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must also be deferred. 1 shall conclude now by remarking that, as
an immediate consequence of HamintoN’s principle, the world-line of
a material point which is acted on only by agiven gravitation field,
will be a geodetic line, and that the equations which determine the
gravifation field caused by material and electromagnetic systems will
be found by the consideration of infinitely small variations of the
indicatrices, by which the numerical values of all quantities that
are measured by means of these surfaces will be changed.

Physics. — “On EKixstex's  Theory of gravitation.” 11. By
Prof. H.. A. Lorentz.

(Communicaled in the meeting of March 25, 1916).

§ 15. In the first part of this communication the connexion
between the electric and the magnetic force on one hand and the
charge and the convection current on the other was expressed by
the equation

j;mg.NHAth.dea:sﬁqudu,. .. )

which has been discussed in § 13. It will now be shown that this
formula is equivalent to the differential equations by which the con-
nexion in - question is expressed in the theory of Eixsreix. For this
purpose some further geometrical considerations must first be deve-
loped. They refer to the special case that the quantities ¢,, have
the same values at every point of the field-figure.

If this condition is fulfilled, considerations which generally may
be applied to infinitesimal extensions only are valid for finite
extensions too.

$ 16. The factor required, in the measurement of four-dimen-

sional domains, for the passage from a-units to natural units has

now the same value at every point of the field-figure. Similarly,
when any one-, two- or three-dimensional extension in the field-
figure that is determined by linear equations (*“linear extensions”)
is considered, the factor by means of which the said passage may
be effected for parts of that extension, will be the same for all
those parts. Moreover the factor in question will be the same
for two ‘paralle]” extensions of this kind, i.e. for two extensions
the determining equations of which can be written in such a way
that the coefficients of z,, ...z, are the same in them,
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It is obvions that linear one-dimensional extensions can be called
“straight lines’”’, also it will be clear what is to be understood by
a “prism” (or “cylinder”). This latter is bounded by two mutually
parallel linear three-dimensional extensions o, and ¢, and by a lateral
surface which may be extended indefinitely to both sides and in which
mutually parallel straight lines (“generating lines”; can be drawn.

We need not dwell upon the elementary properties of the prism.

§ 7. A vector may now be represented by a siraight line of
tinite length ; the quantities X,,....X,, which have been introduced
in § 10, are the changes of the coordinates cansed by a displace-
ment along that line. The magnitude of the vector, expressed in
natural units, will be denoted by .S. It is given by a formula similar
to (1), viz. by

S =@y ga Xa Xo. . . . . . . (11

A vector may be regarded as being the same everywhere in the
field-figure, if X,,... X, have constant values. In the same way a
rotation R (§ 11) may be said to be the same everywhere, if it can
be represented by two vectors of this kind.

If from a point P two vectors P(Q and PR issue, denoted by
X X, & and X" ...X,, S" resp, the angle between
them (comp. (5)) is defined by

S8 eos (8, 8") = = (ab) gar X'a X" . . . (12)

We remark here that Y., X," are real, positive or negative quan-
tities and that S’ and S" are expressed in the way indicated in§5
(“‘absolute” values). It is to be understood that S does not change
when the signs of X, .. X, are reversed at the same time.

If §" is the value of the vector R(Q and if the angle between
- this vector and RP is denoted by (8", 8™), it follows further from
(11) and (12) that

8" = 8 cos (8, 8") + 8" cos (8", 8").
In the special case of a right angle R we have
8" = 8 ¢cos (S', 8") .
an equation expressing the connexion between a vector 7@ and its

“projection” on a line I’R. The angle (S, S") is the angle between
the vector and its projection, both reckoned from the same point I’

§ 18. Let uns now return to the prism P mentioned in § 16.
From a point 4, of the boundary of the “upper face’’ ¢, we can
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draw a line perpendicular to ¢, and o6,. Let B, be the point, where
it cuts this last plane, the “base”, and A, the point where this plane
is encountered by the generating line through A4,. If then /4, 4,B, =39,
we have

AB, = A A cos® . . . . . . . (13

The strokes over the letters indicate the absolute values of the
distances A,5, and A,4,.

It can be shown (§ 8) that, all quantities being expressed in natural
units, the “volume” of the prism /? is found by taking the product
of the numerical values of the base o, and the “height” 4,B,.

Let now linear three-dimensional extensions perpendicularto 4,4,
be made to pass through 4, and A,. From these extensions the
lateral boundary of the prism cuts the parts 6," and ¢, and these
parts, together with the lateral surface, enclose a new prism /”, the
volume of which is equal to that of P. As now the volume of P’
is given by the product of 4,4, and 6,', we have with regard to (13)

6', = 6, cos 9.

If now we remember that, if a vector perpendicular to o, is
projected on the generating line, the ratio between the projection
and the vector itself (viz. between their absolute values) is given
by cos & and that a connexion similar to that which was found
above between a normal section o/, of the prism and g, also exists
between «’, and any other oblique section, we easily find the
following theorem :

Let ¢ and ¢ be two arbitrarily chosen linear three-dimensional
sections of the prism, N and N two vectors, perpendicular to »
and o resp. and of the same length, S and .S the absolute values
of the projections of N and N on a generating line. Then we have

Se=S8¢. . . . . . . . . (19

§ 19. After these preliminaries we can show that the left hand side
of (10) is equal to 0, if the numbers g,; are constants and if moreover
both the rotation R, and the rotation R, are everywhere the same.
For the two parts of the integral the proof may be given in the
same way, so that it suffices to consider the expression

f[Re.N],dG. N (£

Let X,,... X, be the components of the vector N, expressed in
z-units. From the distributive property of the vector product it then
follows that each of the four components of
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[Re . N]z
is a homogeneous linear function of X,,... X,. Under the special
assumptions specified at the beginning of this § these are everywhere
the same functions. Let us thus consider a definite component of
(15) e.g. that which corresponds to the direction of the coordinate
Z,. We can represent it by an expression of the form

ﬂal X, + ...+ a, X)do,

where a,,.... «, are constants. It will therefore be sufficient to
prove that the four integrals

fxldo...jx,do T ¢ €33

In order to calculate f){i d 6 we consider an infinitely small

vanish.

prism, the edges of which have the direction z,. This prism cuts
from the boundary surface ¢ two elements d 6 and d 6. Proceeding
along a generating line in the direction of the positive z, we shall
enter the extension £ bounded by o through one of these elements
and leave it through the other. Now the vectors perpendicular to
a, which occur in (15) and which we shall denote by N and N for
the two elemeunts, have the same value.!) If, therefore, Sand S are

the absolute values of the projections of N and N on a line in the
direction x,, we have according to (14) ,
Sde=28ds . . . . . . . . (17)
Let first the four directions of coordinates be perpendicular to one
another. Then the components of the vector obtained by projecting
N on the above mentioned line are X, 0,0,0 and similarly
those of the projection of N: X,,0,0,0. But as, proceeding in the
direction of x,, we enter £ through one element and leave it through
the other, while N and N are both directed outward, X, and T‘
must have opposite signs. So we have

S:g-;-X1 . — X,

1
and hecause of (17) we may now conclude that the elements X, do

) From § 10 it follows that if the length of a vector A that is represented by
a line (§ 17) coincides with a radius-vector of the conjugate indicairix, it is
always represented by an imaginary number. We may however obtain a vector
which in natural units is represented by a real number e.g. by 1 (§ 13) if we multiply
the vector A by an imaginary factor, which means that its components and also
those of a vector product in which it occurs are multiplied by that factor.
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and X, do in the first of the integrals (16) annul each other. It
will be clear now that the whole integral vanishes and that similar
considerations may be applied to the other three.

S0 we have proved that under the special assumptions made the
left hand side of (10) will vanish in the special case that the directions
of the coordinates are perpendicular to each other. This conclusion
likewise holds for an other set of coordinates if only the assumption
made at the beginning of this § is fultilled. This is obvious, as we
can pass from mutually perpendicular coordinates &, ...z, to arbi-
trarily chosen other ones &’,,...2", which fulfil this latter condition
by linear transformation formulae with constant coeflicients. The
2- and the x’-components of the vector

[Re . N}-+[Ry . NJ

are then connected by homogeneous linear formnulae with coefficients
which have the same value at all points of the surface ¢. Hence if,
as has been shown above, the four z-components of the vector

j: [R. . N+ [Ri . Njido

vanish, the four a’-components are now seen to do so likewise. ')

§ 20. The above considerations were intended to prepare a
corollary  which will be of use in the treatment of the integral on
the left hand side of (10), if we now leave the special assumptions made
above and suppose the guantities ¢,» to be functions of the coordi-
nates while also the rotations R, and R; may change from point
to pomt.

This corollary may be formulated as follows: If all dimensions
of the limiting surface ~ are infinitely small of the first order, the
integral '

ﬁ[Re . NI+ [Rr . N]jzdo

will be of the fourth order. .

In order to make this clear let us suppose that in the ealculation
of the integral we confine ourselves to quantities of the third order.
The surface 6 being already of that order we ‘may then omit all
infinitesimal values in the quantities by which /6 is multiplied;

asymptotic cone of the indicatrix, our definition of a vector of the value 1 would
then fail (comp. note 2, p. 1345). With a view to this we can choose the for mof
the extension (1 (§ 13) in such a way that this case does not occur, a restriction
leading to a boundary with sharp edges.
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we may therefore neglect the infinitesimal changes of the quantities
Yoo Over the extension considered, and also those of R, and R;. By this
we just come to the case considered in § 19. Thus it is evident,
that as regards quantities of the third order the first part of (10) is 0.
From this it follows that in reality it is at least of the foiirth order.

§ 21. Let us now return to the general case that the extension
£2 to which equation (10) refers, has finite dimensions. If by a

surface 6 this extension is divided into two extensions £, and £,
the quantities on the two sides in (10) each consist of two parts
referring to these extensions. For the right hand side this is im-
mediately clear and as to the quantity on the left hand side, it
follows from the consideration that the contributions of & to the
integrals over the boundaries of £, and £2, are equal with opposite
signs. In the two ecases namely we must take for N equal but
opposite vectors.

Also, if the extension £ is divided into an arbitrary number of
parts, each term in (10) will be the sum of a number of integrals,
each relating to one of these parts.

By surfaces with the equations r, = const., ...z, = const. we can
divide the extension £ into elements which we shall denote by
(e, . . . de). As a rule there will be left near the surface ¢
certain infinitely small extensions of a different form. From the
preceding § it is evident that, in the calculation ot the integrals,
these latter extensions may be neglected and that only the extensions
(dw,,...d»,) have to be considered. From this we can conclude
that equation (10) is valid for any  finite extension, as soon at it holds
for each of the elements (de,, ... dx)).

§ 22. We shall now show what equation (10) becomes for one
element (dv,,...dx,). Besides the infinitesimal quantities a,,...wx,,
occurring in the equation

F = X (ab) gup ®q zp = &’
of the indicatrix we introduge four other quantities ¥, ... &, which
we define by )
. 10F
g":é()_xa’ e e e e e e (18)
or

Fes

R o L. N + 9.2,

T ) .. .. (19)
»Et:gu"”l +9n‘2"s + ot Gy 24 }
with the equalities gi, == gus.
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To each of these gnantities corresponds a definite direction, viz.-
that in which we have to proceed in order to make the considered
quantity change in positive sense while the other three remain con-
stant. If we denote these directions by 1%, 2% 3% 4* and in the
same way the directions of the coordinates x, 2,, 2y, 2, by 1,2, 3,4,
it is evident that 1* is conjugate with 2, 3 and 4, 2* with 3, 1 and 4,
and so on; inversely 1 with 2* 3% 4*%; 2 with 3*, 1*, 4* and so on.
From what has been said above about the algebraic signs of ¢ ,,
Usp Ussr 4 1t follows further that, if directions opposite to 1, 1*
ete. are denoted by ——1, — 1* etc., the directions — 1 and 1* will
point to the same side of an extension x, = const. The same may
be said of the directions — 2 and 2* or — 3 and 3* with respect
to extensions », = comst. or r, = const.,, while with respect to an
extension @, = const. the directions 4 and 4* point to the same
side.

Finally, we shall fix (§11) as far as is necessary, which direction
corresponds to three others. For that purpose we shall imagine
the directions of coordinates 1,...4 to pass into mutually conjugate
directions, which will also be called 1,...4, by gradual changes,
in such a way that never three of them come to lie in one plane.
We shall agree that after this change — 4 corresponds to 1, 2, 3.

Let «,b,¢,¢d be the numbers 1, 2, 3, 4 in an order obtained
from the natural one by an even number of permutations. Then
the rule of § 11 teaches us that the direction — o corresponds
to a, b, c. It is clear that this would be the case with d, if a, b,c,d
were obtained from 1, 2, 3, 4 by an odd number of permutations.
If further it is kept in mind that, always in the new case, the
directions 1%, 2* 3* 4* coincide with —1, — 2, —3, 4, we
come to the conclusion that the directions 1, 2, 3 and 4 correspond
to the sets 2%, 3%, 4%; 3% 1* J4*; 1* 2% J* and 1* 2% 3* respec-
tively. The rule of gradual change (§11) involves that this holds
also for the original case, in which 1, 2, 3, 4 were not yet mutu-
ally conjugate.

This is all that has to be said about the relations between the
different directions. It must only be kept in mind, that whenever
two of the first three directions are interchanged, the fourth must
be reversed.

§ 23. In the neighbourhood of a point P of the field-figure we
may introduce as coordinates instead of w,,.:.x, the quantities
&,,...E, defined by (19). Line-elements or finite vectors can be
resolved in the directions of these coordinates, i.e. in the directions
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1*, 2% 3* 4* Their components and the magnitudes of different
extensions can now be expressed in §-units in the same way as
formerly in r-units. So the voiume of a three-dimensional parallele-
piped with the positive edges d&,, dg,, d&, is represented by the
product d&, d&, d&,.
Solving @, ..., from (19) we obtain expressions of the form
€ =71 ~El + 71 gs + e + Ta §4 ’
o T T ¢1Y)
‘”4:Y14§1+724§z “%”~'-+744§4 s
Yia == Yab
If we use the coordinates & the voefficients vy, play the same
part as the coefficients ¢,, when the coordinates x are used. According
to (18) and (20) we have namely
=2 (") Cowg =2 ((‘b) Yia Sa Sty
so that the equation of the indicatrix may be written
> (ab) Yba §(, §1, — &%,

§ 24. Let the rotations R, and R, of which we spoke in § 13
be defined by the vectors Al, AT and AM, AV respectively, the
resultanis of the vectors Apl, ... Agl, ete. in the directions 1%, ... 4%
Then, according to the properties of the vector product that were
discussed in § 11,

[Re- Nl =[(Arsl + ... + Agl) (Al + .. 4 AuID) U N]

= X (ab) { [Aa+T . Ay 1T NT — [AsIT, AT NTJ,

where the stroke over ad indicates that each combination of two
different numbers a, 5 contributes one term to the sum. For the
vector product [Ry.N] we have a similar equation. Now two or
more rotations in one and the same plane, e.g. in the plane a*b*,
may be replaced by one rotation, which can be represented by
means of two vectors with arbitrarily chosen directions in that plane,
e.g. the directions «* and 0*. We may therefore introduce two
vectors B,. and By directed along a* and 6* resp., so that

[Bat . Bbt] = [Aa*l . Absu] -— [Aa*Il . Abml] +
+ [Aa,III . Ab‘lV} — [Aa*IV . Az,*nl] . (21)
Then we must substitute in (10)
[Re.N] + [Ri.N]= X (@) [Bas. Bes . N] . . . (22)

Here it must be remarked that the magnitude and the sense of
one of the vectors B may be chosen arbitrarily; when this has been
done, the other vector is perfectly determined.
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In the following calculations the vector N has one of the directions
1% .. .4% As this is also the case with the vectors B, and B,
the vector product occurring in (22) can easily be expressed in I-
units. After that we may pass to natural units and finally, as is
necessary for the substitution in (10), to z-nnits.

In order to pass from E-units to natural units we have to multiply
a vector in the direction «* by a certain coefficient i, and a part
of the extension a*, O*, ¢* by a coefficient 2,,. These coefficients
correspond to /, (§ 10) and /u. §12). The factors 2, e.g. can he
expressed by means of the minors I, of the determinant y of the
yuantities y.s. If this is worked out and if the equations

Gab Iay
Yot = —— v Gab — —
7

are taken into consideration, we obtain the following corollary,
which we shall soon use:

Let «,0,¢,d and also o', 4" ¢', d be the numbers 1,2,3,4 in any
order, @’ being not the same as «, then we have, if none of the
two numbers « and « is 4,

gy =1

lbcd )‘b'c’d'
= 1, . . . . . . . (28
l(}'lu ) ( )
and if one of the two is 4
[4:4 A ‘e'd’
R P . 7
Ly Aq

§ 25. We shall now suppose (comp. ¢ 24) that in E-units the
vector B,e has the value 4 1, and we shall write %, for the value that
must then be given to Bs,. If the §-components of the vectors Al
etc. are denoted by E;1,...E]! etc., we find from (21)

tar = (B Bl — EJVEY) + (BT EJY - BV EM) . (25)

This formula involves that

Ra=— Yabe . . . . . . . . (26)

It may be remarked that y,, is the value that must be given to
the veetor B, if B;~ is taken to be 1.
The quantities y.» may be said to represent the rotations { Bar . B ).
At the end of our calculations we shall introduce instead of y,; the
quantities v, defined by
Yoo =yav(@xb) , Paa=0 . . . . . (27)
In the first of these equations a, b, @', &' are supposed to be the

numbers 1,2, 3,4, in an order obtained from 1,2,3,4 by an even
number of permutations.

-10 -
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§ 26. We have now to calculate the left hand side of equation
(10) for the case that o is the surface of an element (dx,,..dx,).
For this purpose we shall each time take together two opposite
sides, calculating for each pair the contributions due to the different
terms on the right hand side of (22), or as we may say to the dif-
ferent rotations ygq. It is convenient now to denote by a, b, ¢ the num-
bers 1, 2,3 either in this order or in any other derived from it by
a cyclic permutation, while the z-components of the vector we are
calculating and which stands on the left hand side of (10) will be
represented by X,... X,.

a. Let us first consider that one of the sides (dwzq, dzy, dz.) which
faces towards the side of the positive z,. The vector N drawn
outward has the direction 4* and in §-units the magnitude % As the

4
direction ¢ corresponds to a*, b*, 4* the rotation y,, gives with N
a vector product represented by a vector in the direction ¢. The

magnitude of this vector is in Z-units

1
2‘ Aalb
and in natural units

Aab4x
e b
2, ™

'This must be multiplied by lus. dwa dws da,, the magnitude of the side
. 1
under consideration in natural units, and finally by 7, to express the

vector product in z-units. Because of (24) we may write for the result
Kab d2q dzp day —= Py dvg dy dz,,

The opposite side gives a similar result with the opposite sign (N
having for that side the direction — 4*), so that together the sides
contribute the term

ach4
0z, A
to the component X.. For shortness’ sake we have put hexe
dz, dz, day dz, == dW.

Finally we may take ¢ =1, 2, 3.

b. Secondly we consider a side (das, dzs, d=,) facing towards the
positive z.. The vector N has now the direction — c*. We consider
the vector products of this vector with the rotations ys,, %, and Ysq,
which vector products have the directions @, & and 4. A calealation
exactly similar to the one we performed just now gives the contributions
to Xa, Xs, X,. For these we thus find the products of dea das dz, by

87

aw

Proceedings Royal Acad. Amsterdam. Vol. XIX.

-11 -
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Lava ? bes

—— L4 == 46 = Pais
Iy 2,

[ b4 2 44

e e L
Ib )s(

labs Aabe v

I 7 Xba = Ybia = Q4.

"Taking"also into consideration the opposite side (dwa, duy, dr)) we
find for X, X A, the contributions

War gy sy Ssc

0.z, O, 0.te

This may be applied to each of the three pairs of sides not yet

mentioned under a; we have only to take for ¢ successively 1, 2, 3.

Summing up what has been said in this § we may say: the
components of the vector on the left hand side of (10) are

'-pab

dw,

Xo= 2 (@) dW.

§ 27. For the components of the vector occurring on the right
hand side of (10) we may write
. iQa a8,
if q. is the component of the vector q in the direction &, expressed
in z-units, while d€ represents the magnitude of the element
{(dw,, ...dz,) in natural units. This magnitude is

, — iV gdw,
so that by putting
V:-,;Qa:wa S T (28)
we find for equation (10)
SO —we @)

Oz,

The four relations contained in this equation have the same form
as those expressed by formula (25) in my paper of last year'). We
shall now show that the two sets of equations correspond in all
respects. For this purpose it will be shown that the transformation
formulae formerly deduced for w, and ¥, follow from the way in
which these quantities have been now defined. The notations from
the former paper will again be used and we shall suppose the
transformation determinant p to be positive.

)] Alttmgsverslag Akad. Amsterdam, 28 (1915), p. 1073 ; translated in Proceedings
Amsterdam, 19 (1916), p. 751. Further on this last paper will be cited by I.c.

-12 -
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§ 28. Between the differentials of the original coordinates «, and
the new coordinates 2'« which we are going to introduce we have
the relations

‘ de's = 2 (0) wpades . . . . . . . (30)
and formulae of the same form (comp. § 10) may be written down
for the components of a vector expressed in z-measure. As the
quantities q, constitute a vector and as

V—g=pV—yg
we have according to (28) 1)
1 1
I/—ij;' w'a = l/’_j(; 2 (1)) ?‘b(! Wp)

or
e ==p = (b) pa s .
Further we have for the infinitely small quantities &,?) defined
by (19)
o =M pra e .
and in agreement with this for the components of a vector expressed
in &-units
E'a = Z(b) pta b
so that we find from (25)°)
Lab = = (ed) pea Pdb Yed -
Interchanging here ¢ and d, we obtain
Lab = Z(ed) Pda pPeb Lde == — Z(cd) pda Peb Led
and ,
X’nb =4 E(Cd) (Pca Pdb — Pdapcb) Hed « « o . (31)
. The quantity between brackets on the right hand side isa second
order minor of the determinant p and as is well known this minor

1) Comp. § 7, Lc
?) For the infinitesimal quantities x. occurring in (19) we have namely (comp.
(30))
z'a = () Apq @b
and taking into consideration (19) and (20), 1 e.
fa =2 (0) gab vt 4 &g = = (b) Yha Ea
and formula (7} 1. c., we may write (comp. note 2, p. 758, L. ¢)
§'a = E(b) g’ﬂb a'p = .‘.I(bcde) Pea Pdb Teb Jed Te =—
= E(CJ) Pea Ged £d == “:’(Gdj) Pea Ged 714 '_-cf = X (f) Pea §, .
% Put E,I 5y = 9,1. Then we have
3'(11;‘ - saI’ EOII' =X (Cd)pcn Pdb El Edn =X (Cd) Pea de B‘Cd
and similar formulae for the other three parts of (25), <

-13 -
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is related to a similar minor of the determinant of the coefficients
nes. If a'b' corresponds to ab in the way mentioned in § 25, and
¢d in the same way to cd, we have .
Pca Pdb — Pda Pch == P (3”( a Tdy — Fda ﬂr"b’)v
so that (31) becomes
Lor =13 p = (cd) (W Xy — Hda' Tew) L ed-
According to (27) this becomes
Way = 4 p & (d) (Fea’ ey — Ada X)) Yoty
‘for which we may write
Wap = 4 p = (ed) (Fea Fab ~— Nda W ep) Wed-

Interchanging ¢ and « in the second of the two parts into which
the sum on the right hand side can be decomposed, and taking into
consideration that »

Yde = — Yeds
as is evident from (26) and (27), we find ')
Yo = p X (cd) A ea Tap oo
§ 29. Finally it can be proved that if equation (10) holds for

one system of coordinates x,, . ...z, it will also be true for
every other system z',, . . . . &, so that
Jg [Re . N] + [Ry - N]}llda.—_d.{q}zrd.g. ... (32)

To show this we shall first assutne that the extension £, which
is understood to be the same in the two cases, is the element
(de,, . . .. dz).

For the four equations taken together in (10) we may then write

fuldo’:v‘dﬂ,... u, do—=v dQ2 . . . . (33)

and in the same way for the four equations (32)

fu'ltlo’:::v'ld.g,,.fu"do':v"dg L G2

We have now to deduce these last equations from (33). In doing so we
must keep in mind that u, . ... u, are the z-components and

!

u'y . . .. u, the z-components of one definite vector and that the

t

same may be said of v,, . . . . v, and ¢, . . .. v,
Hence, at a definite point (comp. (30))

Veo=2(0)Abatp. . . . . . . . (85
We shall particularly denote by as, the values of these quantities
belonging to the angle P from which the edges dz,,. . . . dx, issue

1) Comp. (2_§) Le. v

-14 -
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in positive divestions. To the right hand sides of the equations (34)
we may apply transformation (35) with these values of mpe, €2
being infinitely small of the fourth order and it being aliowed to
confine ourselves to quantities of this order.

On the left hand sides of (34), however, we must take into
<consideration, the surface being of the third order, that the values
of s, change from peint to point. Let X,, . . . . X, be the changes
which @, .. .. z, undergo when we pass from [’ to any other
point of the surface. Then we must write for the value of the
coefficient at this last point ‘
dﬂ'ba

X,.

Ao + = (0) =

We thus have

: fu’a do = X (b) anub di + = (by fus = (o) a;"m x, do.
T .

It will be shown presently that the last term vanishes. This being
proved, it is clear that the relations (34) follow from (33); indeed,
multiplying equations (33) by myq, . . . . 74, respectively and adding

them we find
ﬁ'a do — v, d.

§ 30. The proof for

0
z(b)fw,z‘(c) ammxcda:O L. ... (36
o,
rests on the relations
a.mm_anm

S = 3 (37)

which follow from
0’y Ja'y
T e Fe; 4 = .
dws, 7 Qe

The integral which occurs in (36) differs from

fubdd'.........(38)

by the infinitely small factor under the sign of integration

MNba

aﬂba xi
‘ oz,
Now we have caleulated in § 26 integrals like (38) by taking

together each time two opposite sides, one of which =, passes through
P while the second =X, is obtained from the first by a shift in the

b 2 (o)
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direction of one of the coordinates e.g. of . over the distance dr,.
‘We had then to keep in mind that for the two sides the values of
us, which have opposite signs, are a little different; and it was
precisely this difference that was of importance. In the calculation
of the integral

LETH
fubz:(c) xds ... .. .. (89)
IT(‘

however it may be neglected. Hence, when we express the compo-
nents u; in terms of the quantities y,,, we may give to these latter
the values which they have at the point P.

Let us consider two sides situated at the ends of the edges L., and
whose magnitude we may therefore express in x-units by dr; dey da
if j, £, [ are the numbers which are left of 1. 2, 3, 4 when the number
¢ is omitted. For the part contributed to (38) by the side =, we
found in § 26

Yoo da; dey diey .

We now find for the part of (39) due to the two sides

Wi = () a;ba [‘fxc do —--fx,. da]
L
1

2

where the first integral relates to 2, and the second to =2,. It is
clear that but one value of ¢, vis. ¢ has to be considered. As every-
where in 2 :x,— 0 and. everywhere in 2, :x, = dr, it is further
evident that the above expression becomes

a-?'fba

- dW.
Yes B.re

This is one part contributed to the expression (36). A second part,
the origin of which will be immediately understood, is found by
interchanging 4 and ¢. With a view to (37) and because of

"leh - wbe

we have for each term of (36) another by which it is cancelled.
This is what had to be proved.

§ 31. Now that we have shown that equation (32) holds for eachs
element (de,,...dr,) we may conclude by the considerations of § 21
that this is equally true for any arbitrarily chosen magnitude and
shape of the extension £2. In particular the equation may be applied
to an element (dz',...u',) and by considerations exactly similar (g
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those presented in § 26 we see that in the new coordinates as well
as in the original ones we have equations of the form (29).
Whatever be our choice of the coordinates the part of the principal
function indicated in § 14 can therefore be derived for a given
current vector q.
In a sequel to this paper some conclusions that may be drawn
from Hamirron’s principle will be considered.
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