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case certainly not so.') The correct deviations of density in the
solid are much smaller and have another dependence of temperature
than that which DEBuEr used.

In connection with what we found above in point 4, at last it
remains to be said that especially the use of statical deviations of
density instead of the dynamic ones is a great mistake. In some simple
cases we have heen able to demonstrate that also in three dimensions
the latter do not produce any scattering. Our conclusion therefore
is that the molecular theory of the heat-resistance still remains
entirely open.

Physics. — “Contributions to the kinetic theory of solids. 111. The
equation of state of the isotropic solid.” By Prof. L. S.
Ornsteiv and Dr. F. Zernike. (Communicated by Prof. H. A.
[.ORENTZ.) '

(Communicated in the meeting of June 24, 19186))

In this contribution we shall use the method we developed in
our first contribution for the determination of the expansion in
order to deduce the equation of state, i.e. the connection between
the strain and the stress in its dependence on the temperature. In
contribution I we have treated only the simple case that the
strains are zero, and have determined the stress resulting from
heating (thermal pressure). A quite analogous deduction can be
used in order to find the stresses of a solid, which has been
deforined at the absolute zero (equation of state). The ounly difference
with the former case lies in the fact, that by this strain the solid
generally departs from exact isotropy. Hence a more ample calcu-
lation is necessary in the case of shearing.

Further we shall mention the terms which present themselves if
we take into account the remark of the note on p. 1293.

Finally we shall show how the equation of state is also to be
found with the aid of thermodynamic relations from the specific
heat of solid bodies, which may be calculated from the formulae
given by Born. This method, for the preserit only mentioned in
principle, is more analogous to that of DEBYE-EVERDINGEN than to
our first deduction, which is purely dynamical.

I. Now we will calculate the force necessary to give the solid

1) See EpsrEm, Physik. Zeitschr. XV,
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body a homogeneous expansion at a given temperature, so that
e, =e,==¢,—=¢, e,—e¢, =e,=0. This force consists of two parts.
In the first place one may give the required expansion to the solid
body at the absolute zero and thereupon supply at constant volume
the energy necessary to give the solid body the required tempe-
rature, Therefore the thermal pressure as calculated in our first
contribution has to be added to the elastic tension at the absolute
zero.
Now in order to calculate the first part we use the expression
for the energy ' _
e==AI* + BI,+ CI*+ DII,+ EI, Y. . . . (1)
It is immediately clear that the invariants have the following
values
I, =38 , [,=3¢ , I,=2¢,
so that the energy takes the form:
' £ = (94 + 3B)¢* + (27C + 9D + E) ¢
For the tension at the absolute zero we find consequently
802%2(6A+2B)e £ (27C + 9D + E) ¢
For the thermal pressure (5, ) we found in Contribation I the
expression
Wrab D ES
64 6B
Now A, B, C, and DD are constants which are relative to the
non-deformed substance. In our case however we must replace these
constants by their values in the strained condition when calculating
the thermal pressure. But as the solid in that condition remains
isotropic, the given formula still holds. We will neglect the variation
of C and D with e as this variation is determined by terms of
higher order in the energy, which were neglected by us. The average
energy of the longitudinal and the transversal vibrations may change
also. When we have to do with so high a temperature that the
theorem of equipartition is true, that change is zero as the
number of degrees of freedom does not change by the expansion.
For lower temperatures where the quantum-theory must be taken
into consideration, the change of & and g, has to 'be taken into
account. ‘
The variation of 4 and B with ¢ can be found in the following
manner. The strain can be represented hy

8=

. 1) Couf, for the potations Contribution 1,

A



1306

ey=e¢, p,—ed¢e,, ea=eF o, 0, =¢, 6, =¢, e,=¢,.

We introduce this into the expression for the energy and determine
the part of the second degree with respect to the quantities ¢'. As
¢, etc. represent the deformations from the strained condition (e),
the coefficients of the invariants ['* and /', will give the new
values of 4 and B. We find

A=A+ (9C + 2D)e
B =B+ (3D + E)e.

Now when we introduce these values for A" and B' into the
expression for the thermal pressure and when we add to it the
elastic tension at the absolute zero, we find for the total tension
in the case of equipartition

9C+2D 8D+ E ,
— (64428 279C+9D 4+ E) ¢t i —
S=(64+2B)e+(27C+9D + )e+( i T 0% )s |
(q€+zp)’ 8D+ E)? : \ )
—( 84 T em )"

In this & is the total energy which is proportional to 7' Thus the
equation of state for changes in which the solid body remains
isotropic has been found.

ds
To find the modulus of compression we determine e for this

d3e
we find
64A+2B 54C+ 18D+ 2F (9C + 20y (BD+E)
m= + e — - 4)
3 3 54 47 278°

The factor ¢ now still depends on the temperature; to find this
factor we can apply (3), where the last term may be neglected
as we will confine ourselves to a linear expression in & The ¢ can
then be found by considering the expansion at zero pressure. When
we put in (3) S=0 we find

(QC+2D 3D+E )
&

_ 184 0B
= 64128
64+ 2B \21C+9D+E (9C+2D  8D+E
3 | 941 3B 184 9B ) )

(9C+2D)* (3D + Ey’ ®)

YV TR T2 s
Easily the form of the equation of state can be indicated in the
case that the quantum-theory is introduced. We will confine our-
selves to the case of the temperatures being so Jow that the upper
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limit of the integral in the expression (196), which is given by
Borx for the energy does not come into account. Then we have to
take into consideration for the thermal pressure in formula (2) not
only the variation of 4 and B with e, but also that of the longi-
tudinal and the transversal energy.

By application of the formulae which Borx has given in § 21,
we find after a simple calculation as equation of state

S=(64 4+ 2B)e 3 (27C + 9D + E)e* — ’

509C+2D)y — 53D+ E) — N ()

€ - + ‘ s

647 658 "

into which may be introduced the values for the energy of the
longitudinal and the transversal vibration. From this the modulus
of compression can afterwards be calculated. We find thus
m_6A+2B 5(9C4-2D)y’— 53D +E) —

3 1847 T Tism o T o
(7C+OD4E) |9C 42D 3D+ E -
94+3B 34 ‘T3 ™

2. Now we can try to deduce the shearing stresses and their
dependence on temperature in a way analogous to the one that
has been used for the thermal pressure. For this purpose we can

O
determine the space-time average of the force 5%
4
We have
O
X.:a = — § Be, 4+ } E (¢,e, —2,e,) — + D (e,e,+e,e ,+¢,¢,)

4
Now we have to determine the mean force when the solid body

has a given strain ¢, = ¢ in the initial condition. Thus, if we call
again ¢’,...¢', the deformations from the strained condition,
we get
X,=—4Blete)t+ fEefe) —e/(ete))) — § Die/+e'+e) ete,).
Now we have to find the space-time-average of this force. 1t should
be taken into consideration thate,’ —¢,’ —e,’ —e¢,’ =0, whence
X ==} Bt} E(ee) o'e)) — 4 Diefe/ +¢/e/+e/e))  (8)
The mean values ¢’ ¢’, ete. which vanish in the case the body
remains isotropic will now, by the existence of the initial shearing
e, =e, have values deviating from zero in consequence of the
fact that the body presently bebaves like a rhombic crystal. Thus
far the calculation corresponds with that of the thermal pressure.
The force calculated is indeed the force required to keep a certain
deformation given at the absolute zero unchanged when the tempe-
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rature is increased But, whereas mean forces occurring at the
thermical pressure could be deducted at once from the energy, this
time this is not the case, and thus here it will be necessary to
calculate the mean values ¢’, ¢/, separately.

This calculation of which here only the general course will be
indicated, is performed a little more easily for another case, i.e. for
the case that the given deformation at the absolute zerov is

6,76, €,T=€y, €,==¢,, ¢, = ¢, =¢, = 0.

Then only tensions Xi, ¥, and Z. occur and the mean values

RS T T TTh i
e,” ele) e e'e) e e

will have to be determined.

These mean values can be found by considering the progressive
waves in the rhombic crystal into which the body has changed by
the deformation. -

The total change can be characterized as follows. First the energy
in the isotropic body is divided equally in all directions over the
waves of the same frequency; for the crystal this is not the case.

In the second place in the isotropic snbstance there are longi-
tudinal and transversal waves; with the crystal the direction of the
displacement is no longer so simple. Now ¢,, ¢, and ¢, are small
quantities, the change is therefore for both cases small; e.g. from
the longitudinal wave ariscs a wave the elongation of which has a
small inclination with respect to the wave-normal. As the effects
are so small we are able to determine the influence on the averages
separately. Indeed we may in calculating the influence of the new
division of energy overlook the “declivity” of the waves, hence we
may substitute the direction in the isotropic case for that of the
vector of displacement. When we examine however the influence
of the “declivity’”, we can take into account the division of the
energy for an isotropic body, i.e. the homogeneous distribution over
the directions.

As has been said above, we do not intend to reproduce here the
calculation, but are going to show only how the elastic constants
of the rhombic crystal are expressed in the magnitudes ¢, e, ¢,.

We introduce the notation of VoieT so that ¢, ¢,,€,, .04 €4, €y,
CisC,y are the constants of the rhombic crystal, i.e. the coefficients
of e’ ¢e¢, etc. in the energy. When the strain at the absolute
zero is represented by e, e, €,0,0,0, and the arbitrary strain
which is superposed on it by ¢, ¢, ¢, ¢, ¢, ¢,, then the terms with
C, D and F give quadratic parts in ¢ ete. viz.
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3 C(el + e! + el) '[1’2 —*’QD (dl + e! _*— e!) I” + '
4 DI'e, (e, &) + 6, (e, +¢)+ ¢ (6, +¢) ‘
E [el’e:’ea + e,'e,'el + el!ea’ez - 94“31 - es’zes - es'”e,},

These parts should be added to A/, 4+ BI,, therefore the co-
efficient of ¢',* increases by '

8C(e, + e, + &) + Doy + )

9

that of ¢, ¢, by

(GC+ ZD)(GI +' ¢ + el) + (D + E)et
that of ¢,* by
~ 3D, e+ ) — Ege

from which the other follow by cyclic change. In order to introduce
the notation of Voier also for the isotropic body one should remember
that ¢, =¢,, —c,, whereas A=1¢,, B=—2c, From this
therefore the constants for the rhombic crystal are at once to be
written down. From the elastic differential equation afterwards the
determinant equation for the velocity of transmission in its depen-
dence upon the direction is deduced, and also the frequency of the
normal vibrations can be determined. The furiher, more detailed
calcalation will finally for the mean valnes in question, except the
terms which appear also in the isotropic case, yield values which
linearly depend on e,, ¢, and e,.

3. In a note to our contribution (I) already we have pointed
to the fact that the ordinary formula which was used there for the
tension was not exact. In the following manner the accurate form
for finite deformations is found.

The elastic energy ¢ can also in that case be represented by the
already often used formula (I), provided only that the correct
signification is assigned to the quantities ¢, *. .¢,. lLiet us now represent

u
— ete. by a,,,a,, etc., then we must

. : 0
the differential quotients —u,
0z Oy

take )
e, =a, +4(," + a,"4 a,”)
e, == @y + gy + a,,8,, + 0,,0,, + a,,0,,.
From the energy & it will be possible to find the tension .X; by
means of a virtual elongation d in the z-direction. This now has to
be composed with th® known deformation, which is determined by

the magnitudes «a,, etc. Hence a,,, a,, and «,, change and further
also all magnitudes ¢. For the new values we find

< (11

1) Vide e.g. Lovg,
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e =e + (1 +a,)d
t’,' =e, + an‘ d
e)/=e¢, +2a,a,d
?'i':ei + a!l (‘ _L_ 2“11) 'f
From these values the variation of the energy may be found.
Apparently now also the terms A/, and B/, give parts which are
quadratic in the quantities e (or a) and which therefore on the
average do not drop off. After using the symmetry of the expression
it is possible to put down the result as follows
$A1* +¢BI,.
However, another correction of the same nature will still
be required. Above it was taken as a matter of course that
the averages of first powers of ¢, ...e, will be zero. Properly

.. . - ou
taken this is the case with the quantities o, = On the other
£

hand one finds from the relations (11)

=14+ be).
This value should be taken into account if we take the mean
value of the principal term of the tension .\,
2AI, + B(e, + ¢,)
therefore a correction is found to an amount of
A+EBUI—21).
Consequently on the whole, to the thermical pressure we found
before,

has to be added. :

It will be permitted to neglect this term when the coéfficients
C and D are large with respect to 4 and B.

Of course it would be likewise possible to indicate the corre-
sponding terms at the farther calculations of the equation of state
which we have wmentioned in this contribution. To indicate the
principle it seemed to us to be sufficient to treat only the thermal
pressure in this way. Further we must point out that if once these
terms are neglected it will have no sense to make any difference
between the density before and after the strain, when we
calculate the energy for a unit of volume, og to take into accounf
other differences of the same kind. Van EverpinceN has not always
considered this (Lc. pg. 22-——28); in consequence of this there occur
terms in his results that are of the same order as the other neglected
terms. '
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4. Besides the dynamic way we developed above, there is another
method in which the results of Bogn’s general theory about the
specific heat as well as known thermodynamic relations are used.
This method shows a certain conformity with the one used by
Dgsye-v. EvERDINGEN, but enables us to put the problem more
strictly, whereas it has in common with the method given above
the advantage that it can introduce or not the theory of the quanta
of energy and may be easily extended to the temperatures where
the approximations of v. EVERDINGEN prevail no more. Moreover it can
easily be extended to a theory of the equation of state of a crystal of
any class of symmetry. Instead of using a characteristic temperature
as v. EverDINGEN does — who also introduces the incorrect approxi-
mation that there is only one characteristic temperature — the
specific heat itself is wused. Hence the approximation which
v. EverpiNGeN introduces on p. 35 of his dissertation, the conse-
quences of which it is impossible fully to survey, viz. the application
of formulae which prevail for the isotropic body to a aeolotropic
body, can be avoided.

Now the principle of our method is as follows. When the defor-
mations ¢, e, ¢, are given to the body X. may be represented (as
is demonstrated in (2)) e.g. by

X=X, +ae,+ b, +¢)
in  which X; is the thermical pressure for the isotropic body for
¢, —¢,—e¢,=0, and a and b are functions of temperature. On
account of the isotropy in X, the coefficient of ¢, has to be equal
to that of ¢y; V, and Z: hence foliow by cyclic interchange.

A, ete., on account of the isotropy, ‘are at the given deformation zero.

Now the specitic heat can be calculated by application of the
formulae of BorN to the rhombiedric crystal with the ¢’s given
above. As we start from an isotropic body the development of the
specific heat in terms of ¢, ¢, ¢, will only depend on the invariants.
So we may put

(’1’20110“}““11'!"6[12"*"712‘*‘ s
in which (» means the specific heat at coustant e, e, ¢,, (o that
for ¢, =¢, = ¢, = 0. ' )

Now we can apply the thermodynamic relation

aC, o d X
Oe, T ar
This gives ,
Xy da d*b

a-+t+ 28(e, +e,+e)+ vie, + 6)=T e T (—i-i‘;e; 4 7 (e, + )
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from which follows:
A2 Xt
7t .

dla

2R=T——
A d1?

r‘db
23-}-7:1@;

The functions of temperature a @y can be calculated from the
formulae of Borx so that X4 a and & can be determined. In a
more detailed communication we will communicate this calculation
itself also.

Delft, June 1916. Phys. Lab. of the T. H. S.

a==

Physics. . — “The influence of accidental deviations of density on
the equation of state”” By Prof. L. S. Orxsteix and Dr. F.
Zeanike. (Communicated by Prof. H. A. Lorentz).

(Communicated in the meeting of June 24, 1916).

In their article in the Encyclopidie der mathematisehen Wissen-
schaften the following statement by Prof. KaMerLiNeR ONNEs and
Dr. Kegesom is found :

“Da bei der Anniberung an den kritischen Punkt Liquid—Gas
die von den BoLrzmann-GisBs’schen Prinzipien beherrschten Dichte-
unterschiede (Schwarmbildung Nr 48/), der bis @ ansteigenden Zusam-
mendriickbarkeit der Substanz wegen, besonders hervortreten, ist zu
erwarten, dasz bei der Entwicklung der Zustandsgleichung fiir die
Umgebung des kritischen Punktes nach jenen Prinzipien Glieder
auftreten werden, die mit der grossen Zusammendriickbarkeit in der
Nihe des kritischen Punktes zusammenhingen. Diese Glieder werden
wahrscheinlich darch die Art der Abweichung der Zusammendriick-
barkeit in dem kritischen Gebiet (0 im kritischen Punkt und von
diesem aus, soweit sie das realisirbare homogene Gebiet betrifft,
allseitig schnell abfallend) fiir dasselbe ein besondere Bedeutung erlangen,
wihrend sie fiir benachbarte Gebiete nicht mehr in Betracht kommen.
Wihrend eine allmihlige Verschiebung oder Verzerrung, die sich
durch das ganze Diagramm durchzieht, wie z. B. eine kontinuirliche
Aenderung von a,, b, oder R,, sich experimentell nicht besonders
zeigen wirde, werden die betreffende Glieder in der Zustandsglei-
chung in der Nidhe des kritischen Punkies demgemiss zum Schluss
fihren konnen, dass die Eigenschaften in diesem Gebiet in beobacht-
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