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mit den durch Fermente hervorgerufenen Wirkungen vergleichbar,
dass wir mit einiger Bestimmtheit annehmen, dass die Fahigkeiten
einiger Erbeinheiten im wesentlichen in der Bildung bestimmmter
Substanzen bestehen, welche in der Art von Fermenten wirken”.

Although the observations on which this statement is based are
in accordance with the enzyme theory, it is clear that BATEson’s
view is quite different from mine.

Physics. — “Contributions to the kinctic theory of solids. 1. The
thermal pressure of isotropic solids. By Prof. L. S. Or~stris
and Dr. F. Zggnike. (Communicated by Prof. H. A. Lorentz).

(Communicated in the meeting of February 26, 1816).

P. Deswe') has in his Wolfskehl-lecture developed a theory of
the equation of state of solid matter which has been elahorated by
Dr. M. I. M. vax EverDINGEN®). DEBUE assumes as a physical principle
that the forces between the molecules in solid matter are not quasi-
elastic, but depend also on higher powers of the deformations. He
points out that only this principle enables us to understand the
expansion of solid matter which gains energy under constant pressure.
This assumption enables him to give a deduction of the GRrUNEISEN-
theorem about the connection between the coefficient of expansion
and the specific heat. :

Desuie calculates the free energy of a solid body with the help
of a canonical ensemble, using the method of normal vibrations,
and introducing from the beginning the hypothesis of energy-quanta.

We shall indicate in this paper another way to find the equation
of state with the aid of the physical principles of DrBue. The
quantum-theory will be applied to our final result if we wish to
use it for low temperatures. Desur has taught us to replace in the
calculations the space-lattice of molecules by a continuum, Bogs?)
has shown this artifice to be right. Therefore, in considering the
isotropic body, we shall use a continnum as a limiting case. For
explanation we shall treat the case of a row of points and for this
case we shall perform the transition to a continuous bar. Our method
consists in determining the thermal pressure, i.e. the pressure that

1) Vortrige iiber die kinetische Theorie der Materie, Leipzig1914. “Zustandsgleichung
und Quantenhypothese u. s. w.”.

%) De toestandsvergelijkingen van het isotrope vaste lichaam. Diss. Utrecht 1914,

3) M, Bory. Dynamik der Krystallgitter. Teubner. 1915,
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is required to keep constant the volume of a solid body when
gaining heat.

1. Let us consider a row of n equidistant points. Be the elongation
in the direction & (the direction of the row being taken as an axis)
for the »™ point §. Then the force exerted by the »*" molecnle on
the (v—-1)v will be represented by

e g ,
:J (§‘a—5v—]) + ._)“(EE/“'“”E&:»———]) . . . - (1)

The total potential energy, then, can be represented by

- g w
Sq ———g 21! ('__Ev_gv —~1)s + 6‘ Ew (§v—gv-l)3 . . . - (2)

where the sum has to be extended over all molecules.

Now for a stationary state, S, the time-average of .S, will be
equal for all points. Therefore, adding (1) for all points, we get n
times the time-average of S. Thus

g9 2= 3 3 g z 3
nS:§ (Sv—bv—l) :52(5,——5-,‘1) Ce e (3)

the mean of the first term in (1) being zero, as the mean length is
invariable, and as the taking of the mean and of the sum may be
interchanged. '

For the mean value of & we have

a=lsE—Ear ... @
the mean value of the second term being zero. We thus find
n —S: 'z ;; g -:({’j‘ ;
f 27

for e, =¢,=} ¢ where &, represents the kinetic and & the total
energy. Putting g = n’c,, f=mnec,, we find

Cy -~

2¢, ¢ (®)
For the dilatation taken from the absolute zero, we find
G, —
e = 201’ L (6)

being the relation of GRUNEISEN.

2. We shall now consider the same problem, approximating this
time the problem for a row of points by that of a continuum.
Therefore we have to do with a bar in which the elastic qualities
depart from HoOOKE's law,
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The force exercised in this bar by the part to the right of a
section on the part to the left, will be represented by

as [ a§ 2
— 2= S ()
S=e¢, ' 0 + 2 (az) @

The total potential energy then amounts to

o [(OEY . e, [(OEY
Eq jrunang gf(*a";;) dx + —f(am) dx . . . . . (8)

where the integration has to be extended over the length of the
bar, which has been put equal to unity.
For this case the mean value S of the force is again equal for
: G
all points of the bar, and 53 being zero, we have
X

"S‘(Zi)........(g)

Integrating this result over the bar, we get

= @@ o

as also in this case the integrating and the taking of the mean
value may be interchanged.
Now, just as in the discrete problem, we determine &, and

08y | .
(5;) being zero we find
— o ([
Eq—-é—f((—i;) dy . P (11)

S=Zlg="% . . . . . .. (2

and from it

from which the relation of Grineskn again follows.

In calculating ¢ we can use the quantum-theory, but the formula
(12) is evidently independent of it.

3. We will show that the same result is obtained by applying
the method of normal vibrations. The differential equation for the
motion of the bar is expressed by

o' 0§ a5 0°§
95_ la ,_T— ’a’l,al . . * . . . (14)

where ¢ represents the density. Properly speaking the equation (14),
being non-linear, possesses no normal vibrations as a solution for
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a given bar with given conditions to be satisfied at the ends. But
if ¢, is small enough, the normal vibrations of the equation without
quadratic term will still have a physical meaning. These vibrations
may be called quasi-normal vibrations, and the physical meaning of
the constant ¢, is to effect a slow exchange of energy between the
quasi-normal vibrations.

Now take the solution

= Ek(l’ksinkw + Qrcoske)cosko(t —egr) . . . (1D)
for a bar with the ends 0 and 2x; » being the velocity of propa-
gation. The force in a point is represented by (7). Using (15) and
calculating the time-average of .S in the point 0, we find

T—= Z_ =i Py

The potential energy is expressed by
2 & 2 3 },.% 2
g =" =R (P 4 Qi) cos® kv (1 — )
its time-average by
— 2me
& :—-—8~—‘ 2 E (P + Q)

Now the mean value of I’k is the same as that of (r; therefore
we gel

Zme, .
g = — 2k P
4
- ¢, — ¢, ¢ .
S= .2 &, = L (16)
2re, de, 2v

& .
As — is equal to the energy per unit of length, the result

-

agrees with (5) and (12).

4. We can determine the thermal pressure of an isotropic
solid body in the same way as in 2. For this case, we have for
the potential energy per unit of volume the expression ')

gg=AIl* + BI, + CI* + DI.LI, + EI,. . . . (17)
where the invariants I have the following forms

. ¥
I, ==e 4 ¢ t ¢

B For the first time indicated by J. Finger, Wiener Sitzungsberichte 108, 163
(1894), although in a less simple form (I c. form (55))." Our notation is the one
of v. Everoingen, L. ¢ p. 11, where no literature is mentioned. Gf. also P. Duney,
Recherches sur I'Elasticité. Paris 1906.

*
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I, =0, 4 e,e, + e, — (e } ¢ + ¢7)

I, —=eee, 4 ${ee.e, — 6,67 — e,e." — ¢e?)
e, ...e, being the ‘“components” of the strain {changes in length
and angle). |

The energy of a volume is fonnd by muyltiplying the expression
(17) with the element dr, and integrating.

From (17) the normal stress in the direction of z can be deduced,
using the formula
aéql)

T Oe,

We can only observe the time-average of this force and, taking
the mean value, the linear parts issuing from the terms with 4 and
B will fall out. We obtain therefore for the average value of the
tension in the direction of =

S=28CI,* + DI, (e, + ¢;) + DI, + E(e,e, — Le?).
This force is again equal for all points, we can therefore integrate

over the volume 1, and interchange the integration and the taking
of the average. Taking into account the isotropy, it is easily seen

that e,e, — te.* is equal to 4 /,, so that we get for S

S:jﬂw+§mLqu+%mgur.. . (18)

Now determining the mean value of the potential energy, the
terms with C, D, and £ will be found to fall out, and we get two
parts, relating respectively to the longitndinal and transverse waves,
as appears from the meaning of the invariants [/, and /,. These
parts are

;“:A""}“;:h T 52
and

g":B[La R 111 )
In the stationary state the potential energy is distributed in a
given way over these waves.

For the thermal pressure we now find

_ 8C+4D.  D44E-
—_ S 1{—~£q[ B%‘ Egtr . . . . (20)

1} This is the usual formula, which is, however, not correct if the second powers
of the deformations are taken into account, as has been done in the above by
introducing €., D, and E. In the third contribution we shall show that even in
case of Hooke's-law being true, a coefficient of expansion will be found, if the
correct formula for S is used. As far as numerical values are known, they seem
to indicate that the influence of the terms neglected here could sometimes be
sensible.
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In the notation of VoieT we have A =}¢,, , B=— 2¢,,.
If the temperature is high enough for the theorem of equipartition
to be true, then

= 4¢ and & =}¢

where & is the total energy.
For the thermal pressure we then find
- 9C+2D 3D+ E
—S§= - € . . . . (20
154 ' 9B (25
We shall also use (20) for very low temperatures. According to
Borx ') the proportion of the energy of the longitudinal and trans-
versal waves can be put in the form
1 2
59118(]!,.:——:'———

- | 3
(AT RN P

where u; and w, are the velocity of propagation of these waves.
Introducing the constants ¢,, and ¢,,, we thus have

s 3
EqliEqtr == 041 : 201] -

L3

Putting the total energy & we find

. o ls . 2 it
L= "y e A Y)
2cli + 4ol 2ol + 4eif
and finally
5/ 8,
5 Bo D1l — (4D +4E) ol .
- 3 3
644611(04/2'*‘2‘1/;)

This special result agrees with the expression found by vaw
Everpingen *). The theorem of GRUNEISEN can be immediately deduced
from it.

The influence of temperature on the elastic constants can be
examined in the same way, as we shall show in the third contribution.

(200)

Utrecht, Febr. 1916. Institute for mathematical physics.

H Borx l.c. p. 75.
%) Vax EverpINGEN, l.c. p. 24 form (20) p. 53 form (37).
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Physics. “Contributions o the kinetic llze‘)ry of solids.
II. The wwimpeded spreading of heat even in case of deviations
Jeom Hooxe’s luw”. By Prof. L. S. OrnstEln and Dr.
F. Zernike. (Communicated by Prof. H. A. Lorentz).

(Communicated in the meeting of March 25, 1916.)

1. In a supplement to his lecture on the equation of state of
the solid body, Drsue') has endeavoured to “make a qualitative
theoretical calculation of the coefficient of conduction of heat.”” There
the author points out repeatedly that bis estimations are only to be
taken very approximately and should serve as a first orientation
only. So, as we tried to obtain an accurate caleulation of the
conduction of heat, it did not seem desirable to us to deal with the
problem in exactly the same way and to carry out only here and
there some corrections and completions.

Now DeBur’s principle, which we therefore intended to work
out otherwise, runs as follows. In an ideal solid body, i.e. a solid
for which the elastic equations would be linear, various progressive
waves may exist independently of each other, like the electromag-
netic waves in a field of radiation. This implies that a heat-motion
occurring on one side of the solid spreads unimpededly through the
solid, so that the density of energy becomes equal in all parts of
the solid. If the solid is in a stationary state, the temperature will
thus be everywhere the same, even if continually a current of energy
moves through the solid in a definite direction. Hence DEBLIE empha-
sizes this dictum: the coefficient of heat conduction of the ideal solid
body ts infinitely great (lc. § 7, cf. the staterent given there). Now in
several regards it is preferable to formulate the rule in this way:
the ideal solid body does not show any resistance of heat.

That a real solid body does show resistance of heat DEBIJE ascribes
to the fact that the elastic equations are not perfectly linear. Therefore
various normal vibrations strietly cannot be superposed and it
is conceivable that waves running in different directions so to say
oppose each other. DeBise has indeed succeeded in deducing indirectly
a scattering and consequently a suppression of the running waves.

Our endeavours to state more directly the connection between
resistance of heat and non-linear terms of the elastic equations of
motion have failed. Therefore we will not report our considerations

1) Mathematische Vorlesungen an der Universitat Gattingen V1 (WOLFSKEHL-
Vortrage} pg. 19.



