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Fable 1T (p. 326) shows the values of the wind velocity, the
direction of the wind and the angle of deviation as calculated from
equation (2) for 16 different directions of the gradient and a wnform
field of 1 mm. difference of pressure per degree of latitude.

A comparison of these results with those of table II shows that
the use of an average wind for the whole country has induced a
more regular course in the numbers, but also that considerable
differences are due to this method. The wind velocity and the angles
of deviation have become smaller as also the azimuths and wind
directions. From this result we may conclude that the northerly
stations behave differently in many respects from Flushing and that
a combination as made in this inqury is not desirable.

Physics. — “Ona General Blectromagnetic Thesis and its Application
to the Magnetic State of a Twisted Iron Bar’. By Dr. G.J.
Erias. (Communicated by Prof. H. A. Logentz).

(Communicated in the meeting of May 29, 1915).

P
=

WiepEMANN has already observed that in a longitudinally resp.
circularly magnetized iron bar a circular resp. longitudinal magneti-
sation arises in consequence of torsion. Moreover he discovered that
a bar which is at the same time longitudinally and circularly
magnetized, is twisted. These observations formed the starting pomnt
of the following considerations. ~

In a magnetic field, in which the magnetic induction can be an
arbitrary vector function of the magnetic force variable from point
to point, whereas the media in the field can be anisotropic also with
respect to the conductivity, but m "wluch no phenomena of hysteresis
occur, the equation

. 1
T:-sz‘dMl) R )
[

holds for the magnetic field energy.

In this ¢ means the current in a ecircnit M, the« induction flux
passing through this circuit, ¢ representing the ratio of the electro-
magnetic to the electrostatic unity of electricity. The summation
extends over all the circuits, the inlegration covering a range from
M for i =0 to the final value which M assumes.

1) in this and following formulae Lorentz’s system of unities is used.

22*%



328

P

1. Let us now consider two linear conduoctors (cireuits), in which~

currents ¢, and ¢, run. Let 3, be the induction flux passing through
the first, M, that through the second wire. If M, and M, change
infinitely little, then follows from (1) -

1
dT= ; (ildMl + 7"2 sz)v
for which we may put:

1 1 1

AT == d (G, M, + i, M) — = M, &i, — — M, di,

-0 c ¢ B

The first member of this equation is a total differential, as 7" is
perfectly determined by ¢, and 7,, hence
M, di, - M, d,

must also be a total differential, from which follows:
.a_j‘_[_l — aM“‘ Y,

0 0i,

2

@

i.e. the increase of the induction flux passing through the first
circuit, caused by an infinitely small current variation in the second,
is equal to the increase of induction flux passing through the second
circuit, caused by an equal .change of current in the first.

An increase of the induction flux dM will give rise to an electrical
impulse, in which through every section of the circuit the quantity
of electricity

1dM

de == — ——

[
passes, if w represents the resistance of the circuit. The negative
sign means that the direction of the current, is in lefthand cyclical

order with the increase of the induction flux.
If now the current 7, increases by the infinitely small amount of
di,, the induction flux through the second eireuit will increase by:
M,

M, = 2di,,
0 4,

Hence for a short time an induction current will ppss thropgh the
second conductor. If after the lapse of this time the cuvrent in this
conductor has again the same value as before, then the “integral
gurrent”, i.e. the total quantity of electricily set in motion by the
induction current amounts to:

1) Fot so far as | have Been able to ascertain, this velatioh, as well as those
following later (), (8), (16) and (17) is hew.

-
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1 aM, 1 M,

de, =

c Wy C.Ww, —61: he

In the same way for an infinitesimal change of ¢, the ntegral
current in the first conductor will amount to

1 M

—1 di,.
c.w, 0%,
If di, = di,, it follows from this by the aid of (2)
wde, =wde, .~ . . . . . . . (8)

de, =—= —

0 0 .
If by —aﬁ resp. -af? we denote the quotient of the integral current
?’2 Zl
in the first vesp. second conductor and the change of current in
the second resp. first conductor, we may also write:
e Oe,
wla—izwsé—z_: Y )]
In case the permeability is independent of the intensity of the
field, so that ¥ in general is a linear vector function of H, both
H and D are linear functions of i, and ¢,, hence M, and M, too.
Then we may write:
Ml - Lllil + Ll'li'l
.Zl’.[, = Lzlil + Lﬂﬂiﬂ
From (2) then follows the known thesis:
Ly, =L, . . . . . . ... ®

i.e. with equal currents in the two circuits the first sends as many
induction lines through the second as the second through the first.
For this case the magnetic field energy becomes according to (1):

1 ) 1 .. 1 ) ) .
T—_:’_Lu"l’"l"'?anlzz"{‘ézz’wzzz R V)

4

2¢

If the current in the first circuit increases by di,, then the integral
current in the second amounts to:
d, L, .di,

de, = — —_—
¢.w, ¢.w,

On increase of the current in the second conductor by dz, the
integral current:

P L, . &,
! G.’N)1 )
flows through the first.
Both expressions can be integrated. If ¢, resp. e, represent the

integral currents, which pass through the first resp. second circuit
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on increase of the current in the second resp. first circuit to the same
amount ¢, the relation
R ()
exists between these quantities. _
2. We shall now consider the case that the function which
represents the relation between ¥ and £ is variable in some parts _
of the field. This variability is meant in very general sense': we may
e.g. imagine it as a dependence of volume, pressure, temperature
elc. or as variations in consequence of elastic deformations, while also
motions of the particles of the medium may be understood by it.
We except, however, such changes which are attended with motions
of the cnrrent conductors or parts of them. Let the variability be
expressed by means of the general coordinate a. Then the induction
flux through the circuits will in general depend on «. With a varia-
tion of « the relation (2) holds both before and after the change,
so that we get:
0 0M, 0 oM,
da O, da 0, '
for which we may wrile, seeing that

1 1
—dM, = — w,de, " dM, = — w,de,
¢

0 Oe, 0 Oe, "
—_ 1 —_— _—— — . . . . . .
2\ 5, ) T 2\, )" )
when we attach analogous signification to the partial differential
de 0
quotients 53 and 593 as above for (3). If the resistances are not
Z’z 7’1
dependent on «, we get:
0 Og 0 Oe,

wl-a—i—;gc—z—:’wzbz—a—a—. . . . . . . (8)

We may express this relation in the following words: Successively
we measure four quantities of electricity: L. the integral current
(dey);,., in the first conductor, which is the result of the change de,
whilst the currents i, and #, vun through the two conductors;
2. the integral current (de,); i, which flows in the second conductor
ander (he same circumstances; 3. the integral current (de,), ¢ in
the first conductor, which is the result of the same change as under
1, with this difference however, that the current in the second
conductor is 2, -} di; 4. the integral current (de,); + iy, in the second
conductor, which is the consequence of the same change as under
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2, with this difference, however, that the current in the first con-
ductor is ¢ -+ d.

Now according to (8’) the difference of (de,),,:, and (de,),, i, + a»
multiplied by the resisiance of the first conductor must be equal to
the difference of (de,)s,,,, and {de,); + a,, , multiplied by the resistance
of the second conductor.

If the relation between ® and  is linear, then on change of «
the relation (7) will hold, both before and after the change, so that
we have quite generally

0 0 :
5 (w, )= F (wee) « « « .« o . (9
If the resistances are not dependent on ¢ we have
Oe, Oe, \
S Ty, 9)

i.e. when in the first circuit there runs a current ¢, the second being
without current, and the change de is accompanied with an integral
current de, in the second conductor, then the product of de, with
the resistance of the second circuit will be equal to the product of
the resistance of the first circuit with the integral current de,, which
flows through the first circuit in consequence of the change da,
when the current 7 now exists in the second conductor, the first
being currentless. : )

3. Up to now we only considered linear conductors. In order
to be able to apply the above derived relations to three-dimensional
conductors, we shall first prove a general thesis.

We imagine an arbitrary conductor in which certain electrical
forces are active. Let the conductor be an anisotropic body, of
such a symmetry, however, that there are three main dirvections
which are vertical with respect to each other, in which the current
coincides with the electrical fo\rce. In this case:

Ja=0, €, + G, @?/ + 6, &
- Sy—'_—'an@x-i*a,,@y—}-ﬁngz, Lo (10)
3. =63, € + 0y, @?/ + 6;; €
in which |
0, = 0y, 0yy = Oy, 0y, = Oy

Now let a system of electrical forces €1) give rise to a current
M), the system € giving rise to a current J). Then the follow-
ing equation will hold for every volume element, as is easy to
see by the aid of (10): .
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(€M) = (£@). J(U). ’ ;
Integrated with 1espect to an arbitrary volume of “the conductor
this yields: -

flew 3oy a8 = fle®.5w).as . . . . . (1)

This we apply to a conductor consisting of two parts, one of
which, 4, 1s a three-dimensional body, whereas the other, B, which
is to be considered as linear, is in contact with the three-dimensional
part 1n its 1nitial point P and its final point . Let us suppose
in the linear part a galvanometer (7, which we use to measure the
current / in the linear part. The case that arbitrary electrical forces
are active in this system, e.g. originating from induction actions
which can vary from moment to moment, we shall denote by (1).
In case (2) on the other hand we imagine a constant electromotive
force to act in the linear part. Then there will exist a potential
difference ¢q—@p between the points @ and P.

In both cases we divide the three-dimensional part A into the
cireuits that compose the current. Let us call the current in each
circuit ¢ and let us denote an element of the circnit by ds, then
the relation (11) gives:

“

(1) 9) Je(2) — ) i) gl
) 2€(2) A= Qs(l)'z . ds(1),
In this the integration takes place along the circuits, fhe summa-
tion extending over all the cwrcuits. In the lefthand member we

/

, 1 : .
may write #(2) == (po— @r), when (2 denotes the resistance of
w

a circuit in case (2). For every circuit this current is maltiplied by
the linear integral of the electrical force in case (1) along the eircuit.
In the righthand member we shall have to distinguish between
cirenits which are closed in themselves inside the part A, and
circuits which start in @ and terminate in P. For the first kind:

@ .
qu@) dsy=20, =
)

seeing that .
¢

==
For the second kind:.

(@ .
fQ: dsll) = g — pp, -
s

further holding for this:
N =1,
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when [ is the current measured by the aid of the galvanometer
(. If we divide both parts by ¢q—mpp, we get finally:

r=s 2 (S aw ... (12)
w®) s
or expressed in words: the total current flowing through the linear
part B is obtained by division of the part 4 into those circuits which
are the consequence of the presence of a constant electromotive force
in the linear part B, by integration of the electric force € along
every circuit, by division every time of these line integrals by the
resistance of the circuit, and by taking finally the sum of all these
quotients. - =
If we now call an element of a circuit in case (2) briefly ds, we
. can, with the omission of the indices, also write:

1
I=23_|€¢ ds.
w S

" Hence we may assign an imaginary current to every circuit

. P
f=. J €, ds,
w
Q .
from which follows:

P
J i.w:f@‘sds.
Q

On the other hand:
Q
[.W,= f €, ds )
P

holds according to the law of Omm for the linear part, when W,
represents the resistance of this.
By adding the two last relations we get:

iw—}-]Wozf@sds,

in which the integration is extended all along the circuit. If we put:

f@s ds=E,

E IW
N ( 1)

w w

we get:

and further by summation over all the circuits and introduction of':
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Zi=1 = L.t
. Bi= w =
if W, is the resistance of the part 4,
) w E W
= —' _ _S_ =23 E’,
W.4+W, w W w

if W is the resistance of the whole system.

L. W
If now by w we represent a resistance which is 5 times as
1

great as that of the circuit between @ and P, we get:

1:21—1}......,...(14)
w
The resistance w introduced here is practically the resistance of
a circuit closed in itself, to which the circuits of case (2) discussed
above can be supplemented by continuation into the linear part of
the conduetor. The summation is exlended here over all the circuits
of the case indicated above by (2).

5. We shall now consider the case of two current conductors of
the kind considered just now, so each consisting of a three-dimensional
and a linear part. When currents pass through these conductors,
either in one of them or in both, and we want to examine the
induction action which is the consequence of a change, either of
the current in these conductors or of the properties of the surrounding
field, then we may, therefore, according to what was derived just
now, divide these conductors into (he circuits which are the conse-
quence of the presence of a constant electromotive force in the
linear part of these conductors, examine the induction action in each
of these circuits and take the sum of these.

Let the resistances of the conductors be W, and W,, the currents,
measured in the linear part, /, and I,. We shall examine the
influence of a change of these, currents. We can now divide the
first conductor into m circuits, each with a current ¢,, the second
into 7 circuits, each with a current z,, so that we shall have:

I, = mi, I, =ni, .

The resistance of each circuit of the first conductor amounts to
m.W,, of the second conductor to =n.W,, as the electromotive
force must be taken the same for all of them on division into cireuits.
If we increase the current in every circuit of the second conductor
by i, then the total induction flux through the pth circuit of the
first conductor will be increased by: .

“
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. di

oM
M, =3 " di,
n az?,q
As the resistance of every circuit amounts to m.W, we get for
the integral current, which flows through the linear part of the
first conductor:
di oM
de, = — b > i
em. W, w n Oigg

For this may also be written : N
i, o %M,

de, =— — ,
b cman W, o n Digg
In the same way the integral current ~
dI oM
doy—=— —_3 2q

cmnW,m n Ohp

flows through the linear part of the second conductor on a change
dI, of the current in the first conduetor.

If

dI, =dI,,
then follows, when (2) is used:
W, .de,=W,.de, . . . . . . . (1)

In general:
Oe, Oe, ’
mﬁﬁmﬁ.....“(m
in which the meaning of the differential quotients is analagous to
that which was attached’ to them above in (3). -

This relation is analagous to (3). It holds quite generally, so long
as B is a univalent function of H, which, however, can be quite
arbitrary for the rest.

If the permeability is independent of the strength of the field,
so that there exists a linear relation between B and 9, we shall
be able to integrate equation (15). So we get:

Wie,=W,.e, - . . . . . . . (16)

analogous to relation (7). Here just as there ¢, resp. ¢, will mean
the integral currents which flow through the linear part of the first
resp. second conductor, when the current in the second resp. first
conductor increases from zero to the same value I, the other con-
ductor being without current.
, b
5. Just as we did before in the case of two circuits we can also

<

-10 -
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now consider the case of an infinitely small change of the function-
which indicates the velation between B and D, in some parts of the
field, as result of an infinitely small change of a general coordinate a.

In general (15) will be valid both before and after the change
of @, so that analogous to (8) we get from this:

0 Oe, 0 Oe,
A I
If the resistances remain unchanged we get analogous to (8.
0 d 0
w, 20y, 0 0 (17)

01,0a —  *0I,0a '
which relation is also open to analogous interpretation.

In the special case of a linear relation between B and D we
shall get in the same way analogous to (9):

0 0
a‘(W1 el)za(W', €)y - - « .« . . (18
which becomes for invariable resistances:
Oe, Oe, ,
W] 5;‘ — g 5‘; . . - . . . . (18)

. Here ¢, and ¢, have the same signification as above in (16).

6. We now inquire into the work of the ponderomotive forces,
being aceompanied with a modification in the magnetic field, which
is the consequence of the infinitely small change de. We assume
that at the change da the external electromotive forces remain un-
changed, and likewise the coefficients o, which in the most general
case defermine the relation between the electrical force and the
current.

If & represents the electric force, and €¢ the external electromotive
force, then the quantity of energy

(€ + €. 9}.dS. dt. v
will be consumed as JouLk heat in the volume element ¢S in the
time dt.

On the other hand the energy supplied by the current generators
in the time d¢ is:

€. ). dS. dt.
The difference of these two expressions:
—(€.3).dS. dt
passes into other modes of energy. Integrated with respect to all
the conduciors this becowmes :

-11 -
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7

f(i.ﬁ).dS.dt.

1
If we introduce

TS =—courl H,
and if we make use of the known thesis of the vector calculus that
the following equation holds generally:
div [ D] = B curl N —A curl B
then we get for the above expression:

—cf(curl@',.[)) ds.de 4 cfdir [€, H]dS. d:.

Introducing further :
- 1d3

ourl @ —= — — —
¢ dt

and making use of Gauss’s theorem, we get:

f (@,.@ )dS.dt n ,,-f [&, H), do. dt.

The second term vanishes, as on the surfaces of the carrent con-
ductors the normal component of [& D] 15 continuous, and the
integral amounts to zero over the plane in nfinity. Accordingly the
first term only remams. This will have to be equal to the increase of
the energy of the magnetic field and the work of the ponderomotlve
forces. Hence we get: g

dT+dA-f( )dS dt.

Per volume and time unity: ‘
d1’+dA—(~—- D)d&

For the energy of the magnetic field per volume unity the expressiqigh :
&) -
= k (@, dQS)A ) \ w3
0
holds genetally. ‘
With the change de we shall get‘

O Fdd ]
T*f (O, dD') — f(ﬁ dd), ,

it which b represents the thange of the final value of 9, ahd
B' the value of D corresponding to H in the changed state. Now
we get:

-12 -
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H+dn )
—da= [ (5% — [ (5,d%) — @3, 9),

Jom]

-

from which easily follows:
3 9
dA == — 3, dH).d
0o f( ) - de
0

Integrated with respect to the whole field this becomes:

0
dA = — B.dp.da . . . . . .
A=+ deb dea. ) (19)

We can always split up the vector H into two parts, £, for

which holds diw $°=0, and H', for which holds cur/ H' =07,
Taking into consideration that generally

[aS (. ¥) =0
on integration over the whole space, when
divd =0, curl 3=0,

we get:
0
dA=—-— {dS {B.dH°
5 f .49
Making use of the equation:

B=1DH-+M,
we get:

. da.

3
dd = 3 f s ffgd.‘-‘g° + {dS {mdpe
o

As in the first term we can again split up H into H° and H, in
which £° is independent of « — £° being determined by the current
¥ — and as the product »'d H° integrated over the whole field
yields zero, this term will vanish, so that there remains:

!

om
dA:defa—d{)“.da 0
[/4

t

om .
In this —— denotes the change of the magnetisation in consequence

0a
of a change de, in which the external electromotive forces and also
the coeflicients determining the conductivity., remain unchanged.

) In general we shall understand by 40 tlie intensity of the field as it would

be without the presence of the iron, § representing the real strength of the field.

The difference is .1 >

-13 -
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7. We shall now consider a special case. Let us imagine &
system of two currents, one passing through a vertical cylindrical
iron bar, the other through a vertical solenoid which is concentric
with the iron bar. We suppose the iron bar, whose length is assu-
med to be large with respect to the diameter, to be in the middle
part of the solenoid, and that the latter on both sides projects far
beyond the bar. For the present we assume for simplicity’s sake
that the permeability of the iron has a constant value.

The first current I, gives rise to a circular magnetisation in the
iron, the second I, to a longitudinal magnetisation. If 7, and Z,
are in righthand cyclical order the corresponding strengths of the
field H,° and £,° are so too. ) o

The resistances of the conductors are called W, and W,.

We can now twist the iron bar, I, being =/ and [, =0; in
consequence of this three main directions will arise in the iron with
different permeability, which will also cause a longitudinal magneti-
sation in the bar, which is accompanied with an mmpulse of current
in the second conductor. Likewise we may twist the bar when
1, =0 and I, =1, which gives vise to a circular magnetisation of
the bar, and accompanying this an impulse of current in the first
conductor. We shall compute for both cases the quantities of elec-
tricity which pass through every section in consequence of the
impulses of current.

If the radins of the iron bar 15 R, then
7l
T o2nRe
holds for the intensity of te field $° inside the iron at the distance
r from the axis of the cylinder.

If the solenoid has m windings per unity of length, the intensity
of the field in the middle part in which the iron bar is found, is:

H°

H°, ==.m. I,.

We shall assume the bar, which has a length /, to be twisted
over an angle ¢ =le, and this in ,such a way that while one
extremity, where the cwrrent [, enters, is held fast, the other extre-
mity is twisted over an angle ¢ in the sense of the current [,. In
consequence of this an originally square surface element with sides
of “a length one of a cylinder surface concentric with the axis of?
the bar, with radins 7, will assume a rhombie shape. '

In this the angle which the sides of the rhomb, which were
originally parallel to the axis, form with the direction of the axis,.

-14 -
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becomes equal to e, so long as the second and higher powers-of
a are neglected. The diagonals of the rhomb become resp.:

Va(l+4re)  and  K2(l=ira)
hence the ratio between this and the original length resp.
1+4ira and 1—1ira.

We call the direction of the strength of the field H°, #, that of the

strength of the field £°, v.

In consequence of the twisting the considered surface element has
obtained two main dirvections, which coincide with the diagonals of
the rhomb?). We call the direction of the diagonal which falls between

the positive a-direction and the positive y-divection, u, that of the _

other diagonal ». In the direction v the iron is elongated, in the
direction v compressed. The elongation resp. compression amounts
to 4 re per unity of length. Let £ . 2 be the increase of the permeablhty
in a certain direction, when the elongation per unity of length
amounts to 2 in that direction, the compression per unity of length
normal to that direction being of the same value. Then
yu::p—{—l—lcra ybzy—L/;r((
We assume % to be mdependent of lhe strength of the field,
If we tlgltllel agsume the angles which the duecglons u and v
form with 2 and 7 to amount to 45° Whl('h is permissible so l,ong

re o]

as we confine ourselves to quantities of the first order in ¢, weget:

Hu =13 V2 (D + Dy).
Do =1 V2 (— D2+ Dy

and further, as:
%u—-#uﬁ ta ) %v:!’«v-“‘?m

Bo= 512 (0 + B) +1hrar2 (et Oy

szs,,:;-,z— V(= S+ 0y +2hra/2(~ Do+ Hy)

from which follows: )
Be=p Hr+ s kraHy
By=p Oy, + §krady
We see that here the relation u,, =g, holding umvérsally foi
anisotropic media with three mutually normal main directions is
gatisfied.
In the twisted: bat £, hds everywhete the samie value at:i certain
distance from the axis, when we move along a circle normal to
the axis, as there: is: radial symmetty with respect to- this axis. The

) 1) The thitd radially! directed main direttion may be left out of consideration,
us no change takes; place in that direction.

-15-
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line integral of 9, along this circle amounts therefore to 2ar. Hy;
this line integral also amounts to 2zr. ,° so that we get:
- “:-)% = 1‘@0-

We shall further assume the length of the bar to be large with
respect to its diameter, in which case the influence of the magnetisation
at the extremities in the determination of the field intensity inside
the bar in case of longitudinal magnetisation will be small, so that
we may assume

—_ 4
=9,

@1/

Inside the bar the following equations hold
B, = uh,’ + 4 bra H,°
;))5_1/ =u,’ + Fhra D,°
The change of the magnetic induction within the bar in consequence
of the twisting amounts to
LY, =4 kra H,°
LY, =1 kra H,°
In the same way we have for the magnetisation -
My==.H"+ S lre H,’
My =x%.H,"+ L kra ,’

Also outside the magnetic induction changes in consequence of
the twisting. On account of the change of ¥, the quantity of
magnetism will namely change at the extremities of the bar which
will give rise to a change of stiength of the field ouiside the bar.
If there was no won inside the solenoid, and if this was mfinitely
long, the change of the magpéftlsm al the extremities would not
give rise to an induction current at all, because every quantity of
magnetism sends its induction lines through the windings lying on
either side, and the sense of rotation of the mmduced electric force
is directed for the windings on one side opposite to that on the other
side. We commit an error on account of the presence of the iron
inside the solenoid in as much as the magnetic induction inside
the iron does not change in the same way as that oulside it. As
we have, however, assumed that as far as the magnetic mduaction
mside the iron is concerned, we may disregard the magnetism at
the extremities, we may also leave this error out of account.

In order to calculate the induction impulse, we must therefore
integrate the just mentioned amounts of A B, and A, inside the
bar over the surface which is surrounded by every circuit, and then
sum up over all the circuits.

We explicitly excepted (§ 2 above) mmovements of the current

- 23

Proceedings Royal Acad. Amsterdam, Vol. XVIIL
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conductors. Here, however, such movements occur in consequence-
of the twisting. Now in case of longitudinal magnetisation of the
bar the moivement of matter, which is the consequence of the tor-
sion, will give rise to an induction impulse in radial direction, which
has no influence on the induction impulse in longitudinal direction.
In the case of circular magnetisation on the other hand no induciion

lines will be cat by the matter on twisting, so that no induction _

impulse takes place. The movement of the substance will, therefore,
have no influence in these cases on the induction impulses, which
are accordingly exclusively the consequence of the change of the
properties of the substance.
A If we now first suppose [, =1,1, =0, hence the case of
circular magnetisation, then:
rl

HO = — H'=0
" 2R ¢ 2
" klor?
ADy ———— AD, = 0.
By dn R2.¢ O

Now A%, must be integrated over all the surface elements which
are normal to the direction y, so over all the windings of the sole-
noid. The increase of the flux of induction through one winding
amounts to:
kleR?

C

R
AMy:2nf LDy . rdr =
0

As there are m./. windings to the length [/ of the bar, the total
increase of the induction flux will be m.l. A My and the electricity
set in motion :

_ ml. kel
If we introduce the angle of twisting ¢ —1. a, we get:
mykt R* :
& 8W,.¢ 1)

With a positive value of £ we come to the conclusion that for
the considered twisting the sense in which the impulse takes place,
is in lefthand cyclical order with the current /.

In the other circuit the impulse is zero, as A%, =0.

B. Let us now suppose [, =0, [, = [, hence the case of longi-
tudinal magnetisation; then:

H. =0 H,' = ’m_I
[
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A%, — él— mkral A%, =0.

[+
In order to calculate the impulse in the first circuit, we shall
divide the first conductor into condueting tubes, which each of them
again consists of circmits. Let the conducting tubes, whick are con-
centric and cylindrical in the iron, have a radius » there and a
thickness dr. When we then give them dimensions proportional to
this in the other parts of the conductor, the resistance of such a
tube will be:
RL’
2r dr’ "
The increase of the induction flux through the surface surrounded
by every circuit’ belonging to the conducting tube, amounts to:
R

AM, =1} dr. AT, = 4—}- mikIla (R*—»®).
C
The quantity of electricity set in motion in the conductor, now

becomes, when we make use of the mode of calculation explained
in § 3, which finds expression in (14)-

w =

AM, mikle mlkl aR?
= X2 = — R? — dr = .
“= ww 2R, ﬂf( ) v SWe
With introduction of the angle of twisting ¢ this becomes:
maphl R
= — e e e e e e e 2
“ W, (22)
Hence from (21) and (22) we find really
e W, —=e, W,

in agreement with (18'). -

If % is positive, then the sense in which the impulse takes place,
is in lefthand cyclical order with the current /.

As A By =0, the impulse in the second conductor is zero.

We may assume that the ciccuits run parallel to the axis over
the greater part of the length. The direction of the current can,
however, be different for different circuits. In this case we shall be
allowed to use the formula (13) for the real current. It follows
from this that the circuits where the motion of electricity is zero,
will lie on a cylinder surface, the radius » of which is giver by
the equation:

1
- A]lljy == —el - u’ol,
¢
23
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in which W, is the resistance of the linear part of the circuit, -

From this we get:
S, “
:Rl/l—‘”.......ZS
i 2w, - (29)

When W, is small compared with W, » will differ little from
R. As a rule, however, the reverse will be the case, from which
ensues that r approaches the value R 172. We can calenlate the
current through the central part of the bar by means of the relation
(13). For this we get: .

LR —W,\} '
o @m —  TPRLE W W) ey
32A(W,— W)\ W,

When W,— W, is small with respect to W, this quantity of
eleciricity will become much larger than e,; it can become arbitrarily
large with respect to ¢, when W, —W, 1is made small enough"
with respect to 7,. On the other hand when W, was small with
respect to W,, ¢,() would differ only little from e,.

Let us now suppose that a current /, runsin the first conductor, a
current [, in the second. We assume that then the state of equilibrium
is characterized by this that the bar is twisted-over an angle « per unity
of length. The torsion couple amounting to KR*. e, the elastic energy
of the bar is 1KR*.e*.[ in the twisted state. We make this state
undergo an infinitesimal change so that e increases by the amount
da. Then the elastic energy increases by the amount KR* a/de,
the work of the ponderomotive forces being found from (20) for the
considered change, which formula, after introduction of 9. and 9,
produces

t

1
dA =1k, daj;' DD, dS:S—;ml/cI, I[,R*.da.
- ¢

In case of equilibrium this work must be equal to the increase
of the elastic energy, from which we find for the angle «:

. kmI,I,
= 25
. ¢ = Re KR (25)
The whole torsion becomes:
. kmll I
—_ 12 S . (25
=3 KR (25)

If % is positive, then with the given current directions of 7, and
I, the Dbar will be twisted so that when the extremity where I,
enters, is kept in fixed position, the other extremity is rotated in
the sense of the current [,, hence counter clockwise, when we

-
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look towards this extremity. Of course the sense of the rotation
changes on reversal of one of the currents.

Hence the bar assurnes the shape of-a righthand screw, when the
currenis I, and 7/, are in righthand cyclical order. Further the angle
over which the bar is twisted, is proportional to the total number
of windings of the solenoid, which falls on the length of the bar,
to the intensities of the currents, and in inverse ratio to the square
of the radius.

Above we found an expression for the work of the ponderomotive
forces dA on the increase of the torsion de. If the torsion amounts
to &, we canintegrate this expression, through which we get:

1
A= Zmbp L1, R

We find this work back in the first place in the elastic energy
U of the bar. If into the expression for this § KR* ap, we introduce
the above found expression for e, we get for this:

U=

Tow ™ kol I, R
The rest, which is of the same amount as U, is converted into
kinetic energy, or when we make the motion take place infinitely
slowly by means of external couples, into external work.
Let us now inquire into the increase of magnetic field energy.
For this purpose we make use of the expression:

—fdsffgm

which can be easily deuved from (1).
Here we introduce:

vl m
b= =11
1 krial
,A\lixzﬂmlcraf, AQSy:_—_—?;;‘

We get then:
AT:def(Ig,,dA B, 4 .fg,,dAQ')y)zé%mrkal I, R*
Hence
A4 AT = 4_10_ mephs 1,1, .

On the other hand on account of the torsion the quantity of
electricity .
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gkl R? B
“T Ty W,

is circulated in the first conductor. The electromotive force in that
conductor amounis to K, = I,. W,. In consequence of the circu-
lation of the quantity of electricity e,, the generator of the current
yields, besides the JouLe heat, the quantitv of energy — Ze¢,, which

amounts to:
mopkl I, R?
— 1P1:—80if_'

We find in the same way that after subtiaction of the JourLu
heat, an equal amount of energy is yielded by the second generatlor
of current. Together the total quantity of energy yielded by the
generator of current, amounts therefore to:

-

1
- o mepk I1,1,R?,

which corresponds with the value 4 4 A7), required for the work
of the ponderomotive forces and the increase of the magnetic energy.

Chemistry. — “Molecular-Allotropy and Phase-Allotropy in Organic
Chemistry.” By Prof. A. Smirs. (Communicated by Prof. J.
D. van per Waars).

1. Survey of orgamic pseudo-systems.

1 have indicated the appearance of a substance in two or more
similar phases by the name phase-allotropy, and the occurrence of
different kinds of molecules of the same substance by the name of
molecular-allotropy. It may be assumed as known that one of the
conclusions to which the theory of allotropy leads, is this that phase-
alloiropy is based on molecular-allotropy.

The region in which the existence of molecular allotropy is easiest
to demonstrate is the region of organic chemistry, and I think that
I have to attribute this fact to this that the velocity 'of conversion
between the different kinds of molecules which present the pheno-
menon of isomery or polymery, is on the whole much smaller in
organic chemistry than in anorganic chemistry ; in organie substances
it seems even not perceptible in many cases. The substances, for
which this is, however, the case, and which were formerly called
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