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noticing that in the deduction of (8) the fact t.hat we have a homo­
geneous system has not been used. The given relation holds 80180 in 
a capillary layer. However J'-r. will depend on a pal'ametel' in the 

direction of the laveI' (for dp depends on it). The consideration may 
• d(! 

easily he extended to the case of a mixture and the capillary Jayers 
in a mixture. It will be possible tben 10 develop MANDKLSTAMM'S I) 

considerations on the diffuse rellection at the layer of contact bet ween 
two liquid phases in the eritical point of mixture more exactJy 
than he himself bas done. 

Utrecftt, Mei 1916. 

Physic8. - "1'!t~ dilatation 0/ solid bodies by !teat." liy Prof. 
H. A. LORENTZ. 

(Communicated in tbe meeting of October 30, 1915.) 

When in the theory of specitie heat the idea had been worked 
out that the heat motion of solid bOdies consists in vibrations of 
the particles nnder the influence of tbe same forces that give rise 
10 the phenomena of elasticity, DEBYE 2) successfnlly attacked tb~ 
problem of Ihermal dilatation. In his I heOl'Y , ",hieh has beel} further 
developed by M. J. M. VAN EVERDINGEN '), i t is shown that t his phe-
1I0menon may be aceountcd rol' in a satisfactol'Y way by adding in 
tbe expression fOl' the potential enel'gy of tlle body terms wbirb 
are of tbe third order with respect to the displaeements of the 
parlicles. 

In tbe pre~ent papel' rOllsideralions similal' 10 those of DEBYE and 
"AN EVERDINGEN are presented in a form that is pethaps somewhat 
simpter. 

~ 1. We shall suppose the body 10 be isolropic or C I'y st all ized in 
the regular system. Let S be its snrface and v its volume at the 
temperatlll'e Tand under a uniform pressure p. We can imagine 
that the partieles Iying on the ~nrface are kept fixed in the positions 
about which they vibrate and that, when this !Jas been done, tbe 

1) Ann. der Phys. 42. 
2) P. DEBYE, Zustandsgleichung und Quantenhypothese, Wolfskehl.Vorträge, 

Göttingen, J ~'13, p. 17; Leipzig, Teubner. 
S) M. I. M. vANEvERDlNGEN, De toestandsvergelijking van het isotrope, vaste 

lichaam. Proefschrift, Utrecht, J914. 
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inner partieles at'e likewise deprived of their heat motion. Then they 
wiIJ· take de6nite positions of equilibrium P, P', pil ete, T11is con­
fignration of the system may be considereu as the result of a dilata­
tion equal in all directions, starting from the configuration thaI would 
exist at the absolute zero and in tbe absence of extern al pressllre. 

Now, always keeping fixed the outer particles, we may investigate 
the "ibrations of the inner ones about Iheir just mentioned positions 
of equilibrium P, PI, Pil . .. Tbis is a perfectly definite problem. It 
can be simplitied in the weil known way by the inlI'oduction of a 
eertain numbel' of normal coordinates ql' q: . , . qs, whieh wö shall 
choose in sueb a manner that they are 0 in the position of equi­
librium, so tbat they determine the deviation from that position. 
The cOI'l'esponding velocities are q'\> q" ... tjs and if the values of 
the cOOl'dinates are not too great we have for tbe potential energy 
U and the kinetic energy T expressions of the form 

u = ! (alql' +- a.q,· + .. ' + as qo') , 

T = i (CI<lI' + c,q',' +". + csq~J), , 

(1) 

(2) 

with posltlve, constant coefticients. Further thel'e are s fllndamental 
llJodes of vibl'ation. In the first of these all tbe normal coordinates 
exeept qt are 0, in the second all except (j, and so on. The frequen­
cies of thf>.se fundamental yibrations are delermined by 

As 10 tbe deviation of a particle from tbe position of equilibrium, 
its components for the fil'st pal,ticle may be represented by 

for the second by 

and so on. 

~ = at ql + a, q, + ' . , --I- as qs , 

" = ti: ql + ti, q, + . , , + {Js qs , I' 
~ =y, ql + y,q, + '" + "Isqs, 

f = dJ ql .~ a'2 q, -+ ", + li's qs, \ 
,,' = fl'1 ql + {J', qJ + . , , + ~'s qs , 
ç = y'l ql + y', q, + .. , + y's q., I 

(3) 

Here the coefficients lI, i~, Y have detinite constant values, As the 
nnmber s of the normal coordinates is eqnal to that of the degrees 
of freedom of the system, viz. to three times the number of the 
partieles that are assumed to be movable, all possible displacements 
~, 'tJ,;, t, 1/, ;', ' ., may be represented by suitably chosen \'alues of 
'11> q., . , , '1.' 
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§ 2. We shall now aseribe a greater mobility to t he sJstem hy 
imaglnwg that the outer partieles too ean be displaeed, with fhe 

restrietion, howevel', that for any instant their coor-dinates eau be 
foulld by multiplying by the same factor 1. + 'I the coordinates 
which they had in the ease considered in the preceding paragmph. 
Then, the quantitJ 'I, which we shall suppose to be ver.}' small 
compared with 1, \Vill determine the position of the outer particles 
and by suitahly extending the meaning W '11' .... q .. , these para­
meters may be made, together with q, to detel"lnine the position, of 
the eutire system. 

Indeed, let p, P', Pil,... be the points whieh are found if 
the coordinates of P, P', P'·, ... (§ 1) are alter'ed iu ratio of 1. to 
1 + q simulta.neously with the coordinates of the outer points, lel 
;, 'Ji, ;, ;', 1/, ;' , ,. be the eomponents of the de\'iations of the partieles 

from these positions p, P', P"" .. alld let ql' 'I.'" qs he quantities 
eonnected wilh ~,lj,;, f, 1/, s' in the way shown by equations (3), 
if we continue to assign to «, {I, rthe values we ,(ad to give t.hem in 
the preceding paragraph, Then it is clear th at the eonfiglll'ation of 
the whole system is really determined hy 'I, ql .,. qs. The quantily q 
heing now considered as variabie. so that, though the plaees of the 
outer partieles in the sllrface S oe preserioed, this sllrfaee, keeping the 
same form, may dilate Ol' contract as a whoIe, a constant value of 
q, i.e. a constant yolume, can in general be maintained only by the 
applieation of an external force Q corresponding to that eoordinate. 
It is precisely this force which we want to know, espeeially for the 
ease q = 0, i. e. for the contignration of the body with whieh we 
hegan in § 1. 

Tbe value of Q is connected with that of the extel'llal pressul'e, 
for Q is defined by the condition that, for an infil1itesimal variation 
dq of the coordinate q, the other cOOl'dil1ates rernaining nnchanged, 
the work of the external forces is Qdq. If now this change takes 
place starting fl'om the value q = 0, all dimensions of the sUl'faee 
incl'ease in ratio of 1 to 1 + dg. The volume increases by 3v, (Yq 
and the work of the ext~l'llal pressure is 3pv. (Yq. Hence 

Q=-3pv, . (4) 

§ 3. The force Q may be determined by means of the equations 
of LAGRANGg, as soon as the potential energy [J and the kinetic 
energy T are known as functions of all the coordinates q and the 
corresponding velocities. 

Then we have 
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aT au 
-+-a'l aq , 

where we must remark (hat the th'st term may be omitted. lndeed, 
whalever be the value of 

al' 
-', aq 

it c'ertainly will be detel'mined by the state of the body and its 
variations will therefore be Iimited to smalt changes on both sides 
of a eerlain mean value when the state is stational'Y. Then, howevel', 

the maan value of the ditferential eoefticient - -.- taken over a d(aT) 
dt aq 

time of sllfficient length, wiII be equal 10 zero. We hardly need 
remark that ij is slleh a mean valIIe of the pressLl re pand there­
fore of Ihe force (J, whieh we want. to find. 

So we may write 

al' dU 
Q= - aq + dq' 

and, as we al'e seeking the valLle fol' the case g = 0, q = 0, we 
may directly intl'ouuce Ihi,s latter yalue info 1 and con fine ourselves 
10 tel'ms with the first power of g wh en we represent U by a series. 

By putting q = 0, the points P, p, ... of whieh we spoke in § 2 
become immovable, so that we shall find the veloeities of the par­
ficles by differentiating with respect to the time their deviations 

g, 1/,;, ~', 1/" ç ... from the positions P: P, ... As now the coeffieients u, {J, y 
in equations (3) are constants, the coordinate q does not appear 
in the expressions for the ,'elocities and neither in T. This leads to 
a furtber simplification, viz, 

au 
Q=­

dg 
(5) 

§ 4. If, in the series fol' the potential energy, we con fine our­
seh'es, as we did in § 1, to the terms that are of the second order 
with respect to gp qt ... qs, we may put 

U = * (a191' + a2q,' + .. , + asqs2) + (AD + Al + At) q • (6) 

It is evident th at the first term, whieh is to represent the poten­
tial energy fol' q = 0, must be the expression (1). Fm'tber Ao is 
a constant, Al a homogeneous lineal' function of the COOt'dinates 
ql' g, . , . ,qs and A. a homogeneous quadratic function of these 
same val'iables. 

We have thel'efol'e, by (5) 
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(7) 

·ln this equation we must take for qlt q" .. ,qs the values '8.S tbey 
are in the heat motion such as it really is. As now in the case of 
oscillat ions t he meall val ue of each coórdinate q over a long interval 
of time is 0, the term AI may be omitled. 

As to AG' tbis term l'epresents the value of the force Q that would 
be required for maintaining the assumed value v of tbe volume, in 
case all the coordinates ql" .. qs were 0, so that there would be no 
heat motioll. For this force we may find an expression if we 
introduce the volume Vo that the body would have at the absolute zero 
if it wel'e free {rom extel'nal forces. In order to maintain at this 
same tempemture the volume v, which we shall suppose to be 
gl'eatel' than v., a negative pressul'e would have to be exerted on 
the body. lt may be represented by 

V-I1. 
p=---, 

xv 

where x is a cel·tain mean coefficient of cubical compressibility. 
Substituting Ihis in (4) we filld 

Q = a (v-v.), 
x 

(8) 

and this is tbe \'aIlle of Ag. Thus, if there is a heat motion, we 
have accol'ding to (7) 

3 (v-·v,) 
Q= + A,. 

x 

lf finally we want to know what volume the body will (}{'cupy 
in the case of a heat motion, and in tbe absence of an external 
pressure, we have only to put Q = O. We tben find 

,,- ". = -j-xA, . . (9) 

rOl' the connection bet ween the heat motion and tbe volume, which 
it was our object to deduce. 

; 5. As to the meaning of A, we must remember that the part 
of the potential energy which contains ferms of the seeond order 
with respect to qp q, ... qa. wiJl be 

i (a 191' + a,g,' + ... + a.q,') + qA, 
when the volume has increased to the exlent determined by q. 

Aftel' tbis expallsion 10 the volume (1 + 3q)v the coordinates 
9;, q •• ... q. need no longer be normal eoordinales as they were fOl' 
the volume v; 80 tbat At ma)' also con/ain produets q qj' As 
howe\'el' the fnndamental vibralioJls whieh eonslitute tbe heat motion, 
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must be regal'ded as incoherent 'in phase, prodncts of this kind 
will vanish from the mean vall1e of As. So we obtain the l'ight 
result, if we put 

As = ~ (a\ ql! + a', go' + ' , . + a's q" s)' 
Therefore, nccOl'ding 10 (9), eal'h harmonie mode of \'ibl'ation 

contrilmies its part 10 the dilalation v-vu, independently of the 
other modes. 

Tbe tir'st of these parts IS 

1 ' :! - (fxa I q: , 

for which we may wi'ite 

a 
- f" à, 0 al IJ.' + iq a'l qJ ') 

or on account of the connection oetween q an'd the volume 
a 

-:IC v. ov (! al q/ + t q a') qlS) . (10) 

Now ~ al (/I 2 is the vaJue of the potential energy UI that belongs 
10 the first roordinate during Ihe beat Illotion in the state cOlHiidel'ed 
alld t al ql2 + § q a'l "/.ft' Ihe value which this potential energy would 
have, if aftel' the increase in volume determined by q the particles 

had the same deviations detel'lllined by 9., from the positions P, PI, P', ... 
speeitied in § 2. 

Thus we mas write Jor (10) 

aUI 
-xva;' 

To ca.lculate the ditferential coefficient we must attend only to 
the first. coordinat.e ql' putting 0 for all the others. 

Further, in pel'forming the differentiation we must imagine that 
in the original volume v the partieles, have the deviations from their 
positions of equilibrium which, in the real heat motion, correspond 
to the th'st mode of vibl'ation and that, af ter an infinitesimal increase 
of the volume they have the same deviations from the new positions 

of eq'uilîbrinm P, P,' P, ... 
PrO<'eeding in the same we.;V witb respect to the other coordinates, 

we obtain 

. (11) 

§ 6. The calcuJation of thethermal dilatation by means of tbis 
formllla will necess"l'iJy be a rather rougb one. In the first place 
jt is very qllestionable whet4er for somewhat high tempel"atures we 
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may eon fine ourselves to terms of the seeond order with respect 
to tile inner eOOl'dinateR, and even if ihis were allowed, the diffieulty 
would J'emain that we do not kllow enou~h about the fon'es aeting 

bet ween the partieles to ealculate the ditferential coemdents !:. 
Fot' the m'odes of vibl'ation in which the wave-Iength is many 
times greater titan the distances between neighboUl'ing partieles, 
these forees, so fal' as they have to he considered here, are detel'mined 
by the ordillary elaslie eonstants. If, however, the wave-Iength 
beeomes of Ihe same order of magnitude as those distances, this of 
~Ollrse will no longer be so and nnfortunately these very short 
waves are most pl'ominent in the heat motion. 

111 his theory of spe~ific heat however DEBYE, not withheld by 
tltis eonsidemtioll, has applied the ordinary fOl'mulae of the theory 
of elasticity to all the modes of motion with whieh he was 
con eemed , down to tbe shortest waves, Encouraged by his success 
we· may avail ourselves of Ihe same simplification in the theory of 
dilatation as has been done ah'eady by him and VAN EVERDINGEN. 
This enables us 10 eontinue the calculation of fhe right hand side of (:11). 

~ 7, We shaH introduce the two constants of elastieity 1 and 
tt, which are also nsed by DEBYE and whieh have been chosen 
in sneh a way that the potential energy per unit of volume is 
l'epJ·esented by the expression 

ft (z~' + 1// + zz') + ~ ). (Z:1: -t Yy + zz)' + i ft (z,/ + !fz' + zx') (12) 

where 

d~ 
·'ex = dz' ' .. 

d~ alJ 
.vII =- -;;- + ~ , ' , . . uy wc 

We remark that, if X is. any one of these six components of 
strain, or a homogeneous linear fnnction of aome of them, we may 
write 

d log X 
--=-j. a log v 

. . (13) 

This is evident, if we keep in mind that, in the infinitesimal 
expansioll determined by g, the quantitieti g, 1/. ~ are kept constant, 
so that their differential coeftieients wit11 respect to the coordinates 
are changed iu ratio of 1 to (1 + q)-l. 

The modes of vibration of whieh the heat motion consists, may 
be di vided into two groups, that of the longitudinal and that of 
the h'ansverse vibrations, 

Now, if w is an eltHnent of volume, the potential energy I'l contaiued 
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In it and pmper to a mode of motion of the first gl'OUp, is proportiona\ 
to an expressioJl of the foml 

(). + 2[1) X!w, 

while Ihe potentia\ enel'gy"l belonging 10 a mode of the seeond 
gmup is proportional to 

[I "1. 2 
W. 

As w changes proportionally to v, we have in virlue of (13) 

() log l'l d 10,g (i -+ 2[1) 1 
-. --- = ------ + 3' 
à log t, d log t: 

a log t't d log [I 
---=---- + i, 
d log v d log v 

and Ibis leads 10 similar relations for the potential energy UI, UI con­
/aiJled in Ihe who\e body. 'Ve may write them in the form 

~. = \~.l0.?_(Á+~[I) + -kt UI , (14) 
cl lO,Qv / d lo,g r \ 

o ~;~ 7' = l ~ ~~: + tt lit (15) 

These fOl'lllulae. of which the tÎrst may be used for all Ibe terms 
iu (11) thaI l'orl'espond to longitudinal motions and the seeond for all 
those that refer to Iransverse Ulo/ions, aiso hoId fol' the meao val ues 
which we have to take on the rigltt hand side of (11), The mean 
VRIlles bolh of Ui and of Ut howevel' are each half Ihelolal energy, 
and 10 this latter we must assigll, both fol' the longiludinal and the 
transverse vibrations, Ihe value f, which depends on the frequency 
v in the way specitied in PLANCK'S fOl'ffiula, 

~ 8, Let us IlOW fil'St consider lhe terms on fhe right hand side 
of (11) that belong to modes of Il!0tion with freqllencies between 
l' and }' + d", Let .N be the tolal number of these modes, gN 
the number of those in which the vibr'ations are longitudinal and hN 
the numbel' of Ihose whieh cOllsist in transverse vibrations, so th at 

g + It = 1. To obtain 
au 

2-- . (16) 
ij log t' 

for tbis group of terms we must muitiply (14) and (15) by .qN and 
ltS respectively alld then take the sum, replacing at the same time 
UI and Ut by theÎl' COllllllon value ~ f •• We shall also substitute for 
11 and ft the \'alues that&:ollow fl'om PEüYE'S calculations. H!'l has 
found th at the llllmbel' of Ihe longitndinal and tha.t of the trausverse 
mQ{ies of motion fol' which the. frequency lies be\ow au al'bitral'ily 

85 
Proceedings RoyaJ Acad. Amsterdam. Vol. XIX. 
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chosen limit are to each othel' in ratio of (). + 2(1)-_8;. to 2p,_B/ •. As 
this is independent of l' it is also the ratio between the fractions .q 
and h. Performing the calculatiolls indicated we tind fol' tlle slim (16) 

2 ~~ = [- t ~ '{)~Ji~±~!:') .. a!~!_~~~_~_~~1 + iJ lVFy • 

a log t' d lop v 

1'0 derive from this the slim 

OUt au, all" --+ -- -1- •. , + --­
Ologt. alo!lt, alogv 

whieh OCC'I11'S in (11) we have still to extend the sUllllllation to riJ! 
the modes of motion of ditferen I freq ueneies. As 1I0W ::E X F.., is the 
total energy E of the heat molion, (11) becOlues 

[ 
d wg !(). + 2P,)-. '/~+ 2",-I/'j J 

l' - Vo = x t .- t E 
d log t) 

(17) 

In this fonnula we must gi,'e as weil to x as to the elastic COJl­
stauts ). and tI the values they wonld have if thel'e were no heat 
1lI0lion, the volume being 1', and strictly speaking it ollght to be 
taken into aecount that these quantities and therefore the coefficient 
by whicb E is multiplied are more ol'less dependent on that volume; 
by this tbe equation becomes rat hel' eOlllplicated. The simplest results 
wil! be obtained for very low tempel'atures. For these Eis propor­
tional to ]'4, Hence, if we assume that the coefficient of E may be 
represented by a series 

Cl + Ct (v - t'.) + ' . , 
we may conclude that quite near the absolute zero 1'---1'0 is pl'OpOl'-

1 dt, 
tional to ]'4 and the coefficient of dilatation ;0 dJ' to ]'a, 

§ 9, The equation obtained for the dilatation can be stil! fUl,ther 
simplified if one makes tlle assumption, rat her arbitrary of course, 
that by an isotropic dilatation the coeflicients J, and t1 are made to 
change propol·tionally to eaeh other. The roeffieient of compressibility 
(for an infinitesimal change of volume) which has tbe value 

3 . 

3), + 2", 

and with which, in a rough appl'Oximation, we may ideutify the 
ooefficient x occurring in oUt' formula, wil! then change in the 
inverse l'atio to "'. We mayalso say that the quantity of whieh 
the logarithm appears in the numel'ator of the 6rst fraction in (17) 
changes pl'oportionally to XI/2, Rence, denoting the pressure by p 
and using the relation 
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d log t' = - x dp 
we have 

I' - 1'0 = [ - ~ d~: x - t x JE' 
alld if the coeffieÎent iH ti'eated as independent of the tempemture, 

dv = [_ ! d lOf! x _ k xJ dE. 
dl' dp' dT 

11' IlOW Q is the deuHity of the body, C fhe specific heat (the dif­
t'erenee beln'een (' and Cl' being eonsidel'ed as immalel'ial) expressed 

dE 
iu calol'ies and A the mechanical equi\'alent of heat, we have dl' = 
= A c (' 17, and t'or the coefficient of cubical expansioll 

1 du [ d log x J 
11 = -;; dl' = - ~ dp- - t x Ac(>, . (18) 

a value that eall weIl be positive, as the eompressibility decreases 
wilh illcreasÎng presslIl'e. 

9 10. All example may teaeh us, whether this reslllt agl'ees with 
obsel'\'ation, at least I\S 10 the order of magnitude. 

Aeeol'ding to the Jlwasurements of LUSSANA I) the compressibility 
of lead decl'eases hy about 3~- of its vaille when the pl'essure is 
raised 10 1000 atmmiphel'es. Thel'efore we have, takillg the atmosphere 
as unit of pl'essllI'e 

d log x 
----- = - 3,3.10-5 

dp 

and if p is expressed in dynes pel' cm' 

dlogx , --" - = _ 3,a.10- 11. 
lip 

FOI' the eornpl'essibility itselt' LUSSANA'S vallIe is x = 3,9.10-12, 

so that fhe coefficient ot' Ac!! in (18) becornes eqnal to 1,6.10- 11 • 

With A = 4,18.107 ; c=0,03 and (>=11 we find a=0,00022, while 
in reality the eoefficient of expansion is 0,00008. 

FOI' tin LUSSANA'S observations lead to the numbers 

d log x 
---- = - 3,7. 10-11, 

dp 
x = 2,7.10-12• 

He/'e c = 0,05 and Q'= 7,3. This gives a = 0,00027. The roeffi­
cient of expansion is 0,00006. 

It is seen that the agreement is scal'cely satisfactory , 

1) Taken rrom W. SCHUT, Piëzochemie der gecondenseerde systemen, p. 72. 
Proefschrift, Utrecht, 1912. 
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dfJ, 
§ 11. Fol' it few met als t.he value of eall he deri\'ed from 

d log t' 

meaSlIl'emellts made by PorNTIt<\G. I) This physieist lias in "estigated 
the ch:lIIges in lengtIl :tlld diametel' eaused by the to/'sion of a \V ire. 
\Ve sltall shortly discuss Ihis phenomenoll, not onl} with a view to 
the Illlmel'ieal "uitJe that follows from it, bilt also becanse the 
theol'y shows a ee/'tain analogy wi/h I hat of tlte dilatatioll by heat. 

Let us eOllsider a ey Iindl'ieal '\'il'e, the axis of whieh we take for 
the z-axis, and let us snppose that, starting f,'om the unstrained 
state, it is snhjeded to the following thl'ee deformations: 1. a 
homogeneous stJ'eteh in the dÏl'eetion of I he lenglh, 2. a displace­
meut of the partieles in l'adinl diI'cctioll, so thnt file distance l' of 
a paI'ticle fl'om the axis changes lIy SI', S beilIg a fUIlClion of 1', and 
3. a tOl'sion, hr w hiel! each cross-seeliOIl Jlol'mal to the axis is tUl'ued 
over an angle l'}'; about its point of intersection with that line; then 
~ is the angle of tOl'sion per unit of lengtIl. 

Supposillg the tempel'atlll'e to he kept eOllstant we shall seek tile 
free energy of tlte body in the fillal i'tnte reaciled by these three 
steps. AsslIllling it to be 0 in the original stnte we ean calenlate 
its changes tly means of (12) Ol' of similar expressions. 

d(sr) . 
As the second of Ibe three chnnges produces a streteh -- III 

dr 

radial nnd a stretch s in tangential dil'ectioIl, we obtain the free 
energy thaI oxists per unit of volume aftel' the fit'st two steps if 

we replal'e 

and q. 
The result is 

d8 
the fh'st two terms of (12) by s, s + l' -­

dr 

l ds (dS)' t ( ds )' f-' 282 + 2,'8 - + r 2 
- + q' + ~ À 2s + r - + q 

lb' d1' dr 
(19) 

A point that originally was at a dis/anee l' fl'Om the axis, has IlOW 
shifted to the distance 1" = (1 + s) '1', while au element of the length 
dl has beeome dl' = (1 + q) dl, 

By the first two changes an annular element het ween two cylindric 
surfaees descrioed abollt file axis with the radii l' and 1'+d,., alld 
flirt her Iimited by two crOSS seetions at a distane(' dl from earh 
Gthel', wiIJ have taken a volume 1'01' which wHh the nppl'oximation 
requÎI'ed 1'01' our calculation we may write 

. I) POY NTJNG, On the changes in the dimensions of a steel wire when twisted, and 
on the pressure of distortional waves in steel, Proc. RoyaJ Soc. (A) 86 (1912), 
p, 5~4. 
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( dS) 2.7r 1 + 2s + r - -+ q l' dl' dL 
dl' 

(20) 

Now 10 oblaiu the free energy in the state S that is reached by 
Ihe first two deformations we shollid have to muItiply (19) by this 
expression (20), and then to integrale it wilh respect to r alld I, 
Fo/' tltis calelllatioJl ho wever we ó:Jay replaee (20) by 2:11' dl' dl, 
becaui"e iu the expressioll for the free enm'gy we shall omit te/'ms 
that al'e of an order' higher thall the seeorld with respeet 1-0 q and s, 

~ 12, To ealenlate now the ehange of the free energy aeCOTIl­
panylllg the thir'd defol'mation speeified in ~ 11, we shall consider 
the state .S as Ihe ol'iginal one and intr'odnce elastie cOllstanls refer­
ring to it. On account of the preceding defol'lnations determined by 
q and s, these eonstants are a little different from the vahH's i. and 
t" inlrodlleed into (12), To find an expl'ession fol' tlJem we regard 
the quantities q and s as infinitely smalt ano neglect their second 
and higher powers, The change we are investigating being pl'opor­
tio/lal to W, we obtain in tllis way ferllls witl! go')" and s:}', 

ApoiJlt wllich in the state S has the coordinates ,r; .ti, zand 
lies at a distance r' from t.lre axis, is displaced hy fire tOl'sion ij over 
the distallees 

.~ = - .9-.'1::, lj = +- .9-.I:Z, ; = 0, 
to whieh eOlTespond the components of strain 

J~J.' = 0, !I!I = 0, Zz = 0, ;r!! = 0, .Vz = - {}y, Yz = + iJ.lJ, 

I ... et liS now eonsider an element of volume whieh in the state S 
lies at a distarH'e 1" from the axis nnd fol' whieh ,1:=0, ,11=1", The 
preeeding changes have gi,"en to this element Ihe stretehes x = s, 

ds 
y = s + ]' -._- and z = q lil the dil'eetion of the axes, wilhoutotlJer 

dl' 
changes of form. By the torsion it is now fmther subjeeted to a 
sheal' .1': = -- :1-/", 

H is eYident that the ehange in free energy per IInit of volume 
caused by tlJis shear \vill he ohtained by muItiplying t ,'IJ;:' by a eo­
effieient (1', whieh is thc eoeffieient of rigiditJ (t as it has heen 
modified by the dilatations x, y, z, In caleuJating this rnodifieation 
we may tL'eat x, y, z as infinitely smal!. It call be shown that 

/1' = (I (1 + 2z) + a (x + z) + by: (21) 

whel'e (l and IJ are two constants dependiJlg on tlJe nature of the 
materiaJ IJ' In this way we tind for the ('hange of tlre free energy 

I) In ml' original paper I had used a wrong formula, in which the term 2". z 
was wanting, au error that has been pointeu oul by MR, TRESLING in his paper: 
On the use of th ird degree term:;; in tbe energy of a defQrmed elastic body, (These 
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pel' HlJit of volume caused by t.he tOl'sion 

! ~(",(1+2q'-+-2S) + a(q+s) + b(s+r ~)t .'t'1·', 

Proceedings. 19 \1 9 lt»), p.281). I shall avail mysclf of the occasion of this trans' 
lation Cor introducing the corrections necessitated by his remark. 

In deducing lhe new equation (21) we need not occuPY ourselves witn lhe term 
b y; we have only to show that 

f" = f-' (1 + 2z) + a (x + z), 

if y = O. By tbis latter assumption the problem i!! redueed to oue in two dimen­
SiODS, whieh may be treated as follows. 

Let x, z be thc coordinates of a point in the original state and ,I' + s, z + ~ 
its coordinates in the strained state, the displacemenls ~, ~ being functions of .r, 
z. We sball eonsider the free energy per unit of volume at the point x +~, 
z +~, as eompared with the free energy wbicb we had originally in unit of 
volume. 

Tbe difference '" must be a function of the quantities 

o~ u; d; èl~ 
----a -- - a---- - b -- = {', d,v - I' dz - .' uz - ). u,v 

and ean be developed in aseending powers of these. tbe series beginning with 
quantities of the second order and terms of tbc third order being uecessary for 
our purpose. 

As we may assume thai lhe free energy is the same in the body considered 
and in a second body that is the image of the first with respect to a plane 
perpendicular to one of the axes of coordinates, the expansion ean eontain 110 

terms tbal are of an odd order with respecl 10 bi and b2• Moreover the value 
of I/! must remain lhe same wheu the axes are rotated in their plane. These 
eonsiderations lead to the fOl'mula 

'" = f (11 1 + a,)' + fI (1'1 - b,) , + h (al 11, - bi b,) + Ic (al + a,) 3 + 
+ I (al + a,) (hl - ".) • + In «(fl + a,) (Ol a. -- b) b.) 

with six eoru;lanls f, g, h, k, I, m, whielt ean be easily vCl'ified. lndeed it eau be 
shown that the values of al + ai), bI - b2 and al a2 - bi b2 are nol altered by 
a rotation of the axes. 

Let us next suppose the body, stl'ained already in the way determined by 
ah a2, bi' b2, to he rolaletl about 0 Y through an illfiuitely small angle w. This 
rotation, whieb must leave lhe value of J, unehanged, leads to the variatious 

d ~ = - w (z + ;), d; = (ti (,1' + ~), 
(j (al + a,) = w (bI - b.), (j (bi -- "2) = +- 2 w - w (al + a,), 

() (al (12 - b] h2 ) = - w (bI - b.). 

Substitutillg these values in .j I!- and putting equal to 0 the eoefficients of the 
terms thai are of lhe first and the serond order with respect to al! a2, bl> bi, oue 
is led to the relations 

lt ::= - 4. 9, nI, = 2! - 29 - 4/1 
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whet'e r ' has been replaced by (1 +s) l' ano where, as to q and s 
we have neglected terms of OI'del's higher than the first. 

Multiplying this by (20), integrating over the cylinder and adding 
the I'esult to the free enel'gy in tlle state S, of which fhe \'alue 
has beell found all'eady, we ootain for the free enel'gy in the final 
state 

R 

f[ \ ds (ds)' t ( ds )'] 1p=2:r1 _fJ 12s' + 2rs dt, + r' dr + q2 \ + V.. 2s + r dr + q _ r dt, 
o 

R 

+ :r~f[fJ(1+4s+r~: +q)+a(I/+S)+b(s+r:)]r3 dl" (22) 

o 

whel'e the original length ano radius are denoted by land· R, 
@ 

and the total angle of torsioll by @, so that {f = --- , 
(l+q)1 

~ 13, Now e, q and the valne s, which sassumes fol' l' = R, 
lllaY be l'egarded as the parameters upon wbich external fOl'ces ean 
act directly. If these parameters are kept fixed, we ean determine 
the values of s within the wire hy means of the condition that, fOl' 
an arbitral'yinflnitesimal variation (fs given to them, dtf, mnstbeO, 

Fol' eonstant \'alues of (j and q we bave by (22) 

R R 

ÓIP =fG ÓS dr + fF dós dr, 
, dl' 

(23) 

o 0 

where 

ti' = f(a l + (2)' + ,q (bI - b.) 2 - 4 g (al a, - bi b~) + k (al + a.)3 + 
+1(Il I +a,) (b l -bz)'+(2f-2g-41) (aI·~ a.)(alfl.-blb.). 

In the case considered in the lext the final vaJues of ~ and ~ (aftel' thc 
application of thc torsionl are 

~ = X;/: - ,'t (1 + z) r' : = X ,1: + .Tz (1 + z) z, ; = z z, 
if ;1;, z are the coordinates in thc origil1al state (before the application of the 
dilatations x, z). Hence 

al = X, a. = Z, bI = (1 + Z) ,vz , b. = O. 
Ir these values are suhstitutcd in the expression for ,f" the coefficient of xz~ will 

give us the value of ~ p.'. Hence 

fJ'= 2.1f (1 + 2 z) + 2 1 (x + z), 

or, if we replace 2l hy a and oh serve that, for x = 0, z = 0, p.' must he 
equal to fJ., 
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G = 2:r1 [4 (/ .. -l-tI)rs+2 (). r 11)r2~~ +2hqJ+ :re:(4f1+ a+b)r3 .(24) 
dr I 

F=2J11[2().+'1)r2S+().+2f1)r3~ +ll,'qJ.I- :r~(tl+b)r4 . (25) 

BJ pal"tial integration of the second term (23) becomes 

R R 
I i j'( dF) cf,",,' = 1. F ds I + ti - -- ds dl'. 
: I dl' 

(l (l 

ds 
As for l' = 0 the dila.lations s and ]'- mllst have finite \'alues, 

dr 

the function F ,'anishes for r = 0, so that we obtain 

R 

J'(. dP) dtf' = Fr= R ds + (7- dr dsdr. (26) 

(I 

lf no,,' we put dB = 0, only the last tel'm remains, so that we are 
led to the condition 

or aftel' some transforma.tion 

dF 
G=­

dr 

d (ds) @O a - 3b 
dr 1'~ dr = 21' l + 2'1 r

3

• 

els 
Hut fol' I' = 0 we maJ put ,.3 _ .. = O. We find Iherefol'e 

dr 

(.j' a-' 3b 
Il = -.--(r'-ilO) + B, . 

161' ). + 2(-, 

, (27) 

. (28) 

Ir this \'allie is snbstitnted in (22) we obtain '" as a flJnction of 
the external pal'ametel's @,8 and g. BJ differ'entiation will! respect 
fo these val'iahles we may ealclllate the external forces cOl'l'esponding 
to them. \Ve need only the two last ones, S and Q, of whie!. Sis 
immediately detennined by (26). For according to this fOl'mllla we 
ha\'e 

so that 
alf' , 

S = ()s = J. r=R. 

which can be caknlated by means of (25) "'lid (28). As to 

a." 
Q = i}lJ 
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this qllantity is fonnd if, after ditferentiating in (22) under tbe signs 
of integration we snbstitnte the value (28) and thell perform the 
in tegrations. 

The resuIt is 

:r(-)' 
Q = :cl [(l + 2!1) R2q -+- 2},,R's] + --:tl Ül + a) R 4 

• 

lf no stretching forces act on the ends of the wire, nor any forces 

011 the sUl'face, we have (2 = 0, S = 0, so thai 
(-)' R' 

2Àq + 4 (A + [1) S. = - 4l' (4fl + a + b), P9) 

(30) 

When the eoefficients of elastieity l, ft ano Ihe eoefficients a and b 
al'e given, we can deri"e from these equations the changes in 
length ano diameter (q and s) caused oy a till'sion. 

~ 14. We sball nse formnlae (29) and (30) to caleulate the 
eoefiieients a and IJ from POYNTINH'S measllrements. 

POYNTING has worked with two steel wires and one eopper wire, fOl' 

which he hasdetermined in the first place YOUNG'S modulus -).j-~ and 
(1 (3l+2(1) 

l 
POISSON'S ratio '---. From these quantities we can calcllJate). alld (1. 

2()·+tl ) 

Furthel' he has measured q and s, so that a and IJ ean be fOlllld. 
The reslllts are given in the following tabIe, in which everything 
has heen expI'essed in C.G.S. units. The lenglh of the wil'e was in 
all {'ases 

l = 160,5 cm 

alld the numbers gi\'en fOl' q and s refet· to the vahw (-) = 2n; so 
they indicate by wh at part of the original valne the length alld the 
diameter change, if one end of t.he wir'e is Ollee twist.ed l'onlld. 

R YOUNG'S POISSON'S 
modulus ratio q \ 

s a 

1
1

°,0493 2,12.1012 0,270 

b 

~I 2\0,0605 2,12,1012 0,287 

19,77.10111\8,35.101111,71.10--61-3,19.10--1 -5,03.1012] 0,58.1012 

\11,09.1011 8,24. 101112,90. 1O-6 i-5,24. 10-7 -5,70.1012 0,70.1012 

: 9,64 .1011\4,92.101114,25.10-61 - 1,75.10-6 -3,94.1012; 3,37.1012 I 
'per 10,06095 1,31.1012 0,331 
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d lof! ft 
~ 15. We can further calcnlate -~ hr means of the vallles 

dlogv • 

fonnd for a and b. Let us suppose the metal to he stretched eqllally in 
all dil'ections, so that thet'e is au infinitelv small cubical dilataliol1 
d log '1'. Then we ha"e aceordillg to (21) in whieh expression wc 
must put X = Y = z = t ti 10,1/ 1', 

dil = î (2[1. + 2a+b) d log v, 

d log ft :!ot-' + 2a +" 
d log t' 3ft 

To ealculate from Ihis the coetlicient of dilatatioll, we shall 
suppose that, wlaen the "olume is inel'eased, J. and (I challge propol'­
tionally to eael! othe!'. 

The differential coefiicient in (17) then hecomes 

. d lop ft - t--~-, 
d log t' . 

and the fOl'mula itself 

t' -- t' 0 = r. [- i ~~O!.f_~~ .- *J E. 
d log t, 

Treating the coeffieient of E as a l'onstant (comp. ~ H) we Hno 
from this fOl' the eoefficient of cllhical expansion 

ct = x l- 1 d lop ft - J] A co 2dlogv ~I) ,. 

If the coefficient of compl'essibility x is del'ived from À ano (I, 

Ihis eqllation gives the following results: 

d/og[1 (C 
X C (} 

-"._--'---'~-----' tl/agv , 
calc. obs. 

Steel 1 - 3,1 6,5.10-13 \ 0,11 1,8 3,2.10-5 3,3.10-5 

I 
" 

2 - 3,7 ~ 6,0.10-13 0,11 7,8 3,6.10-5 3,3.10-5 

Copper - 2,4 1.1.10-13 0,093 8,9 2,8.10-5 5,1.1()-5 

The only inaccuracy in the ahove ealculation of the terms in (11) 
cO;Tesponding to transverse vibrations is the application of tlle 
ordinar,:y formlliae of the theory Qf elasticity to very short waves. 
For the determinalion of the tel'lns referring to the longitndinal 
yibmtions, however, we had to make the assumption that. À changes 
proportionally 10 ft. As however the transverse vibrations have a 
greater part in tbe heat motion tban the longitudinal ones we may 
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perhaps hope that the error intl'oduced by tkis assumption will not 
be considel'able 1). 

We mentioned already the analogy bet ween tlle problem treated 
in ~~ 11-13 and that of the thermal eXl'ansion. In the one case 
tbe torsion plays the same part as the heat motion in the other 
and the quantities that have been indicated by q in the two 
problems are comparable with each other; the similarity of the mathe­
matical treatment in the two cases is likewise evident. POYNTJNG 

remarks that a dilatation of the wire will also take place when it 
executes torsional vibrations or when \'ibrations of this kind are 
propagated in it. With similar phenomena we al'e generally concerned, 
when aIl elastie body is traversed by waves, and when we consider 
the very short waves especially, this leads us directly to an insigh t 
into the nature of thermal dilatatioll. 

Finally it deserves our attention that, though the phellomena 
discussed in this paper are chiefly determined by the change of the 
elastic constallts caused by a pre\'ious deformation, yet there are 
as weil in equation (17) as in (29) and (30) terms that are independent 
of this change. 

Physic8. - "Un EINSTEIN'S l'heol".II of gravitation." 1. By Prof. 
H. A. LORENTZ. 

(Communicated in the meeting of February 26, 1916). 

~ 1. In pursuance of his important researches on gra\'itation 
EJNSTEIN has recenti,}' attained the aim which he had constantly kept 
in "iew; he has succeeded in establishing equations whose form is not 
changed by an arbitrarily chosen change of the sJstem of eoordinates '). 
Shortly afterwards, working out an idea that had been expressed 
al ready in one of EJNSTElr-;'S papers, HII,BI<;RT~) has shown the use 
th at may be made of a val'Îation law that may be I'egarded as 

. HAIIlILTON'S principle in a suitably generalized form. By tbese resnlts 
the "general theory of l'elativity" may be said to ha"e taken a 
definitive form, though much remains still to be done in further 

1) This paper had al ready gone to press, when an artiele of FÖRSTERLING 

came under my notice (Ann. d. Phys. 47 (1915) P 1127) in which considerations 
similar to those here developed are put forward. 

11) A. EINSTEIN, Zur allgemeinen Relativitätstheorie, Berliner Sitzungsberichte 
1915, pp. 778 799; Die Feldgleichungen der Gravitation, ibid. 1915, p. 8H. 

3) D. HILBERT, Die Grundlagen der Physik I, Göttinger Nachrichten, Math.-phys. 
Klasse. Nov. 19l5. 


