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noticing that in the deduction of (8) the fact that we have a homo-
geneous system has not been used. The given relation holds also in
a capillary layer. However f,. will depend on a parameter in the

d
direction of the layer (for ;}3 depends on it). The consideration may
0 : ,

easily be extended to the case of a mixture and the ecapillary layers
in a mixture. It will be possible then to develop MANDELSTAMM’S ')
considerations on the diffuse reflection at the layer of contact between
two liquid phases in the critical point of mixture more exactly
than he himself has done.

Utrecht, Mei 1916.

Physics. — “The dilatation of solid bodies by heat” By Prof.
H. A. Lorextz.

(Communicated in the meeting of October 30, 1915.)

When in the theory of specific heat the idea had been worked
out that the heat motion of solid bodies consists in vibrations of
the particles under the influence of the same forces that give rise
to the phenomena of elasticity, DEBYE®) successfully attacked the
problem of thermal dilatation. In his theory, which has been further
developed by M. J. M. vanx EverDINGEN®), it is shown that this phe-
nomenon may be accounted for in a satisfactory way by adding in
the expression for the potential energy of the body terms which
are of the third order with respect to the displacements of the
particles.

In the present paper considerations similar to those of Desvk and
vaN EverDINGEN are presented in a form that is perhaps somewhat
simpler.

§ 1. We shall suppose the body to be isotropic or crystallized in
the regular system. Let .S be its surface and v its volume at the
temperature 7' and under a uniform pressure p. We can imagine
that the particles lying on the surface are kept fixed in the positions
about which they vibrate and that, when this has been done, the

1) Ann. der Phys. 42.

3 P. Demve, Zustandsgleichung und Quantenhypothese, Wolfskehl-Vortrige,
Gottingen, 1913, p. 17; Leipzig, Teubner.

%) M. I. M. vax EveroingeN, De toestandsvergelijking van het isotrope, vaste
lichaam. Proefschrift, Utrecht, 1914,
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inner particles are likewise deprived of their heat motion. Then they
will- take definite positions of equilibrium P, P’, P’’ etc. This con-
figuration of the system may be considered as the result of a dilata-
tion equal in all directions, starting from the configuration that would
exist at the absolute zero and in the absence of external pressure.

Now, always keeping fixed the outer particles, we may investigate
the vibrations of the inner ounes about their just mentioned positions
of equilibrium P, P, P”’... This is a perfectly definite problem. It
can be simplified in the well known way by the introduction of a
certain number of normal coordinates ¢,, ¢, ...q, which we shall
choose in such a manner that they are O in the position of equi-
librinm, so that they determine the deviation from that position.
The corresponding velocities are 71, q,,. qs and if the values of
the coordinates are not too great we have for the potential energy
U and the kinetic energy 7' expressions of the form

U= # (aXQI’ + “19,’ + . ta qs,)b, . . e (1)
r= 3 (qu.l’ + 0;9;’ +...+ qu's’) I T (2)

with positive, constant coefficients. Further there are s fundamental
modes of vibration. In the first of these all the normal coordinates
except q, are 0. in the second all except ¢, and so on. The frequen-
cies of these fundamental vibrations are determined by

e, l/ @, l/ a,
n, = — .y m,= T yees Ng = —,
c, C, Cs
As to the deviation of a particle from the position of equilibrium,

its components for the first particle may be represented by

“191+09.+-..+asqs= :
Bql'l'ﬂzq: '--"I"ﬁsgs: /
i)

U 2 U
H H I

9 + Y9+ ...+ Tsqs)
for the second by : (3)
f=d q +d,q+ ...+ dsqgs,
’2'-:‘3'1914'3':‘]; +..-+ﬁ’sq.s‘9

C =y, . +¥iqa+ ... +7sq, |

and so on.

Here the coefficients @, 3, v have definite constant values. As the
number s of the normal coordinates is equal to that of the degrees
of freedom of the system, viz. to three times the number of the
particles that are assumed to be movable, all possible displacements
&8 &9, 8, ... may be represented by suitably chosen values of

G2 Qys -+ - s
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§ 2. We shall now ascribe a greater mobility to the system by
imagining that the outer particles too can be displaced, with the
restriction, however, that for any instant their coordinates can be
found by multiplying by the same factor 1 - ¢ the coordinates
which they had in the case considered in the preceding paragraph.
Then, the quantity g, which we shall suppose to be very small
compared with 1, will determine the position of the outer particles
and by suitably extending the meaning qof ¢,,.... ¢, these para-
meters may be made, together with ¢, to determine the position of
the entire system.

Indeed, let P, P, P”,... be the points which are found if
the coordinates of P, P, P",... (§ 1) are altered in ratio of 1 to
1 + ¢ simultaneously with the coordinates of the outer points, let
81,88, %,8 ... be the components of the deviations of the particles

from these positions P, P', P",... and let ¢,, ¢,...q, be quantities
connected with & 4, & &, 7, in the way shown by equations (3),
if we continue to assign to «, 3, v the values we bad to give them in
the preceding paragraph. Then it is clear that the configuration of
the whole system is really determined by ¢, gq,...q,. The quantity ¢
being now considered as variable, so that. though the places of the
outer particles ¢n the surface S be prescribed, this surface, keeping the
same form, may dilate or contract as a whole, a constant value of
q, i.e. a constant volume, can in general be maintained only by the
application of an external force () corresponding to that coordinate.
It is precisely this force which we want to know, especially for the
case g=0, i.e. for the contiguration of the body with which we
began in § 1.

The value of @ is connected with that of the external pressure,
for @ is defined by the condition that, for an infinitesimal variation
dg of the coordinate ¢, the other coordinates remaining unchanged,
the work of the external forces is Qdg. If now this change takes
place starting from the value ¢ = 0, all dimensions of the surface
increase in ratio of 1 to 1 - dg. The volume increases by 3v. dg
and the work of the external pressure is — 3pv.dq. Hence

Qe=—3pv - . . . . . .. 4

§ 3. The force Q may be determined by means of the equations
of Lacranek, as soon as the potential energy (U and the kinetic
energy 7" are known as functions of all the coordinates ¢ and the
corresponding velocities.

Then we have
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P YA F 1
.. —a;(ag') T

where we must remark that the first term may be omitted. Indeed,
whatever be the value of

oT

EgT'
it certainly will be determined by the state of the body and its
variations will therefore be limited to small changes on both sides
of a certain mean value when the state is stationary. Then, however,

v

d /07
the mean value of the differential coefficient &—t(})—.—) taken over a
q

time of sufficient length, will be equal to zero. We hardly need
remark that it is such a mean value of the pressure p and there-
fore of the force (), which we want to find.
So we may write
07 oU
“6; + 5;’
and, as we are seeking the value for the case ¢ =0, ¢ =0, we
may directly introduce this latter value into 7 and confine ourselves
to terms with the first power of ¢ when we represent U by a series.
By putting ¢ =0, the points P, P,... of which we spoke in § 2
become immovable, so that we shall find the velocities of the par-
ticles by differentiating with respect to the time their deviations
E,1,5,5,%,¢... from the positions 2, P,... As now the coefficients «, 8,y
in equations (3) are constants, the coordinate ¢ does not appear
in the expressions for the velocities and neither in 7. This leads to
a further simplification, viz.

Q=—

oU

§ 4. If, in the series for the potential energy, we confine our-
selves, as we did in § 1, to the terms that are of the second order
with respect to ¢,,9,...¢s, we may put

U=4@9 +a9" +..-+ag)+ @ + 4, +4)q . (6

It is evident that the first term, which is to represent the poten-
tial energy for ¢ =0, must be the expression (1). Further 4, is
a constant, A, a homogeneous linear function of the coovdinates
q.-9s--.-¢s and A, a homogeneous quadratic function of these
same variables.

We have therefore, by (5)
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Q=A, + A, +4, . . . . . . .0

‘In this equation we must take for ¢,,¢q,....¢s the values as they
‘are in the heat motion such as it really is. As now in the case of
oscillations the mean value of each coordinate ¢ overalong interval
of time is O, the term A, way bLe omitted.

As to A,, this term represents the value of the force () that would
be required for maintaining the assumed value v of the volume, in
case all the coordinates ¢, ...¢, were 0, so that there would be no
heat motion. For this force we may find an expression if we
introduce the volume v, that the body would have at the absolute zero
if it were free from external forces. In order to maintain at this
same temperature the volame v, which we shall suppose to be
greater than v,, a negative pressure would have to be exerted on
the body. It may be represented by

v—uv,

Y )

where x is a certain mean coefficient of cubical compressibility.
Substituting this in (4) we find
Q__-ﬂv—v.)
F 4
and this is the value of A,. Thus, if there is a heat motion, we
have according to (7)

p== xv

0= 3 (v—-v,) + 4,
%

If finally we want to know what volume the body will occupy
in the case of a heat motion, and in the absence of an external
pressure, we have only to put ¢ = 0. We then find

- v—ov, == —3xd, . . . . . . . .09
for the connection between the heat motion and the volume, which
it was our object to deduce.

§ 5. As to the meaning of 4, we must remember that the part
of the potential energy which contains terms of the second order
with respect to ¢,, ¢, ...qs will be

'k(a191’ + a:‘]:’ +...+ atq") + qA:
when the volume has increased to the extent determined by g¢.
After this expansion to the volume (1 4 3g)v the coordinates
9,,9,» - - - gs need no longer be normal coordinates as they were for
the volume v; so that A, may also contain products q g;. As
however the fundamental vibrations which constitute the heat motion,
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must be regarded as incoherent “in phase, products of this kind
will vanish from the mean value of 4,. So we obtain the right
result, if we put

. ‘41 = % (u'l 91! + (l’, 933 + M *' a'S Qes)-

Therefore, according to (9), each harmonic mode of vibration
contributes its part 1o the dilatation »—v,, independently of the
other modes.

The first of these parts is

—frad, g’

for which we may write

d
-"i*é;(% a, '11, + Jiqa’x 91?)
or on account of the connection between ¢ and the volume

0
——-xv.g—(%alqz’—}—&ga'lql’) e e e (10)

Now 4 a, q,* is the value of the potential energy u, that belongs
to the first coordinate during the heat motion in the state considered
and §a,q*+ 4 ga’,y,’ the value which this potential energy would
have, if after the increase in volume determined by ¢ the particles
had the same deviations determined by ¢,, from the positionsT’, PP
specified in § 2.

Thus we may write for (10)

Oy

To calenlate the differential coefficient we must attend only to
the first coordinate ¢,, putting O for all the others,

Further, in performing the differentiation we must imagine that
in the original volume v the particles, have the deviations from their
positions of equilibrium which, in the real heat motion, correspond
to the first mode of vibration and that, after an infinitesimal increase
of the volume they have the same deviations from the new positions
of “equilibrium P, P, P, ...

Proceeding in the same way with respect to the other coordinates,

we obtain
aul Bu, Ou, "
v—v, x0 w+ . . +_6;:—) e $0 9]

§ 6. The -calculation of the vthermal dilatation by means of this
formnla will necessarily be a rather rough one. In the first place
At is very questionable whether for somewhat high temperatures we
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may confine ourselves to terms of the second order with respect
to the inner coordinates, and even if this were allowed, the difficulty
would remain that we do not know enough about the forces acting
between the particles to calculate the differential coeflicients g—g.
For the modes of vibration in which the wave-length is many
times greater than the distances between neighbouring particles,
these forces, so far as they have to be considered here, are determined
by the ordinary elastic constants. If, however, the wave-length
becomes of the same order of magnitude as those distances, this of
course will no longer be so and unfortunately these very short
waves are most prominent in the heat motion.

In his theory of specific heat however DBy, not withheld by
this consideration, has applied the ordinary formulae of the theory
of elasticity to all the modes of motion with which he was
concerned, down to the shortest waves. Encouraged by his success
we may avail ourselves of the same simplification in the theory of
dilatation as has been done already by him and vaN EVERDINGEN.
This enables us to continue the calculation of the right hand side of (11).

§ 7. We shall introduce the two constants of elasticity 2 and
u, which are also used by Derye and which have been chosen
in such a way that the potential energy per unit of volume is
represented by the expression

pe + ' + 22°) + A2 + yy + 2 + el + oyt 4+ 2 (12)
where

o0& 05 oy
%:5.;'”' wy:@—,—gﬂ;““

We remark that, if y is any one of these six components of
strain, or a homogeneous linear function of some of them, we may
write

dlogy
dlogo

This is evident, if we keep in mind that, in the infinitesimal
expansion determined by ¢, the quantities §, 5, § are kept constant,
so that their differential coefficients with respect to the coordinates
are changed in ratio of 1 to (1 -+ ¢)—. .

The modes of vibration of which the heat motion consists, may
be divided into two groups, that of the longitudinal and that of
the transverse vibrations.

Now, if o is an element of volume, the potential energy v, contained

A ¢ 1)
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in it and proper to a mode of motion of the first group, is proportional
to an expression of the form
(: + 2p) 1o,
while the potential energy v, belonging to a mode of the second
group is proportional to
ny o
As o changes proportionally to v, we have in virtue of (13)

d log vy dlog(A+-2u)
— L

0 log v T d log v
Ologv, dlogp

i 1
dlogv  dlogv t

and this leads to similar relations for the potential energy w;, u, con-
tained in the whole body. We may write them in the form

duy d log (A +2y) .
— e — , ... . (14
dlogv 2 d log v tosp (14)
Ouy dlog u i
= - 4 B ¢ B
dlogv 3&' log v T (1)

These formulae, of which the first may be used for all the terms
in (11) that correspond to longitudinal motions and the second for all
those that refer to transverse motions, also hold for the mean values
which we have to take on the right hand side of (11). The mean
valunes both of u; and of w, however are each half the total energy,
and to this latter we must assign, both for the longitudinal and the
transverse vibrations, the value & which depends on the frequency
v in the way specitied in Pranck’s formula.

§ 8. Let us now first consider the terms on the right hand side
of (11) that belong to modes of motion with frequencies between
v and » 4 dv. Let N be the total number of these modes, gN
the number of those in which the vibrations are longitudinal and AN
the number of those which consist in transverse vibrations, so that
¢+ =1. To obtain

du
T 0logv C
for this group of terms we must multiply (14) and (15) by ¢gN and
hN respectively and then take the sum, replacing at the same time
w; and w, by their common value }&. We shall also substitute for
g and A the values that follow from Besyr’s calculations. He has
found that the number of the longitndinal and that of the transverse
modes of motion for which the frequency lies below an arbitrarily
: 85

I £ 1)}

Proceedings Royal Acad. Amslerdam. Vol XIX.
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chosen limit are to each other in ratio of (4 - 2u)~%s to 2u—":. As
this is independent of » it is also the ratio between the fractions ¢
and /. Performing the calculations indicated we find for the sum (16)

Dy Nt/ 90— Yy -

E'_Elf___-_-_- —3 d log {(A42p) "‘t‘?‘" 2} Ly | e
0 log v dlogv

To derive from this the sum

Ou ou Ou,

alogv+810pr T T Sler e

which oceurs in (11) we have still to extend the summation to all
the modes of motion of different frequencies. As now XN, is the
total energy FE of the heat motion, (11) becomes
d log {2+ 2p)—"+2u—"
NE— g {(A+ 2p)~"2+2p }_% E
d log v

(17)

In this formula we must give as well to % as to the elastic con-
stants 2 and pu the values they would have if there were no heat
motion, the volume being », and strictly speaking it ought to be
taken into account that these quantities and therefore the coefficient
by which E is multiplied are more or less dependent on that volume;
by this the equation becomes rather complicated. The simplest results
will be obtained for very low temperatures. For these F is propor-
tional to 7'*. Hence, if we assume that the coefficient of £ may be
represented by a series

C+Cilo—rv)4 ...

we may conclude that quite near the absolute zero »—uv, is propor-

to 77

dv

1
tional to 7% and the coefficient of dilatation v a7
[}

§ 9. The equation obtained for the dilatation can be still further
simplified if one makes the assumption, rather arbitrary of course,
that by an isotropic dilatation the coefficients 2 and p are made to
change proportionally to each other. The coefficient of compressibility
(for an infinitesimal change of volume) which has the value

g -
31+ 2p
and with which, in a rough approximation, we may identify the
coefficient » ocecurring in our formula, will then change in the
inverse ratio to u. We may also say that the quantity of which
the logarithm appears in the numerator of the first fraction in (17)
changes proportionally to »%:. Hence, denoting the pressure by p
and using the relation

-10 -
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dlogv= — =dp

d log »
v — v, =| — 4 ———— 3t | FE,
dp
and if the coefficient is treated as independent of the temperature,
dv d log % dE
I QD A GV
a7 dp Pt aT
If now ¢ is the density of the body, ¢ the specific heat (the dif-

~

ference between ¢ and c. being considered as immaterial) expressed

we have

dE
in calories and 4 the mechanical equivalent of heat, we have 7=
= 4 cgv, and for the coefficient of cubical expansion
_ldv %dlogx 1 18
CELarT| T iy TAr[Ae . - U8

a value that can well be positive, as the compressibility decreases
with increasing pressure.

§ 10. An example may teach us, whether this result agrees with
observation, at least as to the order of magaitude.

According to the measurements of Lussana ') the compressibility
of lead decreases by about g% of its value when the pressure is
raised to 1000 atmospheres. Therefore we have, taking the atmosphere
as unit of pressure

dlog =
—=— = — 3,3.10-5
dp
and if p is expressed in dynes per cm?
d log =
e = — 3,3.10- 11,
dp

For the compressibility itself Lussana’s value is » = 3,9.10—12,
so that the coefficient of Acp in (18) becomes equal to 1,6.10-11,
With 4 =4,18.107; ¢=0,03 and ¢ =11 we find ¢ = 0,00022, while
in reality the coefficient of expansion is 0,00008.

For tin LussaNa’s observations lead to the numbers

d log = g
- = — §,7.10—11, ® — 2,7.10—12,
dp

‘Here ¢ =0,05 and ¢="17,3. This gives « = 0,00027. The coeffi-
cient of expansion is 0,00006.

It is seen that the agreement is scarcely satisfactory.

1) Taken from W. Scrur, Piézochemie der gecondenseerde systemen, p. 72.
Proefschrift, Utrecht, 1912,

85*

-11 -
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¢ 11. For a few metals the value of can be derived from

og v
measurements made by Povamine.') This physicist has investigated
the changes in length and diameter caused by the torsion of a wire.
We shall shortly discuss this phenomenon, not only with a view to
the numerical value that follows from it, but also because the
theory shows a certain analogy with that of the dilatation by heat.

Let us-consider a eylindrical wire, the axis of which we take for
the z-axis, and let wus suppose that, starting from the unstrained
state, it is subjected to the following three deformations: 1. a
homogeneous stretch in the direction of the length, 2. a displace-
ment of the particles in vadial direction, so that the distance » of
a particle from the axis changes by sr, s being a function of », and
3. a torsion, by which each eross-section normal to the axis is turned
over an angle 9: about its point of intersection with that line; then
9 is the angle of torsion per unit of length.

Supposing the temperature to be kept constant we shall seek the
free energy of the body in the final state reached by these three
steps. Assuming it to be O in the original state we can calculate
its changes by means of (12} or of similar expressions.

5T)

r

n

As the second of the three changes produces a stretch

radial and a stretch s in tangential direction, we obtain the free
energy that exists per unit of volume after the first two steps if
ds
we replace .y, ¥, - in the first two terms of (12) by s,s + # 7
: r
and gq.
The result 1s

[9 0% Y ([8 2 (/8 ! 3 ds !
A +q‘+u 247> +g) . (9
? ¥ r

A point that originally was at a distance » from the axis, has now
shifted to the distance »'=—(1 4 s)», while an element of the length
d! has become dI' =1 + ¢} dl.

By the first two changes an annular element between two cylindric
surfaces described about the axis with the radii » and » 4 dr, and
further limited by two cross sections at a distance d/ from each
other, will have taken a volume for which with the approximation
required for our calculation we may write

. 1) Pornmixa, On the changes in the dimensions of a sieel wire when twisled, and
on the pressure of distortional waves in steel, Proc. Royal Soc. (A) 86 (1912),
p. b4

-12 -
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ds
2n(1+28+r2i+ q)rdrdl N 11
T

Now to obtain the free energy in the state S that is reached by
the first two deformations we should have to multiply (19) by this
expression (20), and then to integrate it with respect to » and [
For this calculation however we may replace (20) by 2.ar drdi,
because in the expression for the free energy we shall omit terms
that are of an order higher than the second with respect to gand s.

§ 12. To calenlate now the change of the free energy accom-
panying the third deformation specified in § 11, we shall consider
the state .S as the original one and introduce elastic constants refer-
ring to it. On account of the preceding deformations determined by
g and s, these constants are a little different from the values /2 and
p introduced into (12). To find an expression for them we regard
the quantities ¢ and s as infinitely small and neglect their second
and higher powers. The change we are investigating being propor-
tional to 9*, we obtain in this way terms with ¢J° and s

A point which in the state .S has the coordinates @, ¥,z and
lies at a distance »* from the axis, is displaced by the torsion 9 over
the distances

= — Iz, 4= r ez, §=20,
to which correspond the components of strain
=0, y,=0, 2:=0, a,=0, 2.=— %y, y.= + Jo.

Let us now consider an element of volume which in the state S
lies at a distance »' from the axis and for which =0, y==r". The
preceding changes have given to this element the stretches x —y,

y=s-+r ‘f and z:==g¢ in the direction of the axes, without other
dr

changes of form. By the torsion it is now further subjected to a
shear o, — — »'.

It is evident that the change in free energy per unit of volume
caused by this shear will be obtained by multiplying { 2.* by a co-
efficient p’, which is the coefficient of rigidity g as it has been
modified by the dilatations X, y, 2. In calculating this modification
we may treat X, y, % as infinitely small. it can be shown that

W=pl+28+ax~4+2-4+by. . . . . . (21)
where a and 0 are two constants depending on the nature of the
material ;. In this way we find for the change of the free energy

) In my original paper I had used a wrong formula, in which the term 2 uz
was wanting, an error that has been pointed oul by Mgr. TresLivg in his paper:
On the use of third degree terms in the energy of a deformed elastic body. (These

-13 -
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per unit of volume caused by the torsion

ds
(1 +294+28) +a(g+s)+ b (s-{—r E)z 9,
r

Proceedings, 19 (1916), p. 281). 1 shall avail myself of the occasion of this trans-
lation for introducing the corrections necessitated by his remark.

In deducing the new equation (21) we need not oceupy ourselves with the term
by; we have only to show that

pw=pl+22) +e(x + 2),

if y = 0. By this latter assumption the problem is reduced to one in two dimen-
sions, which may be treated as follows.

Let x, z be the coordinates of a point in the original stale and 4§, 2-+
its coordinates in the strained state, the displacements £, ¢ being functions of w,
2. We shall consider the free energy per unit of volume at the point x -+ §,
2+ 2 as compared with the free energy which we had originally in unit of
volume.

The difference ¢ must be a function of the quantities
- 03 . of b of |
e A |

and can be developed in ascending powers of these, the series beginning with
guantities of the second order and terms of the third order being necessary for
our purpose.

As we may assume that lhe free energy is the same in the body considered
and in a second body that is the image of the first with respect to a plane
perpendicular to one of the axes of coordinates, the expansion can contain no
terms that are of an odd order with respect o b, and b,. Morveover the value
of ¥ must remain the same when the axes are rotated in their plane. These
considerations lead to the formula

v=/f(1+a) +gh —b) +hia,a,— b b))+ k(a,+a) +
+ [(al '+' ([:) (1)1 - 1):) ’ + m (1, ‘+' a,) (r, a, — b: ba)

with six constants f, g, %, [, m, which can be easily verified. Indeed it can be
shown that the values of a, + a, b, — by and a; g — #; b are not altered by
a rotation of the axes.

Let us next suppose the body, strained already in the way determined by
ay, gy by, by, o be rotated about O Y through an infinitely small angle «. This
rotation, which must leave the value of § unchanged, leads to the variations

8= —ow(+4+§, di=ov@+i),
o, +a)y=ob, —b), 0b —b)=+20—wo, +a,),
O, a, — b, b,)=— w (b, —0b,.
Substituting these values in ¢ and putting equal to O the coeflicients of the

terms that are of the first and the second order with respect to ay, ay, by, by, one
is led to the relations

h=—4g, m=2f—2g9—4|,

1

so that

-14 -
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where »' has been replaced by (1+4s) » and where, as to ¢ and s
we have neglected terms of orders higher than the first.

Multiplying this by (20), integrating over the cylinder and adding
the result to the free energy in the state S, of which the value
has been found already, we obtain for the free energy in the final
state

R
ds ds\? ds :
tp:2n1f[y :28’+2r&(}; +r’(&~;) -+ q’:—{—%l(Zs-ﬁ—rz; -+ g) jlrdr
0

R
a6 ds ds
f[y (1 +4s+r— 4+ g)+a(([+s)-{— b(.s+r —)]r* dr . (22)
! dr dr
0

where the original length and radius are denoted by / and R,

._+__

(0]
and the total angle of torsion by @, so that 9 = ——

(14g)°

§ 13. Now 6,g and the value 8, which s assumes for r = R,
may be regarded as the parameters upon which external forces can
act directly. If these parameters are kept fixed, we can determine
the values of s within the wire by means of the condition that, for
an arbitrary infinitesimal variation ds given to them, d ¥ must be 0.

For constant values of ® and ¢ we have by (22)

R R

dd
dv = |G dsdr + FE—sdr, e (28
) r

D 0
where

+ l((lx + ”s) (’)1 - [)a) ? + (2f._ 29 —4 l) <(11 + au) ((lx g — bl b,)
In the case considered in the text the final values of £ and Z (after the
application of the torsion) are

E=xas—91 4 B)r:=xac+xr.1+22 ==z
if x, z are the coordinates in the original state (before the application of the
dilatations x, z). Hence
=X, a,=—2, by =1 4+ 8)a,, b, =0.
If these values are substituted in the expression for ¢, the coefficient of x.% will
give us the value of } n’. Hence

W =291 +22 4 2/(x+ 2),

or, if we replace 2! by a and observe that, for x=0, z2=0, »’ must be
equal to #,

W=pl+22) +ax+ 2.
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ds @
G = 2al [4 (4 4p)rs4-2(2 ¢ p) r? —; +22 1-(1] + I~l—~(4y +a+b)r*.(24)
o dr ,

"l_(,,.+1,)r* . (25)

F =2nal I:2 (A4+p)r's+(A+2u)r° 3—8" + lr’qjl—l»
T

By partial integration of the second term (23) becomes

R R
b, o dF
dq;:;]vtfs%—}-‘] (]——E: ds dr.
' 00

. . ds )
As for r =0 the dilatations s and r 3 must have finite values,
ar

the function F vanishes for » — 0, so that we obtain

R
* dFr .
dp—=F_ _ pds —i—J (G— :i—;) dsdr. . . . (26)
0

If now we put d8 = 0, only the last term remains, so that we are
led to the condition

dF
G=— . . . . . . . . .o
% (27)
or after some transformation
7 () &5
dr

ar) T Ao
ds

But for » =0 we may put »’ = 0. We find therefore
r

& q—3b

" T160 " 1 2.

If this value is substituted in (22) we obtain ¥ as a function of
the external parameters ©®,8 and ¢. By differentiation with respect
to these variables we may calculate the external forces corresponding
to them. We need only the two last ones, S and Q, of which Sis

immediately determined by (26). For according to this formula we
have

(P—RY)+8. . . . . . (28

dW=1F_pds,

s0 that
op .
S = a; = Fr—p,
which can be calculated by wmeans of (25) and (28). As to
oW
Q="
9
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this quantity is found if, after differentiating in (22) under the signs
of integration we substitute the value (28) and then perform the
integrations.
The result is
@ﬂ

S=2al[lR'g + 2( + w) K'8] + — (4 + a + O) R

Q= al[(2 -+ 2u) R*q -+ 21,

If no stretching forces act on the ends of the wire, nor any forces
on the surface, we have =0, S= 0, so that

(~2R2
g+ AU+ WE=— " Gutatd), . . . 29
2+ 2u)q + 228 = — 4”«—»((1 fay. . . . . (30)

When the coefficients of elasticity 2, ;¢ and the coefficients « and &
are given, we can derive from these equations the changes in
length and diameter (¢ and 8) caused by a torsion.

§ 14. We shall use formulae (29) and (30) to calculate the
coefficients @ and & from PoyNTING’s measurements.
PoynTinG has worked with two steel wires and one copper wire, for

which he has determined in the first place Young’'s moduius —— p (334‘4‘)

2
Poisson’s rano T 3 From these quantities we can calculate 2 and .
{1
Further he haq measured g and 8, so that a and 5 can be found.

The results are given in the following table, in which everything
has been expressed in C.G.S. units. The length of the wire was in
all cases

== 160,5 cm

and the numbers given for ¢ and 8 refer to the value & = 2xa; so
they indicate by what part of the original value the length and the
diameter change, if one end of the wire is once twisted round.

S

—

v

3 - 1 5 ) } '
Younc’s | PoissoN’s | i f o
! R modulus | ratio | 2 b9 s a b
| ! i ! :
H J I \
)l 1,0,0493 2,12,102 i 0270 | 9,77.10'18,35, lO“]l ,11.,10—6/—3,19, 107 [——503 1012 0,58. 1012
d 20,0605 | 2,12.102 | 0,287 |11,00.10118,24. 10111290 10-6/—5,24.10~7 —5,70. 10:2 0,70.1012
»per10,06095 1,31.1012 0,331 : 9,64.101114,92, 10“;425 10-6! - 1,75,10—6: —394 1012; 3,37.1012
}
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. : dlog
§ 15. We can further calculate — 2t by means of the values
oG v
found for @ and b. Let ussuppose the metal to be stretched equally in
all directions, so that there is an infinitely small cubical dilatation
dlogr. Then we have according to (21) in which expression we
must put X=y=z=+4 dlogv,

dp = { (2u + 2a+4-b) d log v,
dlogp  2p + 2a4b
dlogv 3u )

To caleulate from this the coefficient of dilatation, we shall

suppose that, when the volume is increased, 2 and p change propor-
tionally to each other.

The differential coefficient in (17) then becomes
L dlogu
— TToas’
and the formula itseit'

B d log p '
ve-v, —x{— 34 T 1L} FE
’ [ T4 log v ¢

Treating the coefficient of £ as a constant (comp. § 9) we tind
from this for the coeflicient of cubical expansion

’ d log n
— x| — — Aco.
“ 7[ %dlogv %] e

If the coefficient of compressibility x is derived from 2 and pu,
this equation gives the following results:

dlogit L e «
dlogv ; calc. | obs.
Steel 1 | — 3,1 l, 65.10-13 | 0,11 l; 78 | 32.10-5  33.10~5
4 | ! f
, 2 —37 | 60.10-B8 . g1 78 | 36.10-5 | 33.10-5
Copper —24  T7.10-83 0003 = 89 ' 28.10-5 J 5,1.10~5

; f | ‘

The only inaccuracy in the above calculation of the terms in (11)
coi'responding to transverse vibrations is the application of the
ordinary formulae of the theory of elasticity to very short waves.
For the determination of the terms referring to the longitudinal
vibrations, however, we had to make the assumption that A changes
proportionally to u. As however the transverse vibrations have a
greater part in the heat motion than the longitudinal ones we may
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perhaps hope that the error introduced by thus assumption will not
be considerable ).

We mentioned already the analogy between the problem treated
in §§ 11—13 and that of the thermal expansion. In the one case
the torsion plays the same part as the heat motion in the other
and the quantities that have been indicated by ¢ in the two
problems are comparable with each other; the similarity of the mathe-
matical treatment in the two cases is likewise evident. PoyNTING
remarks that a dilatation of the wire will also take place when it
executes torsional vibrations or when vibrations of this kind are
propagated in it. With similar phenomena we are generally concerned,
when an elastic body is traversed by waves, and when we consider
the very short waves especially, this leads us directly to an insight
into the nature of thermal dilatation.

Finally it deserves our attention that, though the phenomena
discussed in this paper are chiefly determined by the change of the
elastic constants caused by a previous deformation, yet there are
as well in equation (17) as in (29) and (30) terms that are independent
of this change.

Physice. - “On EwstewN’s Theory of gravitation.” 1. By Prof.
H. A. Lorekntz.

(Communicated in the meeting of February 26, 1916).

§ 1. In pursuance of his important researches on gravitation
KinsTeIN has recently attained the aim which he had constantly kept
in view; he has succeeded in establishing equations whose form is not
changed by an arbitrarily chosen change of the system of coordinates *).
Shortly afterwards, working out an idea that had been expressed
already in one of EiNsTEIN's papers, HiLBerT") has shown the use
that may be made of a variation law that may be regarded as
"HamiLToN’s principle in a suitably generalized form. By these results
the “general theory of relativity” may be said to have taken a
definitive form, though much remains still to be done in further

1) This paper had already gone to press, when an article of FORSTERLING
came under my notice (Ann. d. Phys. 47 (1915) p 1127) in which considerations
similar to those here developed are put forward.

%) A. EwstenN, Zur allgemeinen Relativititstheorie, Berliner Sitzungsberichte
1915, pp. 778 799; Die Feldgleichungen der Gravitation, ibid. 1915, p. 844.

$) D. Husent, Die Grundlagen der Physik |, Gottmger Nachrichten, Math.-phys.
Klasse, Nov. 1915,
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