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Fig. 7.
its own vapour-pressure have no more a point of minimum- or maxi-
mum-pressure, the pressure increases from n towards / (figs. 6 and 7).

The point of minimum pressure follows therefore,in figs. 6 and 7
a curve mS, the point of maximum-pressure follows a curve MS.
The equilibrium ER consists, therefore, of two branches, which meet
in S; we may, however, also say that only one single turning-line
exists Ep — mSM, which has a singular point in 3.

Later we shall show in general that the two branches mS and
MS of a turning-line ER touch one another in the singular point S
and that the tangent in S is situated between the two branches.

The region E in fig. 7 is now one-leafed, except in the part,
situated within the turning-line, which is three-leafed. "} course this
is only true in so far as this part is situated between the limit-lines.

Leiden, Inorg. Chem. Lab. (To be continued).

Chemistry. -— “/n-, mono- and divariant equilibria” XVII. By
Prof. F. A. H. SCHREINEMAKERS.

{Communicated in the meeting of April 28, 1917).
Equilibria of n components in n phases.

Now we shall consider more in detail the equilibrinm:
E=F +F, +...+F, . . . ...
which we have already discussed in the previous co;ﬁmunication.
We represent the composition of:
77*
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F, by z,,2,...0— 2, —y,—z, ...
Flk 7 "":y::z";l—“w:—'yz“z:
The &, the entropy and the volume of F, we call Z, H, and V;
those of F, we call Z, H, and V,; ete.
Then we may write the conditions for equilibrium:

0z oz
Z, -, o~y —....=K
awl ayl . (2)
‘ V4
Z aZ"‘_ a“_"’ao .:K

T M (-—);" Y ay
viz. n equations (2) of which we only have written two. Further
we have:

0Z, 07, oz, -

— o ==.. == = K,

oz, 0z, 0z, N
oz, oz, _ % _ )
oy, d, " ow

The corresponding equations for the variables z, z,...u, u,... ete.
have still to be added to (3). |

We find in (2) n, in (8) n (n—1), consequently in total =’
equations. Besides the n (n—1) variables z, y, ...z, ¥, ... etc. we
have still the n - 2 variables ' P K K. K, ... consequently in
total n* 4+ 2 variables. The equilibrium ¥ has, therefore two degrees
of freedom and consequently it is bivariant.

We have assumed in (2) and (3) the general case that all phases
have a variable composition and that each phase contains all
components. When this is ‘not the case, then we are able to make
. at once the necessary alterations in (2) and (3). When e.g. ¥, has
a constant composition z, — a, y, = g, etec., then the first equation
(2) passes into:

' 07;

S 8 e

in which the index i relates then to a phase F; of variable

composition. Then Z, is only still a function of P and T'; in (3)
0Z, oZ,

then —, —

dz," dy,

Z l‘:K“ - - - - » (4)

ete. .. .. disappear.

When we give to P T « y... the differentials APAT Lz by. .:
then we have: :
0Z

AZ = ViP — Hd:r+.a-_m+afay+ NSV ERY.) S

A
(Z)— Az+(m+Ax)[ +w9~+
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’ A( Ay+(y+Ay)[-+1d’ +]

Herem the sngn d indicates that we have to differentiate according
to all variables, which the function contains. Further is:
YA 0z 07 0z

=d. ‘bd—. LT d—.
d*Z daP AP 4 37 A +fi Ax 4+ 5 Ly + .
d'7-—°d’—a—z AP+d’aZ A7’+d’a—— A.z-}-d"az Dy + ...
3P T 3y

When we neglect in d’Z and d*Z the terms which are infinitely
small with respect to0 AP and AT, then we may write:

0Z
& Z=d—. Ar+d9§ by + ..
P oy
d‘Z:d’gg.Aa:—{—d’?-g.Ay—%—...
oz dy
From a form:
0z 0Z
—_—— — Y ——...= K
z % yay

it follows, therefore:

0z ‘
— VAP + HAT + (¢ + L) (d?g—{— . )+(y+Ay) (d—— —{-q.)—
0z Oy (o)

. P Z— P2 —...=— LK
Now is :
9 0z
. ZZ+édaaz_}_"_]+Ay[d£+.§,d’é;+..]::d’Z+ ydZ 4.

so that we may write for (5)
, 0z 0Z ’
_V4P+Hdr+x[d5;+...]+y[d§§+..J+...: C®
F+ Y& Z 4 387+ .. =—LK

Now we apply this to the n equations (2) and we differentiate
further also the n (n—1) equations (3). First, however, we shall
introduce the following notation; we put viz:

0z, 0Z, 0*Z, . 0°Z, \
5;‘ ()x"‘“——('/)z'é'z‘—,—(‘”)wm;‘—(@y). enz.

o l 4
The index outside the parentheses indicates, therefore, which of
the functions Z,...Z, has to be differentiated; the letters within
the parentheses indicate according to which variables we have to
differentiate.
Then it follows from the n equations (2):
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~VAP+ HAT + 2, [d@, + ..+ 5. (A, + .. 1+ ..
+4dZ, 2 ... =— DK

A7
VAP 4 HAT 4o, [d(@), + -]+ 0, [0, + -1+ ... O
LA dZ, 4+ 382, . .= — DK !
and still n—2 other equations. It follows from (3)
d{z), + $d'(2), + ... =d(@),+ $d*(v), + ... = LK, ®)

d@), +3d W), +...=d@), + +d'(y), + ... = LK,
etc. In ac«cordance with our notation is e.g.
d(a:)l = (Px), AP + (Tz), AT + (2*), bz, + (oy), Oy, +

3 0H 0*Z ez
l ] T: i 1 1 .
or axl AP — a.cl Fay aw Lz, + 5 X by, +
d(y), = (Py), LP + (Ty), AT + (zy), Lz, + (7/ Wby, + ...
V 2
o W, pp_ s py 07 »Z

~ Dg 2, .
9y, Oy, 0,0y, & + dy,’ s bu

When a phase eg. F, has a constant composition, then for this
(4) is true; instead of the first equation (7) we find then:
— VAP 4+ HAT 4 ald(e)i4 . ]+ 8[d() + ...]== — LK.
Consequently in the first equation (7) are missing then the terms
d*Z, d&*Z, ete.

Equilibria of n components in n phases under constant pressure.

When we keep the pressure constant, then we have to omit in
(7) and (8) all the terms with AP; the sign d indicates then that we
have to differentiate according to all variables, except P.

Now we have in (7, and (8) n' equations and n*-1 differentials
LT, bz, ..., so that their relations are defined. Consequently to
each definite differential of one of the variables e.g. L», belongs a
definite differential of each of the other variables, therefore, e.g. also
of AT. On change of r, (or one of the other variables) the equi-
librium E follows, therefore, in the /£, 7T-diagram a straight line,
paralle] to the T-axis.

Now we shall put the question: when will the temperature
be maximum or minimum?

For this it is necessary that A7 is of the second order; then it
follows from (7) and (8) that it must be possible to satisfy:

m,d(m)1+y,d(y)l+...:AK‘
z,d(w),-l—y,d(y),—}-..,:AK‘ N ()]

. L3 . » . . . +

and
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d(z), =d (@), =...=d @)= LK,
d(y), =dW),=...=d =LK, s N ¢ )]

in which ¢ indicates now that we have to differentiate according to
all variables except P and 7' '

It must be possible to solve the ratios between the n* differentials
Lz, Lz,. .. Ly, Ly,...LK, LK, ... from the n* equations (9)
“and (10); this is only then possible, when a relation exists between
the coefficients. With the aid of (10) we write for (9):

z, AK, +y, AK, + ... = LK |
2, K, +y, MKy + ... =LK { . . . . (11)

so that we must be able to satisfy (10} and (11). Here this is the
case when we are able to satisfy (11).

When we add the n equations (11) after having multiplied the
first one by 4,, the second one by 1, etc., then we obtain:

S () LK, + Sy K, + S LK . . . . (12)

Hence it is apparent that we are able to solve the ratios between
* Az, Lr, ... from (9) and (10), when
2@ =A +2,+ ..+ 2=0
2 (e) =42, + 2,28, + ...+ A, =0
2@ =4y + 2y +-. + Ay =0

(13)

can be satisfied.

We might also satisfy (12) by putting equal to zero AKX, LK, ..;
now, however, we leave this case out of consideration and we shall
refer to this later; then we shall see that the equilibrium is situated
on the limit of its stability.

[Mr. W. van per Woupe has drawn my attention to the fact that
we can easily express the condition that (9) and (10) can be satis-
fied in a determinant. It appears that this can be written like the
product of different other determinants, so that we know at once
all the conditions looked for.

We have in (13) n equations between the n—1 ratios of 2, 2, ... 1,;
consequently (13) can only be satisfied when a ratio exists between
the variables. We may find it by eliminating from the equations
{13) 2,...2,; we may also write this equation in the form of the
following determinant;



When we bear in mind, however, the compositions of the phases
F, ... F, then it appears that (13) expresses, that it must be possible
that between the phases a reaction of the form:

AWF, 4+ 3F, + .o+ inFy=10
. consequently a phase-reaction occurs. Then the equilibrium is an
equilibrium Epg and consequently it is situated in the P, T-diagram
on a curve Ep, viz. on a turning-line of the region F.

Therefore we find:

“in an equilibrium of n components in »n phases under constant
P the temperature is maximum or minimum, when between the
phases a phase-reaction can occur’.

Consequently in a binary system 7’ is maximum or minimum
when the two phases have the same composition; in a ternary
system when the 3 points which represent the phases, are situated
on a straight line; in a quaternary system when the 4 phases may
be represented by 4 points of a plane; etc.

Now we have still to examine when 7 is a maximum and when
it is a minimum. For this we have to determine AZ7. We take the
equations (7) in which all the terms with A P must be omitted now.
When we add the equations after having multiplied the first by
4, the second by 2,, etc., then we find with the aid of (8) and
(13):

S(QH). AT+ 2082) + $ SQd*Z) +...=0 . . (14)
or at first approximation:
SGH). AT=— 4 23d°Z) . . . . . (1%)
Herein is:

SQH)=3H, + },H, + .. + 1,H,
consequently the increase of entropy which occurs at the reaction:
AF, +AF, 4 ..t 2,Fy=0
Further is:
EOSZ)=2Z, + 2,82, + ... + 22, . . . (16)
or, a8 it follows from the values of d*Z, etc.; ’
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> (Ad’Z) - 2, [d(e), A‘”; + d(y), Ly, +...] (

+ 2’ ld('”)z A‘”s + d(.'!)z A’/z + L. '] (1 7)
+ A [d()n Lz, + d(y)n Ayn + .. 1]
or also:
D= 3 (e, Ba® 4 @ " + -+ 2 (e L]

. (18) -

+ 2n {(ﬂ"')n Aw»‘ + (:f/')n A!ln + oo 4 2 (ay)n Danliyn) s

When one of the phases e.g. F,, has a constant composition, then

in (16) d’Z, disappears when there are more phases with constant

composition, then in (16) and consequently also in (17) and (18)
the corresponding terms disappear.

When the equilibrium £ is stable (or, which comes to the same

for our considerations “metastable”) then d*Z, d’Z, — — are positive ;
when however the equilibrium is unstable, then one or more of the
forms d’Z, — — may be negative.

Now it follows from (15) when the temperature is a maximum
and when it is & minimum.
When Z(AH) and” Z(/d’Z) have the same sign, then A 7T<C0O and
consequently 7’ is a maximum
When Z(iH) and = (ad*Z) have opposite sign, then A7 >0 and
consequently 7’ is a minimum.
When Z(Ad’Z) =0, then 7 is neither maximum nor minimum.
In some cases it is easy to define this. Let us take e.g. an
equilibrium
E=L 4+F, +F,+...+F,
in which L, is a liquid and F, . .. F’, phases of invariable composition
e.g. solids.
We cause the phase-reaction
AL 4 A Fd oo 2y Fa=10
to proceed in such a way that 2, quantities of L, must be formed
and we take 2, positive. In the equilibrium E therefore, a reaction
occurs [melting or conversion of solid substances] at which liquid
is- formed. As, in general, heat is to be added at this reaction,
S@GH)>0.
As F,...F, are phases with invariable composition S(Ad*Z) =
= 13, d*Z,.
Consequently we have:
SEH)AT=—42,d°Z, . . . . . (19
in which 2(AH)>0 and 2,>>0. d*Z, is positive when the equilibrium
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is stable, but it may be negative when the equilibrium is unstable.
Consequently 7" is a maximum when the equilibrium is stable, but
it may be a minimum when the equilibrium is unstable.

When we summarize the previous considerations, then we find
the following: '

In an equilibrium of n components in n phases under constant
P the temperature is maximum or minimum when a phase-reaction
" can oceur between the phases.

When one of the phases is a liquid and when the n—1 other
phases are solids with invariable cowposition, then 7" is a maxi-
mum when the equilibrium is stable (or metastable); 7 can be a
minimum when. the equilibrium is unstable.

We may apply those general considerations to special cases; with
this we assume that the equilibrium is stable (or metastable).

In the binary equilibrium £ = L, + F,... L, represents the
liquid, saturated with solid F,. In a 7-concentration-diagram L,
follows, therefore, the saturation-curve under its own vapour pres-
sure. Consequently this curve must have its maximum-temperature
in the point, in which L, has the same composition as F,; this is,
therefore, in the melting-point of F,. '

In the ternary equilibriuvm K= L, 4+ F,+ F,... L, is a liquid,
saturated with F#, 4+ F,. In the concentration-diagram /L, follows,
therefore, the saturationcurve of F, 4 F, under its own vapour-pres-
sure. I changes along this curve from point to point. It will be
necessary that 7' is a. maximum in the point of intersection of this
curve with the line F, F,.

Similar considerations are true for systems with 4 and more
components.

In a following communication we shall refer to unstable conditions.

Equilibria of n components in n phases under constant pressure
and at a temperature which differs lttle from the maximum- or
minimum temperature.

As between the n phases of an equilibrium FEg a phase-reaction
may occur, (13) may be satisfied. The ratios between Ax, Ay, .
Az, Dy,... are then defined by (9) and (10). When we imagine
Lz, ... by, bLy,... to be expressed in Az, and this to be substi-
tuted in (18) then it appears that we may write for Z(xd’Z) a form
like 4 Az Herein A has a definite positive or negative value.
Then follows from (15):
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szil/QE(lH) N ¢.10)

Hence it appears that to each definite value of & T two values
of Lz, (and consequently also of Az, ... Ly, Ly, ...)belong, which
differ from one another in sign only. When the form under the
root in (20) is positive, then Az, Az, ... Ay, Ay, ... have, therefore,
each two real values; when this form is negative, then &z, ..
are imaginary.

Consequently we distinguish two cases.

When = H) and A have the same sign, then we must take
LT negative in order to obtain real values for Aw, ...; the tem-
perature 7' is, therefore, a maximum. At Tk there exists therefore
one single equilibrium Eg; at Txr4+ALT (we take A7 > 0) no equi-
librium E exists; at 7—A T, however, two different equilibria exist,
which we shall call £’ and E".

When X(24 H) and A have the same sign, then we have to take
L T positive, in order to obtain real values for L« ... Consequently

% is a minimum. Then at 7T 4+ A T two different equilibria
E' and E" exist, at Tr—A4 T no equilibrivm F exists.

We may also express the previous in the following way.

When under constant P the temperature is a maximum on the
turning-line Epg, then two leaves of the region go, starting from
this turning-line, towards lower 7' and not a single leaf towards
higher 7.

When under constant P the temperature is a minimum on the
turning-line Eg, then two leaves of the region go towards higher
7" starting from this turning-line, and no single leaf towards Jower 7.

With our considerations on the region E in the previous com-
munication XVI, we have already applied these results. The figs. 2
(XVI) and 4 (XVI) in which ef represents a turning-line, are in
accordance with this. In fig. 7 (XVI) ¢/ and dm are the limit-lines,
MSm a turning-line. In order to show that also this diagram is in
accordance with those results, we consider the horizontal line. grst;
in order to show more distinctly the situation of those leaves, it is
partly dotted and curved in 7 and s. In r 7 is a maximum, this
corresponds to the fact that two leaves go, starting from curve mS
towards lower and no leaf towards higher 7" In s T is a minimum,
two leaves go towards higher- and no leaf towards lower temperatures.

We have seen that at the temperature 7'r only one single equi-
librium Egp=F, 4 F, + ... exists and that a phase-reaction may
occur between the phases of this equilibrium. At Tk + ATTAT 0

-10 -
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when Tx is a maximum; AT >0 when 7 is a minimum] two
equilibria exist, viz.
E'=F +F,+... and E'=F" 4+ F) +...

No phase-reaction can occur between the phases of £’; no more
between those of E’’. . The invariable phases have of course the
same composition in the three equilibria; the compositions of the
variable phases differ only little from one another in the three
equilibria. Now we shall show: ] ,

“a” The concentration-regions of Lg, £’ and F’’ are situated in
the concentration-diagram outside one another. '

The three equilibria have, therefore, such compositions that none
of them can be converted into one of the two other equilibria.

b. The concentration-region of Eg is situated between those of
E’ and E.

¢. The corresponding phases of the three equilibria (e.g. F, F,’
and F\”’; F, F,’ and F,”’; etc.) are situated on a straight line;
this is divided into equal parts by the phase of the equilibrium Ep.

Before showing this, we shall first elucidate the meaning by
some examples.

Fig. 1. Fig. 2.

For this we choose the ternary equilibrium
E=F +F, +F,

When we represent those phases in the concentration-diagram by
the points 1, 2 and 3, then at 7'p those three points are situated
on a straight line (line 123 in figs. 1 and 2). The concentration-
region of Eg is, therefore, the line 123. ‘

At the temperature TR + AT exist the equilibria:

E'=F/+F/+F and E'=F'"+F/+F,

First we shall assume that each of the phases of the equilibrium

E bas a variable composition; the phases of E’ are then represented

-11 -
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“in figs. 1 and 2 by the points 1/, 2’ and 3’; those of E" by 1,

-

2" and 3". The points 1/, 2’ and 3’ are situated in the immediate
vicinity of the points 1, 2 and 3; they form the anglepoints of a
triangle 1’ 2’ 3’, which represents the concentration-region of the
equilibrium E’. Triangle 1" 2" 3" représents the concentration-
region of E". .

In accordance with a the line 123 and the triangles 1'2'3' and
1"2"3" must not have one single point in common, in accordance
with b the line 123 must be situated between the two triangles;
in accordance with ¢ 1'11", 222" and 3'33" are straight lines and
is 11'=11", 22'=22"and 33' = 33". Consequently we obtain a
diagram as in figs. 1 and 2.

Consequently at Tr 4 A7 two tnangles arise from the straight
line which occurs at the temperature T'g; reversally the two triangles,
which occur at Tr+4 AT coincide at T’ into a straight line.

The transitions, discussed for ﬁgs 1 and 2 will occur when the
ternary equilibrium % consists of 3 liquids or of 2 liquids and vapour,
or of 3 kinds of nixed crystals, or of a mixed erystal -4 liquid
vapour etc.

When one of the phases e.g. F, has an invariable composition,
then we obtain figs 3 or 4; when two phases e.g. F, and F, have
an invariable composition, then we obtain fig 5.

Fig. 3. Fig. 4. ' Fig. b.
In order to show the rules, mentioned above, we represent of the
equilibrium Eg the composition
of ¥, by «, ¥, 2, ..
»” F: » Ty Yo By
ete.
Then the eomposmon of the equilibrium & is:

-12 -
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of F) =z, 4 bz, y, + by, z, + Bz,
>3 FQ' ‘zs + A-’ﬂ’ y! + Ayl 22 + Az?

and the composition of the equilibrium E" is:
of £" =z — bx, y, — DLy, =z
” Fz” ”:—A":: Y —"Ayx 2y

Herein A&, Lz, ... are defined by (9) and (10); it is apparent
that they may be as well positive as negative,
In order to be able to convert the equilibrium Eg into E', it
must be possible to satisfy
aF, +aF, 4. .=bF' +bF' +... . . . (@1
in which all coefficients must be positive.
It follows from (21):
a, +a, +...=b +b, +...
a,&, + A&, + "':"'-b!(xl +A"’i)+b|("”i + A.‘C,)-{—...
ay, + 4y, +...=b (y, + Ly) + b, (v, + Ly)+ . .-
etc. When we put @, — b, == ¢,; a, — b, == ¢, ; ete. then the previous
equations pass into:
et 4.0 Fe=0
&, + e, + ... =0bx + bba, 4 ... z
oy, + o + .. = b by, + b4y, + ..
etc. We can eliminate ¢, ...¢, from the n equations (22). We add
them viz. after having multiplied the 1%t by u,, the 2* by p,, ete.
As w, y, ... viz. satisfy (9), they also satisfy:

22)

U, + 2 iy, .. =0
o+ s, gy, . =0 : ’ %)
ete. (22) passes then into:
0 =25, [m,Lx, + u, 8y, +...1+ 0, [n,82, +p,L9, +...] % @4)
+ oo+ by [l + Ly ] T

Also it appears from (9) that we may satisfy (23) by taking
n,=adg), =adg),=... p,=ady), =ady),=... etc. There-
fore (24) passes into:
0= bi [d(x)lAwt + d“f)lAyx + . --] + bs [d(‘v)zAw! F d(y)!Ay! +' m] + e ©
for which we may also write:

0=b,dZ +b,dZ,+...+b.dZy . . . . (2b)

Is must be possible to satisfy (25) by giving positive values to
b, b,... When we consider only equilibria in stable (or metastable) "
condition, then d*Z,, d*Z, ... are positive; it is, therefore, not
possible to satisfy (25) and conseguently also not (21).

-13 -
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Hence it follows, therefore, that Fr and E' cannot be converted
into one another; as we are able to deduce this in the same way
for Ep and E" and also for £' and £", the property mentioned -
sub a is proved. At the same time it appears from the deduction
that it need not be true for equilibria in unstable condition.

For the equilibria E' and E" this property follows also at once
without calculation viz. from the condition that under constant P
and at constant 7" & must be a minimum.

The properties, mentioned sub 5 and ¢ follow now at once from
property a and formula (20).

Leiden, Inorq. Chem. Lab. (To be continued).

Mechanics. — “On the relativity of inertia. Remarks concerning
EINsTEIN's latest hypothesis” *) By Prof. W. DE SrrTER.

(Communicaled in the meeting of March 381, 1917).

If we neglect the gravitational action of all ordinary matter (sun,
stars, etc.), and if we use as a system of reference three {'ectangulalj\
cartestan space-coordinates and ihe time multiplied by ¢, then in
that part of the four-dimensional time-space which is accessible to
our observations, the ¢, are very approximately those of the old
theory of relativity, viz.:

—1 0 0 0

0 —1 0 0
I ¢ )

0 0 -1 0
0 0 0 +1
The part of the time-space where this is so, I shall call “our
neighbourhood”. In space this extends at least to the farthest star,
nebula or cluster in whose spectrum we can identify definite lines *).
How the g., are outside our neighbourhood we do not know,
and any assumption regarding their values is an extrapolation, whose
uncertainty increases with the distance (in space, or in time, or in
both) from the origin. How the g,, ave at infinity of space or of
time, we will never know. Nevertheless the need has been felt to
1) A. Emnsrein, Kosmologische Betracﬁtungéﬂ zur ‘allgemeinen Relativititstheorie,
Sitzungsher. Berlin, 8 Febr. 1917, page 142.
%) W. pE SITTER, On EINsTEIN's theory of graviiation and its astronomical con-

sequences -(second paper), Monthly Notices R.A.S. Dee. 1916, Vol. LXXVH, p. 182.
This limit refers to g,, only.
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