Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J. de Vries, Bilinear congruences of elliptic and hyperelliptic twisted quintics, in: KNAW, Proceedings, 18 I, 1915, Amsterdam, 1915, pp. 43-47

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl) > 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

three straight lines F_1F_2 , F_2F_3 , F_3F_4 , three trisecants, consecutively passing through F_1 , F_2 , F_3 .

The three straight lines t, meeting in an arbitrary point P, are nodal lines on the surface $\Pi^{\mathfrak{g}}$, containing the points of support of the chords drawn through P of the curves of the $[\varrho^{\mathfrak{s}}]$. With the cone which projects the $\varrho^{\mathfrak{s}}$ passing through P, $\Pi^{\mathfrak{g}}$ has, besides this $\varrho^{\mathfrak{s}}$, only straight lines passing through P in common; they are the three trisecants out of P, which are nodal lines for both surfaces, and the seven singular bisecants PF_k . From the consideration of the points which $\Pi^{\mathfrak{s}}$ has in common with an arbitrary $\varrho^{\mathfrak{s}}$ follows that this surface has nodes in the seven fundamental points.

For a point S of the singular quadrisecant Π^{ϵ} passes into the monoid Σ^{ϵ} .

Mathematics. — "Bilinear congruences of elliptic and hyperelliptic twisted quintics." By Prof. JAN DE VRIES.

(Communicated in the meeting of April 23, 1915).

1. We consider a net of cubic surfaces Φ^{s} of which all figures have a rational quartic, σ^{4} , in common. Two arbitrary Φ^{5} have moreover an elliptic quintic ϱ^{5} in common, resting on σ^{4} in ten points. A third surface of the net therefore intersects ϱ^{5} , outside σ^{4} , in five points F_{k} ; they form with σ^{4} the base of the net. As a Φ^{3} passing through 13 points of σ^{4} wholly contains this curve, only four of the points F_{k} may be taken arbitrarily for the determination of the net. The base-curves ϱ^{5} of the pencils of the net form a bilinear congruence, with singular curve σ^{4} and five fundamental points F_{k} .

The singular curve σ^4 may be replaced by the figure composed of a σ^3 with one of its secants, or by the figure composed of two conics, which have one point in common, or by the figure consisting of a conic and two straight lines intersecting it.

2. The curves ϱ^5 , which intersect σ^4 in the singular points S, form a cubic surface Σ^5 , with node S, which belongs to the net; S is therefore a singular point of order three. The monoids Σ^8 belonging to two points S have σ^4 and a curve ϱ^5 in common; through two points of σ^4 passes therefore in general one curve ϱ^5 . The groups of 10 points which σ^4 has in common with the curves of the congruence form therefore an involution of the second rank.

 \mathbf{n}

On σ^4 lie consequently 36 pairs of points, each bearing ∞^1 curves ρ^5 ; in other words, the net contains 36 dimonoids, of which the two nodes are lying on σ^4 . The congruence further contains 24 curves ρ^5 , which osculate the singular curve σ^4 .

The curves ϱ^5 lying on the monoid Σ^8 , are, by central projection out of S, represented by a pencil of plane curves φ^4 , with two double base-points and eight single base-points; to it belong the images of the five fundamental points. The remaining three are the intersections of three singular bisecants b; through each point of such a straight line passes a ϱ^5 of Σ^3 . The two nodes are the intersections of two singular trisecants t; each straight line t is moreover intersected in two points by each ϱ^5 of the monoid; for two ϱ^5 the line t is a tangent. The three straight lines b, and the two straight lines $t^$ lie of course on Σ^3 ; the sixth straight line passing through S is a trisecant d of σ^4 . It is component part of a degenerate ϱ^5 ; for all Φ^3 passing through an arbitrary point of d contain this straight line and have moreover another elliptic curve ϱ^4 in common.

3. The locus of the straight lines d is the hyperboloid Δ^2 , which may be laid through σ^4 . The latter has with a monoid Σ^3 the singular curve σ^4 and two trisecants d in common. Consequently Σ^3 contains a straight line d not passing through S; the curve ϱ^4 coupled to this straight line must contain the point S. It is represented by a curve φ^3 , containing the intersections of the straight lines t, b and the images of the points F, while the line connecting the intersections of the two singular trisecants is the image of the straight line dbelonging to this ϱ^4 .

The locus of the curves ϱ^4 has in common with Σ^3 the curves σ^4 and two curves ϱ^4 ; so it is a surface of order four, Δ^4 . With Δ^2 the surface Δ^4 has in common the curve σ^4 ; the remaining section is a rational curve σ^4 , being the locus of the point $D \equiv (d, \varrho^4)$. As the trisecants of σ^4 form the second system of straight lines of Δ^2 , σ^4 and σ^4 have ten points in common. This is confirmed by the observation that the pairs d, ϱ^4 determine on σ^4 a correspondence (7, 3), which has the said ten points as coincidences.

4. The locus of the pairs of points which the curves ϱ^s have in common with their chords drawn through a point P is a surface II^s , with a quadruple point P. The tangents in P form the cone \Re^4 , which projects the curve ϱ^s laid through P; the two trisecants t of this curve are nodal edges of that cone and at the same time nodal lines of II^s . The cone, which projects σ^4 out of P has in common

the the

with \Re^4 the 10 edges containing the points of intersection of σ^4 and ϱ^5 ; the remaining 6 common edges q are singular bisecants, For q is chord of the curve ϱ^5 passing through P, and moreover of a ϱ^5 intersecting it on σ^4 , but in that case it must be chord of ∞^1 curves ϱ^6 . The surface Φ^3 , which may be laid through q, σ^4 and ϱ^5 does belong to the net; the other surfaces of this net consequently intersect this net in the pairs of a quadratic involution; in other words, q is a singular bisecant.

The six straight lines q lie apparently on $\mathbf{H}^{\mathfrak{s}}$; this surface also contains the five straight lines $f_k \equiv PF_k$, which, as the above mentioned straight lines b, are particular (parabolic) singular bisecants; through each point f passes a $\varrho^{\mathfrak{s}}$, which has its second point of support in F, so that the involution of the points of support is parabolic. The section of $\mathbf{H}^{\mathfrak{s}}$ and $\mathfrak{K}^{\mathfrak{s}}$ apparently consists of a $\varrho^{\mathfrak{s}}$, two straight lines t (which are nodal lines for both surfaces) five straight lines f and six straight lines q.

- For a point S of the singular curve σ^4 the surface Π^{q} consists of two parts: the monoid Σ^{3} and a cubic cone formed by the singular bisecants q, which intersect σ^4 in S. As a plane contains four points S, consequently 4×3 straight lines q, the singular bisecants form a congruence of rays (6, 12), belonging to the complex of secants of σ^4 , which congruence of rays possesses in σ^4 a singular curve of order three.

5. The singular trisecants t form, as has been proved, a congruence of rays of order two. The latter has the five fundamental points F as singular points, for each of those points bears ∞^1 straight lines t, which form a cone \mathfrak{L} . With the cone \mathfrak{I}^4 , which projects an arbitrary ϱ^5 out of F, \mathfrak{L} has the four straight lines to the remaining points in common and further the two straight lines. t, passing through F. As these straight lines are nodal edges of \mathfrak{I}^4 , \mathfrak{L} must be a quadric cone. The congruence [t] has therefore five singular points of order two.

The trisecants t of an elliptic ϱ^5 form 1) a ruled surface \mathfrak{N}^5 , with nodal curve ϱ^5 . The axial ruled surface \mathfrak{A} formed by the straight lines t which intersect a given straight line a, has in common with an arbitrary ϱ^5 in the first place 5×3 points, in which ϱ^5 is intersected by the five straight lines t resting on a. Moreover they have in common the five points F, which, however, are nodes of \mathfrak{A} . Consequently \mathfrak{A} is a ruled surface of order five. As a is nodal line

¹⁾ Vid. e.g. my paper in volume II (p. 374) of these Proceedings.

 $\mathbf{46}$

of $\mathfrak{A}^{\mathfrak{s}}$, a plane passing through *a* contains three straight lines more hence the singular trisecants form a congruence (2, 3).

6. A straight line *l* intersects three curves ρ^5 of a monoid Σ^3 ; consequently σ^4 is a *triple curve* on the surface Λ formed by the ρ^5 , intersecting *l*. As two surfaces Λ^x , outside σ^4 , have but *x* curves ρ^5 in common, we have $x^2 = 5x + 36$, hence x = 9. An arbitrary curve ρ^5 intersects Λ^9 on σ^4 in 10×3 points, consequently fifteen times in F_k ; so Λ^9 has five triple points F_k . On Λ^9 lie (§ 3) six straight lines and six elliptic curves ρ^4 ; the ρ^5 , for which *l* is a chord, is a nodal curve.

In a plane λ passing through l, the congruence $[q^{\delta}]$ determines a quintuple-involution possessing four singular points S of order three. It transforms a straight line l into a curve $\lambda^{\mathfrak{s}}$ with four triple points, and has a curve of coincidence of order six, $\gamma^{\mathfrak{s}}$, with four nodes S. With an arbitrary surface $\Lambda^{\mathfrak{s}}$ the curve $\gamma^{\mathfrak{s}}$, has outside $S_k, 9 \times 6 - 4 \times 3 \times 2 = 30$ points in common. The curves $q^{\mathfrak{s}}$, touching a plane q, consequently form a surface $\Phi^{\mathfrak{s}\mathfrak{s}}$; on it $\sigma^{\mathfrak{s}}$ is a decuple curve ($\Sigma^{\mathfrak{s}}$ intersects $\gamma^{\mathfrak{s}}$, outside S_k , in $3 \times 6 - 4 \times 2$ points) while F_k are decuple points (an arbitrary $q^{\mathfrak{s}}$ intersects $\Phi^{\mathfrak{s}\mathfrak{o}}$, outside $\sigma^{\mathfrak{s}}$, in $5 \times 30 - 10 \times 10$ points).

 Φ^{so} has in common with φ another curve φ^{1s} , possessing four sextuple points S; it touches φ^s in 30 points; φ is therefore osculated by thirty curves φ^s .

Two surfaces Φ^{s_0} have, outside σ^s , 100 curves ϱ^s in common, two planes are therefore touched by 100 curves ϱ^s .

7. When all the surfaces \mathcal{P}^3 of a net have an elliptic twisted curve σ^4 in common, the variable base-curves ϱ^5 of the pencils comprised in the net form a bilinear congruence of hyperelliptic curves. Each ϱ^5 rests in eight points on σ^4 and has with an arbitrary surface Φ^3 moreover seven fundamental points F_k in common. As the net is completely determined by σ^4 and five points F, the points F cannot be taken arbitrarily.

The singular curve σ^4 may be replaced by the figure composed of a curve σ^3 and one of its chords, or by two conics having two points in common.¹)

8. The monoid Σ^{3} , which has the singular point S as node

¹) In both cases a ϕ^{3} , containing 12 points of the base-figure, will contain it entirely. This elucidates the fact that ϕ^{3} needs only to be laid through 12 points of the elliptic σ^{4} in order to contain it entirely.

and belongs to the net $[\Phi^3]$, again contains all the ϱ^5 intersecting the singular curve σ^4 in S. In representing Σ^3 on a plane φ the system of those curves passes into a pencil of hyperelliptic curves φ^4 , with a double base-point and 12 simple base-points. The first is the intersection of a singular trisecant t, consequently of a straight line passing through S, which is moreover twice intersected by all - the ϱ^6 lying on Σ^3 .

To the simple base-points belong the central projections of the 7 fundamental points. The remaining five are singular bisecants b, consequently straight lines, which have a second point in common with any ρ^5 passing through S. With the trisecant already mentioned they form the six straight lines of Σ^3 passing through S. The straight lines b, are, as well as the straight lines f passing through the fundamental points, parabolic bisecants.

• 9. In the same way as above (§ 4) it is proved that an arbitrary point bears *eight singular bisecants* q, i.e. straight lines, which are intersected by $[\Phi^{a}]$ in the pairs of an involution; they belong to the complex of secants of σ^{4} . The straight lines q passing through a point S of σ^{4} again form a *cubic cone*, so that [q] is a congruence of rays (8, 12).

The singular trisecants t form a congruence of order one, which has the points F as singular points. The singular cone \mathfrak{T} belonging to F is a quadric cone as it has in common with the cone \mathfrak{T}^4 , which projects an arbitrary \mathfrak{P}^5 out of F, six straight lines FF' and a trisecant t, which is nodal edge of \mathfrak{T}^4 . As the trisecants of \mathfrak{P}^5 form a ruled surface \mathfrak{N}^2 , the axial ruled surface \mathfrak{N} , belonging to a straight line a, has in common with a \mathfrak{P}^5 the six points of support of two trisecants and the seven nodes F, consequently is of order four. But in that case [t] is of class three, consequently the congruence of the bisecants of a cubic τ^3 , passing through the seven points F.

As in § 6 we find that two arbitrary straight lines are intersected by *nine* curves ρ^{5} , that two arbitrary planes are touched by *a hundred* curves, that there are *thirty* curves osculating a given plane.

Here too, the fundamental points are triple on Λ^{9} , decuple on Φ^{3} .

ĩ