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('a8e eertainly not 80. 1) The t'orrect deviations of density in the 
solid are much smallel' and ha\'e another dependenee of temperature 
than that which DEBIJF. used, 

In connection with what we found above in point 4, at last it 
remains to be said that especially the use of statical deviations of 
density instead of the d!lnamlc ones is a groot mistake, In some simple 
cases we have heen able to demonstrate that alw in three dimensions 
the Jatter do not produee any scattel'ing. OUI' eondusion therefore 
is that the molecular theory of the heat-resistance still remains 
entirely open. 

Physics. - "C'ontribnti()n.~ to tlte JdnPlic theor.ll of solids. lil. Tlle 

equation 0/ state of the isOh'opic .t;olid." liy Prof. 1.. S. 

ORNSTKIN and Dr. F. ZERNIKi':. (Communicated hy Prof. H. A. 

LORENTZ.) 

(Communicated in the meeting of June 24, 1916.) 

In tb is <,ontribution we shall use the method we developed in 
0111' fh'St contl'ibntion for the detel'mination of the expansioll in 
order 10 deduce Ihe equation of state, i.e. the conneclion bel ween 
the strain and Ihe sll'ess in ils dependence on Ihe temperature. In 
t'ontribution I we have treated only the simple ('ase that fhe 
strains are zero, and have detel'mined the stress I'esulting from 
heating (thermal pressure). A quite analogous deduetion ('an be 
Hsed in order to find the stresses of asolid, whicb bas been 
deformed at the absolute zero (eqllation of state). The only ditferenee 
with the former case lies in the fact, that by Ihis strain the solid 
genel'aHy departs from exact isotropy. Hence a more arnple calcu­
lalion i~ necessary in Lhe case of shearing. 

Fnrther we sllall menlion the terms which present thernselves if 
we take inlo account the remark of the note on p, 1293. 

Finally we shall show how the equalion of state is also to be 
foulld with lhe aid of thermodynamic relations from the specific 
heat of solid bodies, whieh may he calculated fro~ the formulae 
given by BoRN. This method, fOt' the pl'eserft only mentioned in 
principle, is more analogous to that of DEByJt:-EvERDINGEN than to 
our fi~t dednction, which is purely dynamica!. 

1. Now we will calculate the force necessary 1,0 give the solid 

1) See EPSTEIN, Physik. Zeitschr. XV. 
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body a homogeneous expansion at a given tem peratu rè, so th at 
el = e, === el = e, e. = ei = ee = O. This force consists of two parts. 
In th.e tit'st place one may give the requü'ed expansion to the solid 
body at the absolute zero and thereupon supply at constant volume 
the enel"g.f necessary to give the ·solid body the required tempe­
rature. Therefore the thermal pressnre as calculaled in our first 
contribution has to be added 10 the elastic tension at the absolute 
zero. 

Now in order 10 calculate th~ fit'st part we use the expression 
for the energy 

E=AI12 -j- BI. + CI I
I + Dlil. + EI, 1). (1) 

It is immediately rlear that the invariants have .the following 
values 

11 = Se I, = 3e' I, = el. 

so th at the energy takes the form: 

E = (9A + 3B) e2 + (27C + 9D + E) e3 

For the tension at the absolute zero we find ronseql1ently 

dE . ~ 
So = dae = (6A + 2B) e + (27(; -j- 9D + E)e'. 

Fot' the thermal p .. essure (Slh) we found in Contribution I the 
expression 

9C+2D ..... 3D+E­
SJ, = ~- Fl + 6B- Ft,· (2) 

Now A, B, C, and D are constants which are relati\'e to t.hc 
non-deformed substance. In onr case however we must replace these 
C'onstants by their valtles in the strained condition when calculating 
the thermal pressure. But as the solid in that condition remains 
isotropie, I he gh'en formula still holds. We wiII neglect the variation 
of C and D with e as this val'Ïation is determined by terms of 
higher order in the energy, which were neglected by us. The average 
energy of the longitudinal and the transversal vibralions may change 
also. When we have fo do with 80 high a temperature that fhe 
theorem of equipartitiori is Ime, that change is ze,'o as the 
lllimber of degrees of freedom does not change by the expansion. 
For lower temperatnres where the quantnm-theory must be taken 
into consideration, the rhange of FI and Elr has to ·be taken into 
account. 

The variation of A and B with e can be found in the following 
manne!'. The strain ean be represented hy 

1) Cout for tbe nota\Ïons Contribution l, 
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t't = e + e'p î:!. = e + e'" e. = e + e'., t'. = e'., ei = ("ó' e. = e' •. 

We intl'odllce this into the expression for the ellelKY and detel'mine 
tbe pa.rt of the seeond degl'ee with respect to the quantities IJ'. As 
e'l etc. represent the deformations from Ihe strained eonditioll (e), 
the coefficients of the inval'iants 1'1' and l's will give the new 
vallles of A and B. We find 

A' = A + (9C + 2D) e 

B' = B + (31) +- E) e, 

Now when we inlrodllce these vallles fol' A' and B' into the 
expression for tbe thel'mal pressllre and when we add to it the 
elastic tension at the absolute zero, we tind for the total tension 
in the case of eqllipartition 

S=(6A+2B1e+(27C+9D+E)e.+(9C+.2D + 3D+E)f_ l.' 

. 18.1 9B·, 

_ (9 c: -t- 2!'l: -+ (3D + Et) E e. 
18A' 9B' 

(3) 

In this f is the total enelKY which is pl'Opol'tional 10 1'. Thlls the 
equation of state fol' changes in which the so]id body !'elllallJS 
isotropic has been fOllnd. 

dS 
To find the modulus of compression we determine --; for Ihis 

d3e 
we find 

6A+2B 54C -t-18D+2E (ge + 2D)' (3D+E)' ) 
m=--3- + -------3--- e - --54A'-- + -i.;fii'-- E (4) 

The factor t' now still depends on the tempel'atnre; to find this 
factor we can apply (3), where tbe last term mlly oe neglected 
as we will contine ollrselves to a linea)' expression in f. The e ean 
Ihen oe found by considering the expansion at zero pressllre. When 
we put in (3) S = 0 we find 

(
9C t2D 3D+E) 
- 18A-+----9B- f 

e = -- -------.----.---
6A+2B 

m = ~4 ~ 28 __ : ~~~4:1~;E (~~!]~ + 3~~!Ç) + I 
(ge + ~D)2 (3LJ +.E)'l , 

+ 54-A' + 27~~ ~ l 

(5 ) 

Easily the form of the equation of' state can be indirated in fhe 
case that the qnantum-theOl'Y is introduCf'd. We will confine our~ 
selves to the case of the temperatures being so low that the upper 



- 5 -

1307 

limit of the integl'al in the expression (196), which is given by 
BORN for the energy does not come into aceount. Then we have to 
take into consideration for the thermal pressul'e in formula (2) not 
only the variation of A and B with e, but also that of the longi­
tudinal and the transversal enel'gy. 

By application of the formlliae whieh BORN has given in ~ 21, 
we find after a simple calculatioll as equation of state 

S= (6A + 2B)e +- (27C + 9D + E)e' -I 
~ 5(9C + 2D)'- [.(3D + E)' - 1 i 

- e f 6A'· El + 682 Etr \ , 

(6) 

into whieh may be illtrodllced the vallles for the energy of tlle 
longitudinal and the trans\'ersal vibration. From this the modtilus 
of compression can afterwal'ds be calculated. We find thus 

6A+2B 5(9C+2D)'- 5(3D+E)'-
m=----- El-----Etr -

3 18A' 18B' 
(7) 

(27C+9D+E) ;9C+2D- 3D+E - I 
- 9A+3B I 3A lol + -SB- Etr \ 

2. No\\' we can try to deduce the sltearing stresses and their 
dependenee on temperature in a way analogous 10 the one that 
has boon used for the thermal pressure. For th is purpose we can 

dE 
determine the space-time average of the force 

de 4' 

We have 

OE 
x.=:;- = - i Be. + tE (e.ee ~le.) - t D (ele. + e.e • +e.e.). 

ue. 
Now we have to det.ermine the mean force when the solid body 

has a given strain e. = e in the initial condition. Thus, if we call 
again e'! ... e' 6 the deformations from tIte strained condition, 
we get 

X. = - i B(e+e:)+ t E (e.'e 6 ' - et' (e te:» - i D(et'-+ e;+ea') (e+ e4 '). 

Now we have to find the space-time-a\'erage of this force. lt should 

be taken into consideration thatë:I=~/=~/=;;'=O, whence 

X l B + 1 E ,-,-, -, -') 1 D (-,-, + -'-'+-'-') . = -li e !! (e, e. e1 6. - 2 el 64 e, ec es 6. (8) 

The mean values e', e' 8 etc. which vanish in the case the body 
l'emaillS isotl'opic wiJl now. hy the existence of the initial shearing 
e. = e, have values deviating ft'om zero in consequence of the 
fact that the body presently bebaves like a rhombic crystal. Thns 
far the calculation corresponds with th at of the thermal pressure. 
The force· calculated is indeed the foree required to keep a cel'tain 
deformation given at tbe absolute zero unchanged when the tempe-
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ratllre is incl'eased Hut, wherea..o;; mean forees occurring at the 
thermical pl'essure ('ould be dedlJcted at once from the energy, this 
time this is not the case, and fhus he,"e it will he necessary to 
ealeulate the mean val lies e' I e' 4 separateI)' . 

Tbis ealeulation of which here onl)' the general course will be 
indicated, is performed a IittJe more easHy for another case, Le. for 
the case that the given deformation at the absolute zero IS 

Then only tensions ~, :rIJ and Zz occur and the mean values 

will have to be determined. 
These mean values ean be found by eonsidering the progressive 

waves in the rhombie crystal into which the body has changed by 
the deformation. 

Tbe 10tal change ean be ebaraeterized as follows. First the enelKY 
in tbe isotropie body is divided equálly in all dit"eetions over the 
waves of tbe same freql1ency; for the erystal this is not the case. 

In the second place in the isotropie substanee there are longi­
tndinal and transversal waves; with the crystal the direetion of the 
displacement is no longer 80 simpje. Now ep el and ea are small 
quantities, the change is therefore for both cases small; e.g. from 
the longitudinal wave ariscs a wave the elongation of which lias a 
small inelination with respect to the wave-normal. As the eJfects 
are so small we al"e able to determine the influence on the averages 
separately. Indeoo we mar in ealculating the inflllence of the llew 
division of energy o\'erlook tbe "declivity" of the waves, hence wc 
may slIbstitute the direct ion in the isotropie case fOl' that (ïf Ihe 
vector of displacement. When we examine however the influence 
of the "declivily", we can take into a<~COllnt :the division óf the 
energy fol' an iSOh'Opic body, i.e. the homogeneous distribution over 
the dil'ections. 

As has been said ahove, we do not intand to reproduce here Ihe 
calculation, but are going 10 show only ho\\' the elastir constants 
of the rhombic crystal are expressed in the magnitudes el et e •. 

We introduce the notation of VOlGT 80 that cIl Cu Cu C"C,. clI cH 

Cu c" are the constants of the rhombic cryatal, i.e. the coefficients 
of eli, e1e2 etc. in the energy. When tbe strain at the absolute 
zero is represented by el' et' ea, 0, 0, 0, and the arbitrary strain 
which is superposed on it by e'l e', e'. e'. e', e'., then the terms with 
G, D and E g:ive qoadratic parts in e'l etc. viz, 
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(9) 

These parls should be added to All" + BI,', thÈH'efore the co­
efficient of e'l' incl'eases by 

3C (el + e, + el) + IJ. (e, + 'I) 
that of e'l e', by 

(6C + 2D)(el + e, + el) + (D + E) e, 

that of e'.' by 
- tD(el + e, + f l ) - Ee, 

fl'om whieh the other follow by cyclic change. In order to inlroduce 
the notation of VOlGT also for the isotropic body one should remember 
that C II = CII - Cw whereas A = j- CII' B = - 2c .. , From this 
therefore the constants for the rhombic crystal are at once 10 be 
written down. From the elastic differential equation afterwards the 
determinant equalion for the velocity of transmission in its depen­
dence upon the direction is dedu{'ed, 80nd 8olso the frequency of the 
normal vibrations can he determined, The furlher, mOl'e detailed 
calculalion wiIl finally for the mean vallles in question, except the 
terms which appear aJso in the isotropic case, yield values which 
lineady depend on ell e, and e •. 

3, In a note to our contl'ibution (I) 80lready we have pointed 
10 the fact tb80t the ordinary formula which was used tbere for the 
tension was not exact. In the following manner the accurate forOl 
rOl' finile deformations is fouod, 

The elastic energy f can also in that case be represented by the 
already often used forlIlllla (I), provided only that the correct 
tlignitic8otion is assigned to the quantities e, : , ,e" Let us now repl'esent 

du Ou 
the differenti80l quotienIs dg; , Dy etc. by all> au etc" then we rmlii 

take I) 

el = al. +i (Oll' + a,l' -+ a./) t ,.. (11) _ 

e. = a,. + au + allan + auan -t auau ' \ ' 

Ft'om the energy f it will be possible 10 find the I.ension Xx by 
,means of a virtual elongatioll ó in the .v-direct.ion, This now has 10 

be composeo with tilt known deformation, which is determined hy 
the magnitudes all etc- Hence all' au and au change and fUl,the,­
also all magnitudes e, For the new values we find 

1) Vide e.i' LoVE. 
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1\'=111 1-(1 j-a11)'d 

1';=1', +- au' d 

1': =1'. -i- 2a1,all d 

f/ = ei + au (I -l-- 2a 11 ) d 

From these valnes the variation of the energy may he fOllnd. 
Apparently now also Ihe terms .1// and BI, give parts whieh are 
qlladl'atic in the ql1antities e (or a) and which therefore on the 
aVeJ'age do not drop off. Aftel' nsing the symmetry of the expression 
it is possible to put down t.he resnlt as follows 

iAII' + {BI,. 
However, another cOlTection of the same nature will slill 

he reqllil·ed. Above it was taken as a matter of course that 
the averages of first powers of el'" e8 wil! be zero. ProperlJ 

du 
taken this is the case with the qllantities (J 11 = ~-. On the other 

ua; 

hand one finds from the relations (11) 

el = 1 (el' -t- ~ ec'). 
TlJis value should he taken into account if we take the 'mean 

\'alue of the p"incipal tel'm of the tension Xx 
2Al l + B (e, + 1'.) 

therefore a cOl'rection is found to an amouut of 

(A + t B) (I t' - 2 j ,) . 

Conseqllently on the whoIe, to the thermical pressure we fOllnd 
before. 

has to he added. 

5A+B­
----I' 3 I ~ 

ft will he permitted 10 neglect this term when the eoëffieiellrs 
C and D are large with respect to A and B. 

Of course it would he likewise possible to indicate Ihe eon·e· 
sponding tel'lllS at the fal'ther calclllations of the equatio/l of state 
which we hare Illentioned in this eontribution. To indieate tbe 
principle it seemed to us to be suffieient to treat only the thermal 
pressnre in this way. Further we mllst point ont that if once these 
terrllS are neglected it will have no sense to make any diJreren(~e 

hetween the density before and aftel' the strain, when we 
calclIlate the energy for a unit of volume, 0l4. to take ,into account' 
other differem'es of the same kind. VAN EVI<;RDINGEN bas not always 
eonsidered thiE> (l.c. pg. 22-23); in eon'sequence of tbis tbere ocenr 
terms in his resnlts that are of tbe same order as the ottJer neglected 
terms. 
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4. Besides the dynamic way we developed above, there is another 
method in whieh the reslllts of BORN'S geneml theory about tlle 
specific heat. as well as knowlI thermodynamic relations are used. 
This metbod shows a certain confOl'rnity with the one used by 
DEBYE-V, EVERDlNGEN, but enables us 10 put the problem more 
strictly, whereas it has in cornmon \vith the method given above 
the advanlage that it (',an introduce or not the theor,Y of the quanta 
of energy and ma.\" be easilJ extended to tbe temperatlll'es w here 
the approximatiolls of \". EVERDINGl<:N prevail no more. Moreover it can 
casily be extended to a theory of the eqllation of state of a crystal of 
any elass of symmetry. Instead of nsing a characteristic temperature 
as v. EVEHDINGEN dot's - who also introduces tlle inconect approxi­
mat ion that there is only one' characteristie temperèlture - the 
specitic heat itself is used. Rence the approximation wbich 
v. EVER DINGEN introduces on p. 35 of hisdissert.ation, the con se­
queuces of whieh it is impossibJe fully to survey, viz. the application 
of fOl"mulae wbich prevail for the isotropic body to a aeolotropic 
body, can be avoided. 

Now the principle of our method is as follows. When the defor­
malions t\ et el m'e giveu to the body ... :r:r may be represented (as 
liS demonstmted in (2») e.g. by 

X~ = X!' + a el + b (et + el) 

iJl whieh X~ is the t11er'mical pressllre fol' the isotropic body for 
i', =e. = el = 0, and rt and b at'e functions of temperature, On 
account of the isotropy in Xx the coefficient of e. has to be equal 
to that of e3 ; Yy and Z;z hence follow by cyclic interchange. 

XiI ew., on account of the isotropy, 'are at the given deformation zero. 
Now the specilic heat call be cRlculated by application of the 

fOl'mlllae of BORN to the rhombiedric crystal with tlle e's given 
above. As we stat't from an isotropic body the development of the 
specifie heat in terms of el e2 el will only depend on fhe iJlvariants. 
So we ma)' put 

C,. = C,>o + a II + {J II' + r 1 2 + ... 
in which C" means the specifie heat at const~nt el e. el' Cvo that 
for' el = e. = el = O. 

Now we ean apply the thermodynamic relation 

dCv lP Xx 
-1" 

del - dTt 
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d:X t 
(r = 1' __ .t'_ 

d1" 
dIa 

2~= 1'----
,.. dT' 

dtb 
'l{l + r = T d1" 

The funclions of temperature (r ft r can be calclliated from the 
fOl'lllulae of HORN so that Xl". a and " can be determined. In a 
more detailed communication we will communicate Ihis calc:'ulation 
itself also. 

De(lt, June 1916. Ph 1/.<;. Lab. ol t/te T. H. S. . . 

Physics. . - "Tlte influence ol accidental ds?'iations of delllrity on 
t/te equation (~f state." Br Prof. L. S. ORNSTEIN and DJ', F. 
ZERNIKE. (Communicated by Prof. H. A. LORENTZ). 

(Communicated in the meetin« or June 24, 1916). 

In thei!' article in the Encyclopädie der mathematischen Wissen­
schaflen the following statement by Prof. KAMERLINGH ONNES and 
Dr. KEESOM is found: 

"Da bei del' Annäherung an den kl-itischen Punkt Liquid-Gas 
die von den' BOLTzMANN-GIBBs'schen Prinzipien behel'l'schten Dichte­
untel'sehiede (Schwal'mbildung NI' 48/'), der bis 00 ansteigenden Zusam­
mendl'ückbál'keit del' Substanz yvegen, besonders hervortreten, ist zu 
erwarten, dasz bei der Entwicklung del' Zustandsgleichung für die 
U mgebung des kl-itischen PunkIes nach jenen Prinzipien Glieder 
auftreten werden, die JÎlit del' grossen Zusammendrückbal'keit in der 
Nähe des krilischen PunkIes zl1sammenhängen. Diese GJieder werden 
wahrscheinlirh dm'ch die Art del' Abweichung der Zusammendl'Ück· 
barkeit in dem kritischen Gebiet (00 im kritischen Punkt und \'on 
dies~m aus, soweit sie das l'ealisirbare homogene Geoiet betrifft, 
allsei tig sclmell abfallend) für dasselbe E'in besondere Bed eu tung erlangen, 
während sie fül' oenachbarte Gebiete nicht mehr in Betracht kommen. 
W ährend eine allmäblige Verschiebung oder Verzerrung, die sich 
durch das ganze Diag"amm durchzieht, wie z. B, eine kontinuil'liche 
Aendel'ung van aw, bw oder Rw, Bieh expel'imentell nicht besanders 
zeigE'n würde, werden die betreffende Glieder in der Zustandsglei­
chl1ng in der Nähe des kritisehen Punktes demgemäss ZUID Schluss 
fühl'en künllell, dass die EigenschaftelI in diesem Gebiet in beobacht-


