Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J. de Vries, Bilinear congruences of elliptic and hyperelliptic twisted quintics, in: KNAW, Proceedings, 18 I, 1915, Amsterdam, 1915, pp. 43-47

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'
three straight lines $F_{1} F_{2}, F_{2} F_{3}, \quad F_{n} F_{1}$, three trisecants, consecutively passing through F_{1}, F_{3}, F_{3}.

The three straight lines t, meeting in an arbitrary point P, are nodal. lines on the surface Π^{0}, containing the points of support of the chords drawn through P of the curves of the $\left[\rho^{6}\right]$. With the cone which projects the ρ^{5} passing through P, Π^{8} has, besides this ϱ^{5}, only straight lines passing through P in common; they are the three trisecants out of P, which are nodal lines for both surfaces, and the seven singular bisecants $P F_{k}$. From the consideration of the points which Π^{6} has in common with an arbitrary ρ^{5} follows that this surface has nodes in the seven fundamental points.

For a point S of the singular quadrisecant Π^{6} passes into the monoid Σ°.

Mathematics. - "Bilinear congruences of elliptic and hyperelliptictwisted quintics." By Prof. Jan de Vries.

(Gommunicated in the meeting of April 23, 1915).

1. We consider a net of cubic surfaces $\boldsymbol{\Phi}^{8}$ of which all figures have a rational quartic, \boldsymbol{a}^{4}, in common. Two arbitrary Φ^{3} have moreover an elliptic quintic ϱ^{5} in common, resting on σ^{4} in ten points. A third surface of the net therefore intersects ϱ^{5}, outside σ^{4}, in five points F_{k}; they form with σ^{4} the base of the net. As a Φ^{3} passing through 13 points of σ^{4} wholly contains this curve, only four of the points F_{k} may be taken arbitrarily for the determination of the net. The base-curves ϱ^{6} of the pencils of the net form a bilinear congruence, with singular curve σ^{4} and five fundamental points F_{k}.

The singular curve σ^{4} may be replaced by the figure composed of a σ^{3} with one of its secants, or by the figure composed of two conics, which have one point in common, or by the figure consisting of a conic and two straight lines intersecting it.
2. The curves ρ^{5}, which intersect σ^{4} in the singular points S, form a cubic surface Σ^{3}, with node S, which belongs to the net; S is therefore a singulai point of order three. The monoids Σ^{3} belonging to two points S have σ^{4} and a curve ϱ^{5} in common; through two points of σ^{4} passes therefore in general one curve u^{5}. The groups of 10 points which σ^{4} has in common with the curves of the congruence form therefore an involution of the second rank.

On σ^{4} lie consequently 36 pairs of points, each bearing ∞^{1} curves ρ^{5}; in other words, the net contains 36 dimonoids, of which the two nodes are lying on σ^{4}. The congruence further contains 24 curves ρ^{5}, which osculate the singular curve σ^{4}.

The curves ϱ^{5} lying on the monoid Σ^{8}, are, by central projection out of S, represented by a pencil of plane curves φ^{4}, with two double base-points and eight single base-points; to it belong the images of the five fundamental points. The remaining three are the intersections of three singular bisecants b; throngh each point of such a straight line passes a ρ^{5} of Σ^{3}. The two nodes are the intersections of two singular trisecints t; each straight line t is moreover intersected in two points by each ϱ^{5} of the monoid; for two ρ^{5} the line t is a tangent. The three straight lines b, and the two straight lines t^{-} lie of course on Σ^{0}; the sixth straight line passing through S is a trisecant d of σ^{4}. It is component part of a deyenerate p^{5}; for all \boldsymbol{D}^{3} passing through an arbitrary point of d contain this straight line and have moreover another elliptic curve ρ^{4} in common.
3. The locus of the straight lines d is the hyperboloid Δ^{2}, which may be laid through σ^{4}. The latter has with a monoid Σ^{3} the singular curve σ^{4} and two trisecants d in common. Consequently \geq^{3} contains a stranght line d not passing through S; the curve ϱ^{4} couplerl to this straight line must contain the point S. It is represented by a curve φ^{3}, containing the intersections of the straight lines t, b and the images of the points F, while the line connecting the intersections. of the two singular trisecants is the image of the straight line d belonging to this ϱ^{4}.

The locus of the curves ρ^{4} has in common with Σ^{3} the curves σ^{4} and two curves ρ^{4}; so it is a surface of order four, Δ^{4}. With Δ^{2} the surface Δ^{4} has in common the curve σ^{4}; the remaining section is a rational curve d^{4}, being the locus of the point $D \equiv\left(d, \rho^{4}\right)$. As the trisecants of d^{4} form the second system of straight lines of Δ^{3}, \boldsymbol{d}^{4} and σ^{4} have ten points in common. This is confirmed by the observation that the pairs d, ϱ^{4} determine on σ^{4} a correspondence (7,3), which has the said ten points as coincidences.
4. The locus of the pairs of points which the curves ϱ^{6} have in common with their chords drawn through a point P is a surface Π^{s}, with a quadruple point P. The tangents in P form the cone \mathscr{R}^{4}, which projerts the curve ρ^{5} laid through P; the two trisecants t of this curve are nodal edges of that cone and at the same time nodal lines of I^{0}. The cone, which projects σ^{4} out of P has in common
with \mathscr{R}^{4} the 10 edges containing the points of intersection of σ^{4} and φ^{5}; the remaining 6 common edges q are singular bisecants, For q is chord of the curve ϱ^{5} passing through P, and moreover of a ϱ^{5} intersecting it on 0^{4}, but in that case it must be chord of ∞^{1} curves ϱ^{5}. The surface Φ^{3}, which may be laid through q, σ^{4} and ϱ^{5} does belong to the net; the other surfaces of this net consequently intersect this net in the pairs of a quadratic involution; in other words, q is a singular bisecant.

The six straight lines q lie apparently on \boldsymbol{I}^{6}; this surface also contains the five straight lines $f_{k} \equiv P F_{k}$, which, as the above mentioned straight lines b, are particular (parabolic) singular bisecants; through each point f passes a o^{6}, which has its second point of support in F, so that the involution of the points of support is parabolic. The section of $I I^{6}$ and \mathfrak{S}^{4} apparently consists of a ρ^{5}, two straight lines t (which are nodal lines for both surfaces) five straight lines f and six straight lines q.

- For a point S of the singular curve σ^{4} the surface Π^{9} consists of two parts : the monoid Σ^{3} and a cubic cone formed by the singular bisecarts q, which intersect σ^{4} in S. As a plane contains four points S, consequently 4×3 straight lines q, the singular bisecants form a congruence of rays (6,12), belonging to the complex of secants of σ^{4}, which congruence of rays possesses in σ^{4} a singular curve of order three.

5. The singular trisecants t form, as has been proved,"a congruence of rays of order too. The latter has the five fundamental points F as singulat points, for each of those points bears ∞^{1} straight lines t, which form a cone 5 . With the cone $\hat{0}^{4}$, which projects an arbitrary 9^{5} out of p, ${ }^{\text {s }}$, has the four straight lines to the remaining points in common and further the two straight lines, t, passing through F. As these straight lines are nodal edges of \mathfrak{J}^{4}, § must be a quadric cone. The congruence $[t]$ has therefore five singular points of order two.

The trisecants t of an elliptic ϱ^{6} form ${ }^{2}$) a ruled surface \mathfrak{i}^{5}, with nodal curve ρ^{5}. The axial ruled surface \geqslant formed by the straight lines t which intersect a given straight line a, has in common with an arbitrary ϱ^{5} in the first place 5×3 points, in which ϱ^{5} is, intersected by the five straight lines t resting on a. Moreover they have in commion the five points F, which, however, are nodes of \mathfrak{A}. Consequently \mathfrak{A} is a ruled surface of order five. As a is nodal line
${ }^{1}$) Vid. e.g. my paper in volume II (p. 374) of these Proceedings.
of $\mathfrak{M}^{\text {r }}$, a plane passing through a contains three straight lines more hence the singular trisecants form a congruence (2,3).
6. A straight line l intersects three curves ϱ^{5} of a monoid Σ^{3}; consequently σ^{4} is a triple curve on the surface \boldsymbol{A} formed by the $\mathbf{0}^{6}$, intersecting l. As two surfaces Λ^{x}, outside σ^{4}, have but x curves ϱ^{5} in common, we have $x^{2}=5 x+36$, hence $x=9$. An arbitrary curve ρ^{5} intersects A^{9} on σ^{4} in 10×3 points, consequently fifteen times in F_{k}; so A^{9} has five triple points F_{k}. On A^{9} lie ($\$ 3$) six straight lines and six elliptic curves ϱ^{4}; the ϱ^{5}, for which l is a chord, is a nodal curve.

In a plane λ passing through l, the congruence $\left[\mathbf{o}^{6}\right.$] determines a quintuple-involution possessing four singular points S of order three. It transforms a straight line l into a curve λ^{8} with four triple points, and has a curve of coincidence of order six, γ^{6}, with four nodes S. With an arbitrary surface \boldsymbol{A}^{9} the curve γ^{6}, has outside $S_{k}, 9 \times 6-4 \times 3 \times 2=30$ points in common. The curves 0^{5}, touching a plane r, consequently form a surface $\boldsymbol{\Phi}^{30}$; on it σ^{4} is a decuple curve (Σ^{3} intersects γ^{6}, outside S_{l}, in $3 \times 6-4 \times 2$ points) while F_{k} are decuple puints (an arbitrary 6^{5} intersects $\mathbb{\30, outside σ^{4}, in $5 \times 30-10 \times 10$ points).
Φ^{80} has in common with φ another curve φ^{18}, possessing four sextuple points S; it touches \boldsymbol{p}° in 20 points; \mathscr{P} is therefore osculated by thirity curves φ^{5}.
Two surfaces $\boldsymbol{\Phi}^{30}$ have, outside $\sigma^{4}, 100$ curves ϱ^{6} in common, two planes are therefore touched by 100 curves ϱ^{5}.
7. When all the surfaces $\boldsymbol{\Phi}^{3}$ of a net have an elliptic twisted curve σ^{4} in common, the variable base-curves ϱ^{5} of the pencils comprised in the net form a bilinear congruence of hyperelliptic curves. Each ρ^{5} rests in eight points on σ^{4} and has with an arbitrary surface \boldsymbol{T}^{3} moreover seven fundamental points F_{k} in common. As the net is completely determined by σ^{4} and five points F, the points F caunot be taken arbitrarily.
The singular curve σ^{4} may be replaced by the figure composed of a curve σ^{8} and one of its chords, or by two conics having two points in common. ${ }^{1}$)
8. The monoid Σ^{3}, which has the singular point S as node

[^0]and belongis to the net [Φ^{3}], again contains all the ρ^{5} intersecting the singular curve σ^{4} in S. In representing Σ^{0} on a plane φ the system of those curves passes into a pencil of hyperelliptic curves φ^{4}, with a double base-point and 12 simple base-points. The first is the intersection of a singular trisecant t, consequently of a straight line passing through S, which is moreover twice intersected by all - the ρ^{5} lying on Σ^{3}.

To the simple base-points belong the central projections of the 7 fundamental points. The remaining five are singular bisecants b, consequently straight lines, which have a second point in common with any ρ^{5} passing through S. With the trisecant already mentioned ther form the six straight lines of Σ^{3} passing through S. The straight lines b, are, as well as the straight lines f passing through the fundamental points, parabolic bisecants.
9. In the same way as above ($\$ 4$) it is proved that an arbitrary point bears eight singular bisecants q, i.e. straight lines, which ane intersected by [\mathscr{P}^{2}] in the pairs of an involution; they belong to the complex of secants of σ^{4}. The straight lines q passing through a point S of o^{4} again form• a cubic cone, so that $[q]$ is a congruence of rays (8,12).

The singular trisecants t form a congruence of order one, which has the points F as singular points. The singular cone \mathfrak{F} belonging to F is a quadric cone as it has in common with the cone δ^{4}, which projects an arbitrary 9^{5} out of F, six straight lines $F F^{\prime}$ and a trisecant t, which is nodal edge of δ^{4}. As the trisecants of ρ^{5} form a ruled surface \Re^{2}, the axial ruled surface M, belonging to a straight line a, has in common with a p^{5} the six points of support of two trisecants and the seven nodes - H, consequently is of order four. But in that case $[t]$ is of chrss three, consequently the congruence of the bisecants of a cubic τ^{3}, passing through the seven points F.

As in $\$ 6$ we find that two arbitrary straight limes are intersected by nine curves \mathbf{o}^{5}, that two arbitrary planes are touched by a hundred curves, that there are thirty curves osculating a given plane.

Here too, the fundamental points are triple on \boldsymbol{A}^{9}, decuple on $\boldsymbol{\Phi}^{3}$.

[^0]: ${ }^{1}$) In both cases a Φ^{9}, containing 12 points of the base-figure, will contain it entirely. This elucidates the fact that $\boldsymbol{\phi}^{5}$ needs only to be laid through 12 points of the elliptic os in order to contain it entirely.

