots \\
y_{1} & y_{1} & y_{2} & y_{1} & \ldots \\
z_{1} & z_{3} & z_{3} & z_{4} & \ldots \\
. & \cdot & . & \cdot & \cdot
\end{array}\right|=0
$$

When we bear in mind, however, the compositions of the phases $F_{1} \ldots F_{n}$ then it appears that (13) expresses, that it must be possible that between the phases a reaction of the form :

$$
\lambda_{1} F_{1}+\lambda_{2} F_{2}+\ldots+\lambda_{n} F_{n}=0
$$

consequently a phase-reaction occurs. Then the equilibrium is an equilibrium E_{R} and consequently it is situated in the P, T-diagram on a curve E_{R}, viz. on a turning-line of the region E.

Therefore we find:
"in ant equilibrium of n components in n phases under constant P the temperature is maximum or minimum, when between the phases a phase-reaction can occur".

Consequently in a binary system T is maximum or minimum when the two phases have the sume composition; in a ternary system when the 3 points which represent the phases, are situated on a straight line; in a quaternary system when the 4 phases may be represented by 4 points of a plane; etc.

Now we have still to examine when T is a maximum and when it is a minimum. For this we have to determine $\triangle T$. We take the equations (7) in which all the terms with $\triangle P$ must be omitted now. When we add the equations after having multiplied the first by λ_{1}, the second by λ_{2}, etc., then we find with the aid of (8) and (13) :

$$
\begin{equation*}
\Sigma(\lambda H) \cdot \Delta T+\frac{1}{2} \Sigma\left(\lambda d^{2} Z\right)+\frac{1}{3} \Sigma\left(\lambda d^{2} Z\right)+\ldots=0 . \tag{14}
\end{equation*}
$$

or at first approximation:

$$
\begin{equation*}
\Sigma(\lambda H) . \Delta T=-\frac{1}{2} \Sigma\left(\lambda d^{3} Z\right) \tag{15}
\end{equation*}
$$

Herein is:

$$
\mathbf{\Sigma}(\lambda H)=\lambda_{1} H_{1}+\lambda_{2} H_{3}+\ldots+\lambda_{n} H_{n}
$$

consequently the increase of entropy which occurs at the reaction:

$$
\lambda_{1} F_{1}+\lambda_{2} F_{2}+\ldots+\lambda_{n} F_{n}=0
$$

Further is:

$$
\begin{equation*}
\Sigma\left(\lambda d^{2} Z\right)=\lambda_{1} d^{2} Z_{1}+\lambda_{2} d^{2} Z_{1}+\ldots+\lambda_{n} d^{3} Z_{n} \tag{16}
\end{equation*}
$$

or, as it follows from the values of $d^{3} Z_{1}$ etc.;

$$
\left.\begin{array}{rl}
\Sigma\left(\lambda d^{2} Z\right)= & \lambda_{1}\left[d(x)_{1} \Delta x_{1}+d(y)_{1} \Delta y_{1}+\ldots\right] \tag{17}\\
& \left.+\lambda_{1} \mid d(x)_{2} \Delta x,+d(y)_{2} \Delta y_{2}+\ldots\right] \\
& \cdot \\
& +\lambda_{n}\left[d(x)_{n} \Delta x_{n}+d(y)_{n} \Delta y_{n}+\ldots\right]
\end{array}\right\}
$$

or also:

$$
\left.\begin{array}{rl}
\Sigma\left(\lambda d^{2} Z\right)= & \lambda_{1}\left[\left(x^{2}\right)_{1} \Delta x_{1}{ }^{2}+\left(y^{2}\right)_{1} \Delta y_{1}{ }^{2}+\ldots+2(x y)_{1} \Delta x_{1} \Delta y_{1}\right] \tag{18}\\
\cdot \\
& +\lambda_{n}\left[\left(x^{2}\right)_{n} \Delta x_{n}{ }^{2}+\left(y^{2}\right)_{n} \Delta y_{n}{ }^{2}+\ldots+2(x y)_{n} \Delta x_{n}\right]
\end{array}\right\}
$$

When one of the phases e.g. F_{1}, has a constant composition, then in (16) $d^{3} Z_{1}$ disappears when there are more phases with constant composition, then in (16) and consequently also in (17) and (18) the corresponding terms disappear.

When the equilibrium E is stable (or, which comes to the same for our considerations "inetastable") then $d^{2} Z_{1} d^{2} Z_{9}$ — - are positive; when however the equilibrium is unstable, then one or more of the forms $d^{2} Z_{1}-$ may be negative.

Now it follows from (15) when the temperature is a maximum and when it is a minimum.

When $\Sigma(\lambda H)$ and $\Sigma\left(\cdot d^{2} Z\right)$ have the same sign, then $\triangle T<O$ and consequently T is a maximum
When $\Sigma(\lambda H)$ and $\Sigma\left(\lambda d^{2} Z\right)$ have opposite sign, then $\Delta T>0$ and consequently T is a minimum.
When $\Sigma\left(\lambda d^{2} Z\right)=0$, then T is neither maximum nor minimum.
In some cases it is easy to define this. Let us take e.g. an equilibrium

$$
E=L_{1}+F_{2}+F_{z}+\cdots+F_{n}
$$

in which L_{1} is a liquid and $F_{5} \ldots F_{n}$ phases of invariable composition e.g. solids.

We cause the phase-reaction

$$
\lambda_{1} L_{1}+\lambda_{2} F_{2}+\ldots+\lambda_{n} F_{n}=0
$$

to proceed in such a way that λ_{1} quantities of L_{1} must be formed and we take λ_{1} positive. In the equilibrium E therefore, a reaction occurs [melting or conversion of solid substances] at which liquid is formed. As, in general, heat is to be added at this reaction, $\Sigma(\lambda H)>0$.

As $F_{2} \ldots F_{n}$ are phases with invariable composition $\Sigma\left(\lambda d^{2} Z\right)=$ $=\lambda_{1} d^{2} Z_{1}$.

Consequently we have:

$$
\begin{equation*}
\Sigma(\lambda H) \Delta T=-\frac{1}{2} \lambda_{1} d^{3} Z_{1} \tag{19}
\end{equation*}
$$

in which $\Sigma(2 H)>0$ and $\lambda_{1}>0 . d^{3} Z_{1}$ is positive when the equilibrium
is stable, but it may be negative when the equilibrium is unstable. Consequently T is a maximum when the equilibrium is stable, but it may be a minimum when the equilibrium is unstable.

When we summarize the previous considerations, then we find the following:

In an equilibrium of n components in n phases under constant P the temperature is maximum or minimum when a phase-reaction can occur between the phases.

When one of the phases is a liquid and when the $n-1$ other phases are solids with invariable composition, then T is a maximum when the equilibrium is stable (or metastable); T can be a minimum when the equilibrium is unstable.

We may apply those general considerations to special cases; with this we assume that the equilibrium is stable (or metastable).

In the binary equilibrium $E=L_{1}+F_{2} \ldots L_{1}$ represents the liquid, saturated with solid F_{3}. In a T-concentration-diagram L_{1} follows, therefore, the saturation-curve under its own vapour pressure. Consequently this curve must have its maximum-temperature in the point, in which L_{1} has the same composition as F_{2}; this is, therefore, in the melting-point of F_{3}.

In the ternary equilibrium $E=L_{1}+F_{2}+F_{2} \ldots L_{1}$ is a liquid, saturated with $F_{2}+F_{2}$. In the concentration-diagram L_{1} follows, therefore, the saturationcurve of $F_{2}+F_{2}$ under its own vapour-pressure. T changes along this curve from point to point. It will be necessary that T is a maximum in the point of intersection of this curve with the line F, F_{3}.

Similar considerations are true for systems with 4 and more components.

In a following communication we shall refer to unstable conditions.

Equilibria of n components in n phases under constant pressure and at a temperature which differs little from the maximum- or minimum temperature.

As between the n phases of an equilibrium E_{R} a phase-reaction may occur, (13) may be satisfied. The ratios between $\Delta x_{1} \Delta y_{1} \ldots$ $\Delta x_{3} \Delta y_{2} \ldots$ are then defined by (9) and (10). When we imagine $\Delta x_{2} \ldots \Delta y_{1} \Delta y_{2} \ldots$ to be expressed in Δx_{1} and this to be substituted in (18) then it appears that we may write for $\Sigma\left(i d^{2} Z\right)$ a form like $A \Delta x_{1}{ }^{2}$. Herein A has a definite positive or negative value. Then follows from (15):

$$
\begin{equation*}
\Delta x_{1}= \pm / \frac{\overline{2 \Sigma(2 H)}}{-A} \Delta T^{\prime} . \quad . \quad . \tag{20}
\end{equation*}
$$

Hence it appears that to each definite value of ΔT two values of Δx_{1} (and consequently also of $\Delta x_{2} \ldots \Delta y_{1} \Delta y_{2} \ldots$) belong, which differ from one another in sign only. When the form under the root in (20) is positive, then $\Delta x_{1} \Delta x_{2} \ldots \Delta y_{1} \Delta y_{2} \ldots$ have, therefore, each two real values; when this form is negative, then $\Delta x_{1} \ldots$ are imaginary.

Consequently we distinguish two cases.
When $\Sigma(\lambda H)$ and A have the same sign, then we must take $\triangle T$ negative in order to obtain real values for $\Delta x_{1} \ldots$; the temperature T_{R} is, therefore, a maximum. At T_{R} there exists therefore one single equilibrium E_{R}; at $T_{R}+\Delta T$ (we take $\Delta T>0$) no equilibrium E exists; at $T_{R}-\triangle T$, however, two different equilibria exist, which we shall call E^{\prime} and $E^{\prime \prime}$.

When $\Sigma(\lambda H)$ and A have the same sign, then we have to take ΔT positive, in order to obtain real values for $\Delta x_{1} \ldots$ Consequently T_{R} is a minimum. Then at $T_{R}+\Delta T$ two different equilibria E^{\prime} and $E^{\prime \prime}$ exist, at $T_{R}-\Delta T$ no equilibrium E exists.

We may also express the previous in the following way.
When under constant P the temperature is a maximum on the turning-line E_{R}, then two leaves of the region go, starting from this turning-line, towards lower T and not a single leaf towards higher T.

When under constant P the temperature is a minimum on the turning-line E_{R}, then two leaves of the region go towards higher T starting from this turning-line, and no single leaf towards lower T.

With our considerations on the region E in the previous communication XVI, we have already applied these results. The figs. 2 (XVI) and 4 (XVI) in which ef represents a turning-line, are in accordance with this. In fig. 7 (XVI) $q l$ and $d m$ are the limit-lines, MSm a turning-line. In order to show that also this diagram is in accordance with those results, we consider the horizontal line $q r s t$; in order to show more distinctly the situation of those leaves, it is partly dotted and curved in r and s. In $r T$ is a maximum, this corresponds to the fact that two leaves go, starting from curve $m S$ towards lower and no leaf towards higher T. In $s T$ is a minimum, two leaves go towards higher- and no leaf towards lower temperatures.

We have seen that at the temperature T_{R} only one single equilibrium $E_{R}=F_{1}+F_{1}+\ldots$ exists and that a phase-reaction may occur between the phases of this equilibrium. At $T_{R}+\Delta T[\Delta T<0$
when T_{R} is a maximum; $\Delta T>0$ when T_{R} is a minimum f wo equilibria exist, viz.

$$
E^{\prime}=F_{1}^{\prime}+F_{2}^{\prime}+\ldots \text { and } E^{\prime \prime}=F_{1}^{\prime \prime}+F_{3}^{\prime \prime}+\ldots
$$

No phase-reaction can occur between the phases of E^{\prime}; no more between those of $E^{\prime \prime}$. The invariable phases have of course the same composition in the three equilibria; the compositions of the variable phases differ only little from one another in the three equilibria. Now we shall show :
a. The concentration-regions of E_{R}, E^{\prime} and $E^{\prime \prime}$ are situated in the concentration-diagram outside one another.

The three equilibria have, therefore, such compositions that none of them can be converted into one of the two other equilibria.
b. The concentration-region of E_{R} is situated between those of E^{\prime} and $E^{\prime \prime}$.
c. The corresponding phases of the three equilibria (e.g. $F_{1} F_{1}^{\prime}$ and $F_{1}{ }^{\prime \prime} ; F_{2} F_{3}{ }^{\prime}$ and $F_{2}{ }^{\prime \prime}$; etc.) are situated on a straight line; this is divided into equal parts by the phase of the equilibrium E_{R}.

Before showing this, we shall first elucidate the meaning by some examples.

Fig. 1.

Fig. 2.

For this we choose the ternary equilibrium

$$
E=F_{1}+F_{2}+F_{2} .
$$

When we represent those phases in the concentration-diagram by the points 1,2 and 3 , then at T_{R} those three points are situated on a straight line (line 123 in figs. 1 and 2). The concentrationregion of E_{R} is, therefore, the line 123.

At the temperature $T_{R}+\Delta T$ exist the equilibria:

$$
E^{\prime}=F_{2}^{\prime}+F_{3}^{\prime}+F_{2}^{\prime} \quad \text { and } \quad E^{\prime \prime}=F_{1}^{\prime \prime}+F_{2}^{\prime \prime}+F_{3}^{\prime \prime}
$$

First we shall assume that each of the phases of the equilibrium E has a variable composition; the phases of E^{\prime} are then represented
in figs. 1 and 2 by the points $1^{\prime}, 2^{\prime}$ and 3^{\prime}; those of $E^{\prime \prime}$ by $1^{\prime \prime}$, $2^{\prime \prime}$ and $3^{\prime \prime}$. The points $1^{\prime}, 2^{\prime}$ and 3^{\prime} are situated in the immediate vicinity of the points 1,2 and 3 ; they form the anglepoints of a triangle $1^{\prime} 2^{\prime} 3^{\prime}$, which represents the concentration-region of the equilibrium E^{\prime}. Triangle $1^{\prime \prime} 2^{\prime \prime} 3^{\prime \prime}$ represents the concentrationregion of $E^{\prime \prime}$.

In accordance with a the line 123 and the triangles $1^{\prime} 2^{\prime} 3^{\prime}$ and $1^{\prime \prime} 2^{\prime \prime} 3^{\prime \prime}$ must not have one single point in common, in accordance with b the line 123 must be situated between the two triangles; in accordance with $c 1^{\prime} 11^{\prime \prime}, 2^{\prime} 22^{\prime \prime}$ and $33^{\prime \prime}$ are straight lines and is $11^{\prime}=11^{\prime \prime}, 22^{\prime}=22^{\prime \prime}$ and $33^{\prime}=33^{\prime \prime}$. Consequently we obtain a diagram as in figs. 1 and 2.

Consequently at $T_{R}+\Delta T$ two triangles arise from the straight line which occurs at the temperature T_{R}; reversally the two triangles, which occur at $T_{R}+\triangle T$ coincide at T_{R} into a straight line.

The transitions, discussed for figs 1 and 2 will occur when the ternary equilibrium E consists of 3 liquids or of 2 liquids and vapour, or of 3 kinds' of mixed crystals, or of a mixed crystal + liquid + vapour etc.

When one of the phases e.g. F_{1} has an invariable composition, then we obtain ligs 3 or 4 ; when two phases e.g. F_{1} and F_{2} have an invariable composition, then we obtain fig 5 .

Fig. 3.

Fig. 4.

Fig. 5.

In order to show the rules, mentioned above, we represent of the equilibrium E_{R} the composition

$$
\text { of } F_{1} \text { by } x_{1} y_{1} z_{1} \ldots
$$

etc.

$$
" F_{3}, x_{2} y_{2} z_{2}, \ldots
$$

Then the composition of the equilibrium E is:

```
of \(F_{1}^{\prime} \quad x_{1}+\Delta x_{1} \quad y_{1}+\Delta y_{1} \quad z_{1}+\Delta z_{1}\)
, \(\quad F_{3}^{\prime} \quad x_{3}+\Delta x_{3} \quad y_{2}+\Delta y_{3} \quad z_{2}+\Delta z_{2}\)
```

and the composition of the equilibrium $E^{\prime \prime}$ is:

$$
\begin{array}{lllll}
\text { of } & F_{1}^{\prime \prime} & x_{1}-\Delta x_{1} & y_{1}-\Delta y_{1} & z_{1}-\Delta z_{1} \\
, & F_{2}^{\prime \prime} & x_{2}-\Delta x_{3} & y_{1}-\Delta y_{3} & z_{2}-\Delta z_{2} .
\end{array}
$$

Herein $\triangle x_{1} \Delta x_{2} \ldots$ are defined by (9) and (10); it is apparent that they may be as well positive as negative,

In order to be able to convert the equilibrium E_{R} into E^{\prime}, it must be possible to satisfy

$$
\begin{equation*}
a_{1} F_{1}+a_{2} F_{2}^{\prime}+\ldots=b_{1} F_{1}^{\prime}+b_{3} F_{2}^{\prime}+\ldots \tag{21}
\end{equation*}
$$

in which all coefficients must be positive.
It follows from (21):

$$
\begin{aligned}
& a_{1}+a_{2}+\ldots=b_{1}+b_{2}+\ldots \\
& a_{1} x_{2}+a_{2} x_{2}+\ldots=b_{1}\left(x_{1}+\Delta x_{1}\right)+b_{1}\left(x_{2}+\Delta x_{2}\right)+\ldots \\
& a_{1} y_{1}+a_{2} y_{2}+\ldots=b_{1}\left(y_{1}+\Delta y_{1}\right)+b_{2}\left(y_{3}+\Delta y_{2}\right)+\ldots
\end{aligned}
$$

etc. When we put $a_{1}-b_{1}=c_{1} ; a_{2}-b_{2}=c_{2}$; etc. then the previous equations pass into:

$$
\left.\begin{array}{l}
c_{1}+c_{2}+\ldots+c_{n}=0 \tag{22}\\
c_{2} x_{1}+c_{2} x_{2}+\ldots=b_{1} \Delta x_{1}+b_{3} \Delta x_{3}+\ldots \\
c_{1} y_{1}+c_{2} y_{2}+\ldots=b_{1} \Delta y_{1}+b_{2} \Delta y_{2}+\ldots
\end{array}\right\} .
$$

etc. We can eliminate $c_{1} \ldots c_{n}$ from the n equations (22). We add them viz. after having multiplied the $1^{\text {st }}$ by μ_{1}, the $2^{\text {nd }}$ by μ_{2}, etc. As $x_{1} y_{1} \ldots$ viz. satisfy (9), they also satisfy:

$$
\left.\begin{array}{l}
\mu_{1}+\mu_{2} x_{1}+\mu_{2} y_{1}+\ldots=0 \tag{23}\\
\mu_{1}+\mu_{3} x_{2}+\mu_{3} y_{2}+\ldots=0
\end{array}\right\} .
$$

etc. (22) passes then into:

$$
\left.\begin{array}{c}
0=b_{1}\left[\mu_{3} \Delta x_{1}+\mu_{2} \Delta y_{1}+\ldots\right]+b_{2}\left[\mu_{3} \Delta x_{9}+\mu_{3} \Delta y_{2}+\ldots\right] \tag{24}\\
+\ldots+b_{n}\left[\mu_{1} \Delta x_{n}+\mu_{2} \Delta y_{n}+\ldots\right]
\end{array}\right\} .
$$

Also it appears from (9) that we may satisfy (23) by taking $\mu_{1}=a d(x)_{1}=a d(x)_{2}=\ldots, \mu_{3}=a d(y)_{1}=a d(y)_{2}=\ldots$, etc. Therefore (24) passes into:
$0=b_{1}\left[d(x)_{1} \Delta x,+d(y)_{1} \Delta y_{1}+\ldots\right]+b_{3}\left[d(x)_{2} \Delta x_{2}+d(y)_{2} \Delta y_{3}+\ldots\right]+\ldots$ for which we may also write:

$$
\begin{equation*}
0=b_{1} d^{2} Z_{1}+b_{1} d^{2} Z_{2}+\ldots+b_{n} d^{2} Z_{n} \tag{25}
\end{equation*}
$$

Is must be possible to satisfy (25) by giving positive values to $b_{1} b_{2} \ldots$ When we consider only equilibria in stable (or metastable) condition, then $d^{2} Z_{1}, d^{2} Z_{3}, \ldots$ are positive; it is, therefore, not possible to satisfy (25) and consequently also not (21).

Hence it follows, therefore, that E_{R} and E^{\prime} cannot be converted into one another; as we are able to deduce this in the same way for E_{R} and $E^{\prime \prime}$ and also for E^{\prime} and $E^{\prime \prime}$, the property mentioned sub a is proved. At the same time it appears from the deduction that it need not be true for equilibria in unstable condition.

For the equilibria E^{\prime} and $E^{\prime \prime}$ this property follows also at once without calculation viz. from the condition that under constant P and at constant $T \xi$ must be a minimum.

The properties, mentioned sub b and c follow now at once from property a and formula (20).

Leiden, Inorg. Chem. Lab. (To be continuect).

Mechanics. - "On the relativity of inertia. Remarks concerning Einstein's latest hypothesis" ") By Prof. W. de Sittir.

(Communicated in the meeting of March 31, 1917).
If we neglect the gravitational action of all ordinary matter (sun, stars, etc.), and if we use as a system of reference three rectangular cartesian space-coordinates and the time multiplied by c, then in that part of the four-dimensional time-space which is accessible to our observations, the g_{y}, are very approximately those of the old theory of relativity, viz.:
$\left.\begin{array}{rrrr}-1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & +1\end{array}\right\}$,

The part of the time-space where this is so, I shall call "our neighbourhood"'. In space this extends at least to the farthest star, nebula or cluster in whose spectrum we can identify definite lines ${ }^{2}$).

How the $g_{\mu \nu}$ are outside our neighbourhood we do not know, and any assumption regarding their values is an extrapolation, whose uncertainty increases with the distance (in space, or in time, or in both) from the origin. How the $g_{\mu \nu}$ are at infinity of space or of time, we will never know. Nevertheless the need has been felt to

[^0]
[^0]: ${ }^{1}$) A. Einstain, Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie, Sitzungsber. Berlin, 8 Febr. 1917, page 142.
 ${ }^{2}$) W. de Sitrer, On Einstein's theory of gravitation and its astronomical consequenees (second paper), Monthly Notices R.A.S. Dec. 1916, Vol. LXXVH, p. 182. This limit refers to g_{44} only.

