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mit den dm'ch Fermente hervorgerufenen Wirkungen vergleichbar, 
dass wir mit einiger Bestimmtheit annehmen, dass die Fähigkeiten 
einiger Erbeinheiten illl wesentliehen in der Bildllng bestimmter 
Substanzen beste heil , welehe in del' Art \'on Fermenten wirken". 

Althongb the obsel'vations 011 whiell this statement is based are 
in aceordanee witJt the enzyrne theol'Y, it is clear that BATESON'S 
view is quite different from mine, 

Physics. -- "Contributions to tlU' kin/-tic tlteol'!f of solids. I. T/w 

tltem,ud 1)J'l?sS'U1'e of isotrolJic solids. 13y Prof. L. S. OHNSTEIN 

and Dr. F. ZERNIKE. (Cornrnunicated by Prof. H. A. LORENTZ). 

(Communicated in the meeting of Fehruary 26, 1916). 

P. DERln 1) has in his Wolfskehl-lectllre developed a theory of 
the equation of state of solid matter whieh has been elaborated by 
DI'. M. 1. M. VAN EVERDINGEN 2). DEBIJE assumes as a physical principle 
that the forces between the molecules in solid matter are not quasi
elastic, but depend also on higher powers of the deformatiOJlS. He 
points out that only this prineiple enables us to undel'stand the 
expansion of soJid matter whieh gains energy nnder constant pressure. 
This assumplion enables him to give a deduetion of the GRÜNEISEN
theOl'em about the connection bet ween the eoefficient of expansioll 
and the specific heat. 

DEBJ.JE calculates the free energy of a solid body with the help 
of a canonicaJ ensemble, llsing the method of normal ,'ibrations, 
and iutroducing from the beginning the hypothesis of energy-quanta. 

We. shall indicate in this paper another way to find the equation 
of state with the aid of the physicaI principles of DEBTJE. The 
qnantum-theol'y will be applied to om·final result if we wish to 
nse it for Jow temperatures. DEBI,JE has taught us to replace in the 
calculations the space-lattice of molecules by a continuum, BORN 3) 

has shown th is artifiee to be right. Therefore, in considel'Ïng the 
isutropic body, we shall use a continnllm as a limiting case. For 
explanation we shall treat the case of a I'OW of points and for this 
case we sbaH pel'form the trallsition to a continuous bal'. Our melhod 
consists in determining the thermal pressllre, i.e. Ihe pressure that 

1) Vorträge über die kinetische Theorie der Materie, Leipzig-1914. "Zustandsgleichung 
und Quantenhypothese u. s. w.". 

2) De toestandsvergelijkingen van het isotrope vaste lic.lhaam. Diss, Utrecht 1914. 
S) M, BoRl(. Dynamik der Krystall~itter. Teubner, 1915, 
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is required t.o keep constant the volnme of a solid body when 
gaining heat. 

1. Let us consider a row of n equidistant points. Be the elongation 
in the direction ,1: (the directioll of the row being taken as an axis) 
for the l,rh point ;,. Then the fOl'ce exel'ted by the l,th molecule on 
the (1,-~·1?h wil! be l'epresented by 

(1 ) 

The total potential energy, then, can be represented by 

_I '>~ (<= J: ),+17 ~ (1: - )3 
f q -2"-. S.-~·-·l 6~. S,-';.-l (:!) 

where the sum has to he extended over all molecules, 

~ow for a stationary state, S,- the time-average of S, will be 
equal for all points. Therefore, adding (1) for all points, we get n 

times the time-average of S. Thus 

-_9 2 :: l: ._9~----~-··-. 
n S - 2" (~.-.!>.-d - 2" 2 (~,-s>-d· . ~3) 

the mean of the first term in (1) being zero, as the mean leJlgth is 
inyariable, and as the taking of tlle mean aoo of the sum Illa.}' be 
interchanged. 

For the mean value of fq we have 

fg = f ~. (g>=-1~=;)2 (4) 

the mean value of the second term being zero. We thus find 

nS=f!..;- =!L-; 1 q 2f 

for fg = 13" = i 13, where 131' represents the kinetic and 13 the total 
energy. Putting g = n'c t' f = nel> we find 

- c-8=_' 13 
2c) 

For the dilatation taken from the absolute zero, we find 

being the relation of GRÜNEISEN. 

(5) 

(6) 

2. We sha.ll now consider thè same problem, appl'oximating this 
time the problem for a row of point'" by that of a continuum. 
Therefore we have to do with a bar in which the elastic qualities 
depart from HOOKE'S law. 
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The force exercised in this bar by the part to the right of a 
section on the part to the left, will be represented by 

S = Cl !! + ~ (!:Y (7) 

The total potential energy then amounts to 

fq = ~ J (:!ydx + ~ J (:~ydX (8) 

where the integration has to be extended over the length of the 
bar, which has been put equal to unity. 

For this case the mean valne S of the force is again equal for 
i},e 

all points of the bar, and a~ being zero, we have 

S_- -- _ c, (a~)' 
2 a,t (9) 

Integrating t his result over the bar, we get 

S _ - - dx _ - - d,l. ----_ C'J(0~)2 _ c%J(OS)' '. 
2 0.'1: 2 O.V 

(10) 

as also in this case the integrating and 
value may be interchanged. 

the taking of the mean 

Now, just as lil the discrete problem, 

(::) being zero we find 

and from it 

~-- CIJ(aS)' I:q = - - d.v 2 dx 

-S· c,- c,
= -I:g=-I: 

Cl 2cI 

we determine f g, and 

(11 ) 

(12) 

from which the relation of GRÜNEISI<~N again follows. 

In calculating Ë we can use the quantum-theoI'Y, but the fOl'mula 
(12) is evidently independent of it. 

3. We will show that the same result is obtained by applying 
the method of normal vibrations. The differential eqllation for the 
motion of the bar is expressed by 

a'S o's ag a!s 
Q- =CI - + c, --. (14) at, ax' a.v OiV' 

where Q reprl3sents the density. Properly speaking the equation (14), 
being non-linear, possesses no normal vibrations as a solution for 
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a given oar with given conditions to be satisfied at the ellds. But 
if c. is small enollgh, the Ilormal vibl'ations of tlle equation without 
quadratic term wiII still have a physieal meaning. These \"ibrations • 
may bt.> called quasi-normal vibrations, and the physieal meaning of 
the constant ('2 is to effect a slow exchange of energy lJetween Ihe 
quasi-normal vibrations. 

Now take the soilltion 

g = ~k (I'" sin k:t: + Qk cos ka:) cos kv (t - q>k) ( 15) 

for a bar with the ends 0 and 2.1r; t' being tlle velocity of propa
gation. The force in a point is I'epresenteel by (7). Using (15) anel 
calcllJating the time-average of 8 in the point 0, we finrl 

__ ct 
S= -;E k' Pk' 

4 

The potential energy is expressed by 

2.1r C, 

1'" =4- ;E k' (PA" + Qk') cos' kt- (t -- ff,.) 

its time-avel'age by 

-_. 2.1r C 

fq=-~;E k' (Pk' + Qk') 

Now the mean valne of l'k is the same as Ihat of Ch; therefol'c 
we gel 

(16) 

f 
As is equal to the ellergy per tlnit of length, tlle resnlt· 

agrees with (5) and (12), 

4. We ean determine tbe thel'mal pressure of an isotropic 
solid body in the same way as in 2. 1"01' this case, we have for 
tlle potential energy per nnit of volume tbe expression ') 

l'q=AI,' + BI. + CI,3+DIJ, +EI8' (17) 

where the inval'iants I ha"e the following forms 

') For the first time indicated by J. FINGER. Wienel' Sitzungsberichte 108, 163 
(l89'}, although in a less simple form (I. c. form (55)l; pur notation is the one 
of v. EVERDINGEN, I. c. p, 11, where no Jiterature is mentioned. Cf, also P. DUHEK, 

Recherches SUl' I'Elasticité. Paris 1906, 
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I.=e,ca + CIC I + cle,-i(e:! e.' + e6') 

1 1 = ele,ce -t- t (e.e.e. -- €Ie: --- e.e.' - czc:) 
'\ ' , ,e6 heing the "components" of the strain (changes III lellgth 
and angle), 

The energy of a volnme is fonnd by mllltiplying the expression 
(17) with the element dr, and integmtiIlg. 

From (17) the normal stress in the direction of .1: cau oe dednced, 
usillg the formula 

af 
S=_----'!.l) ae l 

We can only obsel'\'e the time-aver'age of this force and. taking 
the mean value, the linear parts issuing from the tel'lllS with A aud 
B will fall out. We obtain therefore for the average "alue of the 
tension in the direction of ol: 

S= 3CI I ' + DIl (e. + ea) + DI. + E(e,ea - te/), 
This force is again equal for all points, we ean therefore integrare 

over' the volume 1, and interchange the inregration and the taking 
of the average, Taking into account the isotropy, it is easily seen 

that e.è~-=---F~~'- is eqllal to t f" so that we get for ~S 

(18) 

Now determining tlle mean value of tlle potential energy, the 
terms with C. D, and E will be found to fall out, and we get two 
parts, relating respectively to tlle longitlldinal and tmnsver'se waves, 
as appeal's from the meaning of the inval'iants I, and [ •. These 
parts are 

(19a) 

and 

Eqtr=B/I.dT (19b) 

In the stationary state tlle potential energy is distributed III a 
given way over these waves, 

For the thermal pressure we now find 
-, 3C+jD-- D+~E-

- S= - --- E /- --- E t {20) A q B ,qr 

1) This is the usual fOl'mula, which is, however. not correct if the second powers 
of the deformations are taken into account, as bas been done in the above by 
introducing C. D, and E, In the third contribution we sball show that eten in 
case . of HOOICE's-law being true, a coefficient of expansion will be found, if the 
correct formula for S is used. As rar as numerical values are known, they seem 
to indicate that tbe influence of tbe terms ne(flected here could sometimes be 
sensibIe. 



- 7 -

1294 

In the notahon of VOlGT we have A = 1 Cl! ' B = - 2c ... 
If the temper'ature is high enough for the theorem of equipartition 

to be true, then 

Eq I = i E and E'I tr = t E 

where E is the tota) energy. 
For the therm al pressure we then find 

-s=- +-- E 
-', J9C+2D 3D+E: 

l~A 9B 

We shall aIso use (20) for ver)' low temperatures. According to 
BORN 1) the proportion of the energy of the longitlldinal and trans
versal waves can be put in the form 

1 2 
Eq I: Eqtr = - :-~ 

1'11 Vlr 

where v, and Vlr are the velocity of propagation of these wa\'es. 
Introducing the COllstants Cll and eH> we thns have 

al, al. 
• Eq I : Eq tr = C44 : 2 C11 • 

Putting the totaI energy E, we find 

1/. 
C44 

!' 

2 ei: 
E 1= -------E 

q '/. 1/. 
2 C~4 + 4C11 

E,! Ir =. 3/. al. 
2 Cü + 4 Cl! 

and finally 

~ (3c + i Dl c'!l- (iD + tE) ei! s= E. 
1/. "I. 

eH Cll (C44 + 2'11) 
(20b) 

This special result agrees with the expression found by VAN 

En:RDlNGEN '). The theorem of GRÜNEISEN can be immediately dedllced 
from it. 

The influence of telOperature on the elastic constants can be 
examined in the same way, as we shall show in the third contribution. 

Utrecht, Febr. 1916. lnstitute lor mathematical physiCli. 

1) BORN 1. C. p. 75. 

2) VAN EVERDINGEN, I. C. p. 24 form (20) p. 53 form (37). 
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Physics. "Confl,ibutions fa t!te Icinetic th tf ry of solids. 
Il. Tlw unimpeded spreading of !teat even in case of deviations 
.ti·om HOOKE'S lall/'. By Prof. L. S. ORNSTEIN and Dr. 
F. ZERNJKE. (Communicated by Prof. H. A. LORENTZ). 

(Communicated in the meeting of March 25, 1916.) 

1. In a supplement to his lecture on the equation of state of 
the solid body, DEBIJE 1) has endeavoul'ed to "make a qualitative 
t·heoretical calculation of the coefficient of conduction of heat." There 
the author points out repeatedly that his estimations are only to be 
taken very appl'Oximately and should serve as a th'st orientation 
only. So, as we tried to obtaill an accurate caicuiatioll of the 
l'ollductioll of heat, it did not seem desirabIe to us to deal with the 
problem in exactly the sallle way and to carry out only here and 
thel'e some corrections and completions. 

Now DEBJ./E'S principle, which we therefore intended to work 
out otherwise, runs as fo11ows. In an ideal solid body, i.e. asolid 
1'01' which the elastic equations would be linear, various progl'essive 
waves ma)' exist independently of each ot her, like the electromag
netie waves in a field of radiation. This implies that a heat-Illotion 
occurring on one side of the solid spreads unimpededly through the 
solid, so that the density of energy becomes equal in all parts of 
the solid. If thesolid is in a stationary state, the ternperature will 
thus be everywhere the same, even if continually a CUl'rent of energy 
moves through the solid in a detinite direction. Hence DEBIJE empha
sizes this dictum: the coefficient of heat conduction of the ideal solil! 
body is ilifinitelY!Jl'eat (l.c. ~ 7, cf. the statement given there). Now in 
several l'egards it is preferabIe to formulate the rule in this way: 
the ideal solid body does not show any resistance of heat. 

That a real solid body does show resistance of heat DEBIJE ascribes 
to the faet that the elastic equatioJls áre not perfectly linear. Therefol'e 
various nOl'mal vibrations strietly cannot be superposed and it 
is eonceivable that waves mnning in different directions so to say 
op pose each other. DlmlJE has indeed succeeded in deducing indirectly 
a scattering and consequently a suppression of the running waves. 

Our endeavours to state more dil'ectly the connection between 
resistallce of heat and non-linear terms of the elastic equations of 
motion have failed. Therefore we will not report our considerations 

, 
1) M~thematische Vorlesungen an der Universität Göttingen VI (W OLFSKEHL

Vorträge) pg. 19. 


