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phosphorus will differ from the white chiefly in this that it confains
a much larger proportion of associated molecules.

In this case the pseudo system, as was alveady explained several
times, will possess no eutectic point, and then this pseudo system
with the wunary system Iying in it, can be given schematically by
fig. 5. If the pseudo-component § was isomer of «, also a figure
like fig. 6 would be possible.

Note. When according to form. 14 we calculate the pressure corresponding
with the temperature of 695°, which is the critical temperature of the liquid phos-
phorus according lo W. A. WaBL's measurements, we find 82.2 atm. This is
therefore the eritical pressure, for which we found 83.56 in our preceding com-
munication by means of the assumed linear relation

When we caleulate the b-value from the critical pressure 82,2 atm. and the
absolute critical temperature of 696° 4 2738° = 968°, and from this the size of the
phosphorus molecule, we find 4.83; we found 4.26 before, which makes no
difference of any importance

According to the formula:

: T /lnp, —T,In !
= 0,434 (22D T DB )
B 1!1 _7 .
the following values are found for the value of f at different temperatures:
from 200° to 300° f=3,11
» 9500 , 400° f=2,84
, 400°. , 500° f=2.60
, 500° , 600° f= 2,40

Amsterdam, April 19, 1915. Anorg. Chemic. Laboratory
of the University.

Chemistry. — “In-, mono- and divariant equilibria” 1. By Prof.
F. A. H. SCHREINEMAKERS.

1. Introduction.

When 7 -} 2 phases occur in an equilibrium, which is composed
of n substances, then it is invariant; the composition of the phases,
. the pressure and the temperature are perfectly defined then. 1n a
D, T-diagram this equilibrium is represented by a point; we shall
call this pressure and this temperature P, and 7.

As this equilibrium is completely determined in every respect
neither the composition of the phases, nov the pressure or the
temperature can change on addition or withdrawal of heat or on

1) In the preceding communication the term Inp; had heen erroneously omitted.




- 117

a change of volume. Then, however, a reaction occurs. at which
the quantities of some phases increase, those of other phases decrease,
and only after disappearance of one of the phases, pressure, tempe-
rature and composition of the phases can change.

May the composition of a phase F, be given by the quantities

. (ml)l (mi)l ("Ua>1 e ('2711—1)1 and 1 or 1— (‘171)1 - (‘Tz)l s ("Un—l)l
that of a phase F, by:

(‘2"!)2 ("vz)z (‘Ivs)a e (‘7}7!—1)2 &Yld l or 1 - (ml)a - (xa)‘z e (“U“-—-l)z
of the n components. We express in the same way the compositions
of the phases F,, F,, ... F,1o. Let occur between these i - 2 phases
the reaction:
ylFx + y2F2 + oy oo+ yﬂ+2F"+2: o . .. (1)

¥k, means y, quantities of the phase #,, each of which has the
composition given above; gy, etc. have the same meaning. It is
evident that these reaction-coefficients y, ... 7,42 cannot have all the
same sign. In order to know reaction (1) it is not necessary to know
the n-2 reactioncoefficients v, ... y,4o themselves, the reaction is
viz. determined by their n 41 relations.

From the condition, that at the reaction the total quantity of
each of the n components rests unchanged, the n relations follow:

y1+y2+y3+"-+yn-{—2:0
H (‘”1)1 + Y. ([01)2 + Ys (‘7"1)3 +. .+ Ynto (L""])n-{—? =0
P! (‘1"2)1 + ¥, (‘?}2)2 + Ys (‘7"2)3 +. .+ Ynt2 ('2'3)71—{—2 =0 P (2)

Yy (@n—1); + Y2 @n1)y + Y5 (Ba—1)s - -+ Yo (@n—1)ppe =0

As we have only n conditions for the determination of then 41
ratios, (2) and therefore also (1) may be satisfied in infinitely many
ways, or in other words: the reaction between the n - 2 phases
of an invariant equilibrium can take place in infinitely many ways.

Now we put the condition that the totalvolume remains the
same at the reaclion; the reaction is then: *‘isovolumetrical”’. When
_we represent the volumina of the above-mentioned guantities of the
phases F,, F, etc. by v»,, v, etc. then it follows:

Yivy + YoV + Ysvs oo Yngevade=0. . . . (3)

Now we have n - I equations [viz. the. m equations (2) and
equation (3)]; the n-+1 ratios of the reaction-coefficients are conse-
quently determined and thevefore also the proceeding of the reaction
(1). Consequently we find that an isovolumetrical reaction between the
2 - 2 phases of an invariant equilibrium is completely determined.
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We might just as well have posed instead of (3) the ¢ondition
~that the reaction takes place without addition or withdrawal of heat.
As the entropy remains the same then, we call such a reaction an
“isentropical reaction”. When we represent the entropiés by 1,, 1, etc.,
then the condition is: -

I Yl Y - Ynpotage =0 . . .7 (4)

A rT——

Then we have again n 41 equations, so that also an isentropical
reaction between the n 42 phases of an invariant equilibrium is
completely defined.

It is evident that the coefficients y,, y, etc. in the isovolumetrical
reaction (1) are others than in the isentropical reaction (1). Further
it is also evident that, dependent on the direction of the reaction,
we must add or withdraw heat with an isovolumetrical reaction
and that we must change the volume with an isentropical reaction.

Now we imagine at 7, and under P, that the n =+ 2 phases
Fi...F,4, are together; we let the isovolumetrical or isentropical
reaction take place and we let this proceed until one of the phases
disappears. Then an equilibrium of n components in n 4+ 1 phases
arises, which is consequently monovariant. In this way n 4 2 mono-
variant equilibria may occur. As in each of these equilibria one of
the phases of the invarant point fails, we represent, for the sake
of abbreviation, a monovariant equilibvium by putting between
parentheses the missing phase. Consequently we shall represent_the
equilibrinm F, + F, 4 ... I', 42 by (I7), the equilibrium I, 4 77, 4
F,+4 ... Fqa by (), etc. From the mvariant equilibrium, there-
fore, the n -2 monovariant equilibria (F), (F,), (I7) ... (I 49)
may occur.

Each monovariant equilibrium exists at a whole series of tem-
peratures and corresponding pressures; consequently it is represented
m the P,7T-diagram by a curve, which goes through the invariant
point P, 7,. Therefore in this point n 4 2 curves intersect one
another. Bach of these curves is divided by the invariant péintinto
two paris; the one represents stable conditions the other metastable
conditions. We shall always dot the metastable part. (See e. g. the
fig. 1, in which these curves are indicated in the same way as the
equilibria, which they represent).

When we consider only stable conditions, we may say: n -} 2
monovariant curves proceed from an invariant point of a system
of n components,
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In order to define the direction of these curves in the P,T-diagram,
we may use the following thesis'): the systems which are formed
on addition of heat at an 1sovolumetrical reaction exist at higher
— those which are formed on withdrawal of heat exist at lower
temperatures. The systems which are formed on decrease of volume
at an isentropical reaction exist under higher — those which are
formed on increase of volume exist under lower pressures.

Let us consider now the equilibvivm (F))=F, + F,+... F, 4o,
which is repreSented in fig. 1 by curve (F)) at a temperature 77,
and under a pressure P, which are represented by the point a.
On addition of heat under a constant pressure or on change of
volume at a constant temperature a reaction, which is completely
defined, occurs between these n--1 phases. Let us write this reaction:

) yaFQ+ysFa—|-...y,,+2F,,+2:0. R ()

The n relations between the n - 1 reaction-coefficients are fixed
then by the n equations (2) in which, however, we must omit all
terms which refer to the phase F), [consequently y,, (z,),, (#,), etc.].

Now we let reaction (5) occur until one of the phases of the
equilibrium (F)) disappears; then an equilibrium of n phases
arises, which is consequently bivariant. In all n 41 bivariant
equilibria can arise from the equilibrium (/). As in each of these
equilibria two of the phases of the invariant point are wanting, we
represent a bivariant equilibrium by putting between parentheses
the failing phases. (F F,) represents consequently the equilibrium
F,+F,+ ... Foys. From the equlibrivm (F),), therefore, the
bivariant equilibria (F\F,), (F.F,)... "\ F,qs) may arise in the
manner, which is treated above.

In a bivariant equilibrium P and 7' can be considered as inde-
pendent variables; each bivariant equilibrium can, therefore, be
represented in the P,T-diagram by the points of the plane of this.
diagram, consequenily by a region.

Consequently 7 4 1 bivariant regions, which may arise from the
equilibrium (F)), go through each monovariant curve (F,). Each of
these regions is divided into two parts by the cwrve (/7)), the one
part vepresents stable conditions, the other metastable conditions.
When we limit ourselves to the stable parts of these regions, we
may say: in a system of n components n -4 1 bivariant regions
start from each monovariant curve.

1) F. A. H. ScHrREINEMAKERS. Heterog. Gleichgewichte von H. W. Baxuuis
Roozesoom, II': we find herein the proofs for térnary systems on p. 220—221
and 298—301. These, however, are also true lor systems of % components.
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* The n -+ 1 regions starting in fig. 1 from curve (F,), are situated

partly at the one and partly at the other side of this curve; also _

it is evident that the regions, which are situated on the same side
of the curve, cover one another. Hence it follows immediately that
several bivariant equilibria can oeccur under a given P and at a
given 7. -

In order to determine on which side of the curve (/) the stable
part e.g. (J.F,) of a bivariant region is situated, we let the reaction
(5) take place in such a way, that the phase /7, disappears from
the equilibriom (/). This may always take place, when the quantity
of I, in the equilibriuin (/) has been taken small enough. If we
let this reaction proceed under a constant pressure, we have to state
whether heat must be added or supplied, when we let it take place
at a constant temperatare, we must determine whether the volume
increases or decreases. We may then ‘apply the following rules :
at the right of the curve we find the bivariant equilibria, which
arise on addition of heat; at the left of the curve those which arise
on withdrawal of heat. Above the curve we find the bivariant equi-
libria, which arise on decrease of volume ; beneath the curve those,
which arise on increase of volume.

For the meaning of “at the right”, “at the left”, “beneath” and
“above” is assumed that the P- and 7-axes are situated as in fig. 1.

When we apply the considerations, mentioned above, to each of
the n 42 carves (I1)...([y,) then we obtain the division of
the % (n42)(n--1) divariant regions between the different curves and
around the point O.

The following is apparent from the previous considerations. When
we know the compositions of the phases, which occur in an inva-
riant point and the changes in entropy and volume which take place
at the reactions, then we are able to determine in the P,7-diagram

. the curves starting from this point and the division of the bivariant

regions.
2. Some general properties.

Now we will put the question whether anything may be deduced
concerning the position of the curves and the regions with respect
to one another, when we know the compositions of the phases only
and not the changes of entropy and volume which the reactions involve.

This question is already dissolved for binary ') and ternary *)

) F. A. H. ScHREINEMAKERS, Z. f. Phys. Chemie 82 59 (1918) and F. E. C.
ScoErFER, these Communications October 1912,

% F. A, H. ScHREINEMAKERS, Die heterogenen Gleichgewichte von Bakauis
Roozesoom III" 218, .
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systems, the way- which we have followed then [viz. with the aid
of the graphical representation of the - and the &-function] is not
appropriate however to be applied fo systems with more components.
The following method is much simpler and leads to the result
desired for any system. - ]

We consider an invariant point with the phases F, F,,... F,is
and two of the curves starting from this point, viz. (F)) = F, 4
+ 4+ .. Fugs and (F)=F, 4 Iy ... Fupo. (see fig. 1). Between
the stable parts of these curves the region (I\F)) = F, 4 F, 4 ... F\pe
is situated. When we consider stable conditions only, this region
terminates at the one side in curve (F)), at the other side in curve
(F,). Now it is the question in which of the two angles () O (F,)
the region (F F,) is situated, viz. in the angle which is smaller or
in the angle which is larger than 180°.
The first case has been drawn in fig. L
in the latter case the region (F,F,)
should extend itself over the metastable
parts of the curve (F)) and (F,). We
call the angle of the region (F,F),) in
the point o the region-angle of (F,.F,);
we can prove now: ‘a region-angle is

Fig. 1. always smaller than 180°.”

In order to prove this we imagine iu fig. 1 the region (F,F,) in
the angle (F,)o (F,), which is larger than 180°. The stable part
of this region then extends itself on both sides of the metastable
part of curve (F,) and also of (F,). This now is in contradiction
with the property that the stable part of each region, which may
arise from a curve, is situated only at one side of this curve. Hence
it follows, therefore, that the region-angle must be smaller than 180°.

Thevefore, when we will draw in dg. 1 the region (#,F,), this
must be situated in the angle (F)) O (F,), which is smaller than
180°. As in fig. 1 (F,) and (F,) are drawn on different sides of
(). the regions (F\F;) and (F.F,) fall outside one another; when
we had taken (F,) and (F,) on the same side of (F)), the two
regions should partly cover one another.

Another property is the following: every region, which extends
itself over the metastable or stable part of a curve (Z))contains the
phase [, or in other words: each region which is intersected by
the stable or the metastable part of a curve (F,) contains the phase
F,. In an invariant point the n -2 phases F\F,...F, . occur;
consequently arround this point } (n 4 2) (2 4 1) bivariant regions
extend themselves. In n 41 of these regions the phase J is wanting,
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viz. in (I F), (F.F). .. (F .Fue); m all the other [viz. in §n{n--1)
regions] it is present however. The same applies to every other phase:

Now we imagine in fig 1 the curves (), (F))...(Fyys) to be
drawn. The n -+ 1 regions in which the phase F, does not occar,
all start from the stable part of the curve (F)); none of those
regions can therefore, extend itself over the stable part of curve
(£)). When, therefore a region extends itself over the stable part
of the curve (F)), then it must consequently contain the p}lase F.
As every region-angle is however smaller than 180° none of the
n-+1 regions, in which the phase F, does not occur, can extend
itself over the metastable part of the curve ([)); the regions, which
extend themselves over this part, consequently contain all the phase F,.

Cousequently we find: each region, which extends itself over the
metastable or stable part of a curve (F),), contains the phase 7).

We must keep in mind with this that the metastable part of a
curve is always covered by one or more regions, but this is not
always the case with the stable part. Further it is also apparent
that the reverse of the previous thesis viz. “all regions which contain
themselves the phase F, extend themselves over the metastable or
stable part of the curve (F),)” need not be true; this is only always
the case in unary systems. Later we shall still refer to these and
other properties. ’

Now we shall deduce a thesis, which is of great importance for
the determination of the position of the curves with respect to one
another. For fixing-the ideas we take an inyariant point with the
phases F,, F,, F,, F, and F; and we consider the curve (/) = F, +
+ F, 4+ F, + F, starting from this point. Between the four phases
of this equilibiium on addition or withdrawal of heat a reaction
occurs, which is, as we have seen above, completely defined by the
compositions of the phases. et this reaction be for instance:

ﬁ'2+F32F4+1115 L T (0)

Consequently four bivariant regions start from the curve ()
viz. F,FF, F.F,F,, F,F,F, and F,F,F,. 1t follows from (6)
that the vegions F, F, F, and F, F, F; are situated at the one side
and the vegions F, I, F, and F, ¥, F, at the other side of curve
(f,). We write this:

F,+ 13, Z2F, + F,
FZ ]{18 If"l F2 Il'd lfﬁ * ’ : ’ * ‘ " (7)
I F, P By F T

- When we should know the changes in enfropy and volume,
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occurring with reaction (6), thed we could, as we have seen above,
indicate at which side (viz. at the right, at the left, above or
beneath) of carve (F)) each of these regions is situated. As this 1s
not the case, we only know that the regions, which are written
in (7) at the right of the vertical line, are situated at the one side
and those, which aré written at the left of this line, are situated at
the other side of (F,). Each of the four regions is limited, besides
by curve (F)) also still by another curve, viz. the region F, F, F,
by (F,), F,F,F;, by (F), F,F F, by (F,) and F,F F; by (F,).
When we keep in mind now that every region-angle is smaller than
180°, then it is evident that the curves {F;) and (F,) are situated
at thé one side and the curves (F,) and (F,) at the other side of
carve (/). We shall represent this in future in the following way :

F,+F2F,+F, . . . . . .. (8

F)E) FY)F)EFE). - - o o 0 (9

This means: when reaction 8 occurs between the phases of curve
(F,), then the curves (F,) and (F,) are situated at the one side and
the curves (F,) and (') ave sitiated at the othéer side of curve (F)).

As the previous conisideratiofis are completely valid in genéral, we
find the following. When we know of a system of si-components
the compositions of the n + 1 phases of a curve (F)), then also the
reaction is known between these » <1 phases F,, ;... Foqs.
With the aid of this reaction we can divide the curves (F),), (£y) ... (Fni)
into two groups in such a way, that thé one group is situated at
the one side and the othér group at the other side of curve (F)).

As we may act in thé same way with each of the other curves,
we find :

When we know the compositions of the n - 2 phases F,, F,, ... Fiyo,
which occur in an invariant point, we can with respect to each of
the curves (I), (#,)...(F.ys) divide the n 4 1 remaining curves
into two groups in such a way that the one group is situated at
the one side and the other group is situated at the other side of the
curve under consideration.

Now we shall apply the rule which is treated above, to some
cases in order to deduce the position of the different curves with
respect to one another. In order to simplify the discussions, we shall
distinguish instead of ‘“at the one” and “at the other side” of a
curve “at the right” and “at the left”. For this we imagine that we
find ourselves on this curve facing the stable part and turning our
back towards the stable part. Cousequently in fig. 1 (F}) is situated
at the right and (F,) at the left of (F,); (F,) is situated at the right

.
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and (F)) at the left of (F,), (F,) is situated at the right and (¥,)
at the left of (F)). .

3. Unary systems.

In an invariant point of a unary system three phases F), F,and
B, occur; consequently the point is a ftriplepoint. Three curves
(F), (F,) and (I,) start from this point, further the three regions
of~F,, F, and F, occur. From our previous considerations the
well-known property immediately follows: the region of F, covers
the metastable part of curve (F,)=F, -+ F,, the region of F,
covers the metastable part of curve (F,) = F, + F, and the region
of F, covers the metastable part of curve (F,)= F, 4+ F,.

4. Binary systems").

In an invariant point of a binary system four phases occur;
consequently this point is a quadruple point. When we omit, as we
shall do in the following, the letter Z in the notation and when
we keep the index only, then we may call these phases 1, 2, 3
and 4. The four curves (1), (2), (3) and (4) are starting from this
quadruple point, further we find i(n-+2)(n4-1)=6 regions viz.
12, 13, 14, 23, 24 and 34. .

We call the two components of which the system is composed,
4 and B; the four phases may be represented then by four points
of a line AB. In fig. 2 we have assumed that each phase contains
the two components; it is evident however, that #, can also represent
the substance 4 and F, the substance B.

Now we shall deduce with the aid of the former rules the situa-
tion of the four curves with respect to one another. As F, is
situated between /7, and F, (fig. 2) we find:

“«

22144 . . . . . . . . (0)

@@ D@, . . . . ... Al
As F, is situated between Z, and F, it follows:

32244 . . L0 (12

D@y, . ... .. (13)

Now we_draw in a P,7‘diagram (fig. 2) quite arbitrarily the two
carves (1) and (3); for fixing the ideas we draw (3)at the left of (1).

1) For another deduction see also F. A. ScHREINEMAKDRS (l.c.) and F. E. C.
ScHEFFER (l.c.).

-10 -
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We firstly determine now the position of (2). It is apparent from
equation 11 that the curves (1) and (2) are situated at different sides of
(8), as (1) is taken at the right of (3), (2) must, therefore, be situ-
ated at the left of (3). It is apparent from equation 13 that the
curves (2) and (3) are situated at different
sides of (1); as (3) has been taken at the
left of (1), (2) must consequently be sitnated
at the right of (1).

Therefore, we find . curve (2) is situated
at the left of (3) and at the right of (1);
1t is situwated, therefore, as is drawn in
fig. 2 between the metastable parts of (1)
and (3).

Now we determine the position of (4).
It is apparent from equation 11 that (1)
and (1) are situated at the same side of (3); (4) is, therefore, situated
at the right of (3). It is apparent from equation (13) that (3) and
(4) are situated at different sides of (1); consequently (4) is situated
at the right of (1). -

Consequently we find: curve (4) is situated at the right of (1)
and (3); it is sitnated, therefore, as is also drawn in fig. 2, between
the stable part of (1) and the metastable part of (3).

From fig. 2 still follow the relations:

22148 . . . . (14) 32144 . . . . (16)

and -

@@woneE - . . 19 Gl@o@ . .. a9

As the position of the curves with respect to one another, is
already fixed in fig. 2, we need no more the relations 14—17, they
may however be useful as a confirmation. From (15) follows that
(1) and (3) are situated at the one side and (2) at the other side of
4); in accordance with (17) (1) and (4) are situated at the one
side and (2) at the other side of (2. We see that this 1s in accord-
ance with fig. 2. Consequently we find the following rule:

when we call, going from the one component towards the other,
the phases ocenrring in a quadiuplepoint F,, F,, F, and F, then
the order of succession of the curves, if we move in the P, 7-diagram
around the quadruplepoint, is 1, 3, 2, 4 or reversally.

We have assumed at the deduction above that curve (3) is
situated at the, left of (1); when we take (3) at the right of (1)
we find the same order of succession.

-11 -
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Now we shall seek the position of the 6 bivariant regions. From
curve (1)=2 4 3 4+ 4 the regions 23, 24 and 34 are starting. The
region 23 extends itself between the curves (1)and (4); it is indicated
in fig. 2 by 23. The region 24 is situated between the curves (1)
and (3); the vegion 34 15 situated between the curves (1)~ and (2)
and therefore, extends itself over curve (2) [fig. 2|. [We keep in
mind with this that each region-angle is smaller than 180°.] .

When we act in the same way with the regions which start from
the cuarves (2), (3) and (4) we find a partition of the regions as in-
fig. 2.

Previously we have deduced: each region, which extends itself over
the stable or metastable part of curie (F),) contains the phase F),.
We see the confirmation of this rule in fig. 2. The metastable part of
carve (1) intersects the region 14, the stable part of this curve the
region 12; both the regions contain the phase 1. The metastable part
of curve (2) intersects the regions 12 and 24, which contain both
the phase 2; the metastable part of curve (3) intersects the regions
13 and 34 which contain both the phase 3. The metastable part of
curve (4) intersects the region 14, the stable part of this curve is
covered by the region 34; both the regions contain the phase 4.

The following is apparent from the preceding considerations. In
all binary systems the partition and the position of the curves and
the regions will respect to one another starting from a quadruple-
point, is always the same; it can be represented by fig. 2.

(To be continued).

Chemistry. -— “Compounds of the Arsenious Owide.” 11. By Prof.
F. A. H. ScereiNeMakgss and Miss W. C. pE Baar.

a. Introduction.

By Ruporrr?) and others compounds are prepared of thé As,O,
with halogenides of potassium, sodium and ammonium.

These compounds were obtained by treating solutions of arsenites
(viz. solutions of 4s,(J, in a base) with the corresponding halogenides.

Ruporrr describes the compound As,O, . NH,Cl, which we have
found also; he also describes the compound (4s,0,), . KCIl. which
we have not found.

In order to obtain these compounds, we have, however, worked
in quite another manner; for this we have brought together water,

1) Fr. Riioorrr. Ber. 19 2668 (1886), 21 8051 (1888).
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