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The sextuple involution, which |o°®] determines in a plane ¢, bas
three singular points S of order two lying in a straight line s and
(in the intersections of 8%) four singular points of order one, which
are completed into sets of six by the pairs of an involution lying on s.

Any ftrisecant ¢ of a ¢° is trisecant of o’ curves of the congruence
and in particular of a figure {¢*, 8*). The congruence of the singular
trisecants is therefore identical with the congruence of the chords
of B¢, is consequently a (2, 6).

The cone projecting a ¢° out of one of its points has in common
with ¢° the 6 intersections of the two curves; the remaining 9 points
determine each a singular bisecant b.

The suwrface II7 belonging to a point S of ¢* consists of =2, the
plane ¢ (of which any straight line is singular bisecant) and a cone
(6)". Consequently the singular bisecants b form a congruence (9, 12).

A plane ¢ coniains a curve ¢® being the locus of the points of
confact of curves ¢°. As ¢° has 34 points in common with 48,
outside ¢°, the curves (° touching ¢ form a @, which is moreover
intersected by ¢ in a curve ¢*'. As ¢° is intersected by an arbitrary
=?* in 10 points, ¢® is decuple curve of @ ; so ¢?* has three
octuple points /S. From this 1t ensaes further that ¢° and ¢*, apart
from the points .S, have 96 points in common, so that ¢ is osculated
by 48 curves o°.

As ¢° has outside 6° 140 points in common with ¥** there are
140 curves ¢° fouching Hwo planes.

The bilinear congimences of twisted curves ¢° and ¢*, which are
determined by mnets of cubic surfaces I have considered in commu-
nications published in volume XVII, p. 1250, in volume XVIII,
p. 43 and in vol. XVI, p. 733 and 1186 of these Proceedings. The
congruence of twisted cubics determined by a [@*] was extensively

treated by Stuyvarrr (Bull. Acad. de Belgique, 1907, p. 470—514).

Mathematics. — “Associated poinis with respect to a complex of
quadrics.” By Ces. H. van Os. (Communicated by Professor
JAN DE VRIES).

(Communicated in the meeting of May 29, 1915).

tLet a triply infinite linear system (complez) be given of quadries
@*. The surfaces passing through a point P form a net and have
moreover seven points ¢ in common. If we associate those points
to P we get a correspondence, which will be considered here.
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§ 1. We first prove the proposition: Any straight line / joining
two associated points P and () contains an involution of pairs
of associated points. Any pencil of the complex has one @ in com-
mon with the net determined by P and @, and intersects / there-
fore along an involution containing the pair of points P, Q. If two
pencils have one ®* i common (f they ‘“intersect” as we shall say
for the sake of brevity) the associated involutions have moreover
one pair of points mm common and so coincide. If the two pencils
do not intersect a third may be introduced intersecting each of them
and it may be seen that the involutions coincide in that case too.
All pencils therefore intersect [ along the same involution, any pair
of points of it consequently determines an infinite number of pencils,
sets apart a net out of the complex, by which the proposition has
been proved.

§ 2. Let us determine the locus of the points P coinciding with
one of their associated points. For this purpose we determine the
number of those points lying on the section ¢* of two @* of the
complex. The sets of eight associated points on ¢* are cut out
on o' by the #* of a pencil (®*) from the complex. Now a pencil
(P*) contains swcteen (P*), touching a twisted quartic of the first
kind ; this 1s easily seen by making the curve to degenerate into a
quadrilateral, each of the sides of which touches then at two @7,
while through each angle passes ome @2, which must be counted
twice.') The number of points lying on ¢* amounts therefore to 16,
their locus 1s therefore a surface of order four, A'.

§ 3. What is the locus of the points @, if P describes a straight
line [?.

Any 9* of the complex inteisects { in two points P; and so con-
tains also the 14 powmnts @) associated to them; the locus of these
ponts is therefore a curve of order seven, o'. It has in common
with / the four intersections of / and A

A plane V passing through [ intersects o’ outside [ moreover in
3 points @, each associated to a point P of I. The 3 joining lines
PQ, which we shall indicate by g¢,, g, and g, contain each an
involution of associated points.

The locus of the points P of V, for which one of the associated
points @ lies in 7 consists of these straight lines and of the section
¢' of V with A, Now this locus is the section of V" with the surface

1y Vide ZrurHEN, Lehrbuch der abzdhlenden Methoden der Geometrie,
Teubner 1914.
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FREVIEW OF THE THEORETICALLY PREDICTED SYMMETRY OF RONTGEN-PATTERNS OF UNIAXIAL CRYSTALS, FOR PLATES PARALLEL TO THE

BASAL FACE, AND TO THOSE OF THE FIRST AND SECOND PRISM. 1,
i
I. Tetragonal System. |
. - Symmetry of the Symmetry of the Symmetry of the
| spis | oy e | ey | Kol || Wt | Rl | s
.. : N r ate parallel to | for ate par. ) ies:
of Symmetry: Crystal-Symmetry: considered Crystals: for ap ;Oglf- s {100? ‘ ar ?1 fof- ‘ ¢ | Crystalspecies:
: : i
9 Tetragonal-bisphenoidal | B, (also = Ay) + | A single quaternary axis| A single horizontal plane A single horizontal plane |No mineral known
- of symmetry of symmetry |
10 *Tetragonal-pyramidal A, A single quaternaryaxis | A single horizontal plane | A single horizontal plane | Wulfenite
_ of symmetry of symmetry |
Ir Tetragonal-scalenohe- Ay (also = A9} 2Ay; | Aquaternary axis ; 22| Two perpendic. planes of { Two perpendic. planes of | Urea,; Potassium-
drical 28 ' planes of symmetry symmetry ; the perpen-| symmetry; the perpen-| hydrophosphate
dic. to the photograph.| dic. ta the photograph.
plate is a binary axis| plate is a binary axis
12 *Tetragonal-trapezohe- A, 2AY, 2A A quaternary axis; 2 < 2 | Two perpendic. planes of | Two perpendic. planes of | Nickelsuiphate
rical planes of symmetry symimetry ; the perpen- | symmetry; the perpen- 6 Hy0)
} dic, to_the photograph. | dic. to_ the photograph.
plate is a binary axis| plate is a binary axis
17 Tetragonal-bipyramidal | Ay; HS; C A single quaternary axis | A single horizontal plate [ A single horizontal plane | Scheelite,; Ery-
of symmetry of symmetry thrite
g Ditetragonal-pyramidal | Aq; 28v'; 2S84 A quaternary axis; 2 < 2 | Two perpendic. ptanes of | Two perpendic. planes of | Penta-Erythrite
~ planes of symmetry symmetry; the perpen-| symmetry; the perpen-
dic. to the photograph.| dic. to the photograph.
- 3 plate is a binary axis| plate is a binary axis
5 Ditetragonal-bipyrami- | 4,; 2A./; 2A,”; HS; | A quaternary axis; 22 | Two perpendic. planes of | Two perpendic. ‘planes of |[Rufile; Cassiterite;
dal 28/;28/;C planes of symmetry symmetry ; the perpen- | symmetry; the perpen-| Potassiumferro-
dic. to the photograph., dic. to the photograph. | cyanide (mimetic)
- plate is a binary axis| plate is a binary axis
— II. Trigonal System. -
. Symmetry of the Symmetry of the Symmetry of the
Ser ‘f,‘?"’g;’b” Indication of the | Elements ‘Uftilsl’mmfl‘ﬂ/ Rontgenpattern Rontgenpaitern Rontgenpattern Representative
U}f Syt;,lm e?’;s: Crystal-Symmetry : consi a’e% d Erystals for a p{g:)tgl fzarallel to | for a z;i‘g%oz;‘fm”el to| fora ’El'lgzt% (j:}zf(ullel to | Crystalspecies :
| _
. 16 E*Trigonal-pyramidal A A single ternary axis No symmetry at ail No symmetry at all Sodzgmop)erjadate
- } (3Hy
7 Trégpm}]-rhombohe- Az (also = Ag); C A single ternary axis No symmetry at all No symmetry at alt Phenaliite; Dolo-
rica . mite
18 *Trigonal-trapezohe- Az; 3A, A ternary axis; three | A single vertical plane | The perpendic.tothe plate| Quars, Cinnadar
. drical planes of symmetry of symmetry is a single binary axis
19 Trigonal-bipyramidal Az; HS A single senary axis A single horizontal plane | A single horizontal plane [No mineral known
of symmetry of symmetry |
20 Ditrigonal-pyramidal Az; 35y A single ternary axis | A single vertical plane | Theperpendic, tothe plate] Turmaline
- of symmetry is a single binary axis
ar Ditrigonal-scalenohe- A; (also = Ag); 3A;; A single ternary axis A single vertical plane | The perpendic. tothe plate| Calcite
drical v ; of symmetry is a single bipary axis
22 Ditrigonal-bipyramidal | A;; 3A,; HS; 3Sy A senary axis; and 2 X3 | Two perpendic. planes of | Two perpendic. planes of [No mineral known
planes of symmetry symmetry; the perpen-| symmetry ; the perpen- .
dic. to the photograph.' dic, to the photograph,
plate is a binary axis' plate is a binary axis
I, Hexagonal System. ' !
]
i |
23 *Hexagonal-pyramidal Ag A single senary axis A single horizontal plane | A single horizontal plane | Nephelite
. . of symmetry of symmetry | .
24 *Hexagonal-trapezohe- Ag; 3A;; BAY A senary axis and 2 X 3 | Two perpendic. planes of | Two perpendic. planes of | Antimonylbarium-
drica planes of symmetry symmetry ; the perpen-| symmetry; the perpen- tartrate 4 Pot-
; dic. to the photograph. | dic, to the photograph.| assiumnitrate
plate is a binary axis| plate is a binary axis
a5 Hexagonal-bipyramidal | As; HS; C A single senary axis A single horizontal plane | A single horizontal plane | Apatite
N of symmetry of symmetry e
26 Dihexagonal-pyramidal | Aq; 3Sv; 35 A senary 4xis and 233 | Two perpendic. planes of [ Two perpendic.’planes of | Zincite, Waurtsite
planes ot 'symmetry symmetry ; the perpen-| symmetry; the perpen-
R dic. to the photograph. | dic. to the photograph.
i plate is a binary axis| plate is a binary azis
27 Dihexagonal-bipyrami- | Ag; 3A,; 3A,; HS; [/A senary axis and 2>X3 | Two perpendic. planes of | Two perpendic. planes of | Beryl
dal 35%v; 35¢; C | planes of symmetry symmetry; the perpen- | symmetry; the perpen-
; dic. to_the photograph.| dic. to the photograph.
l plate is a binary axis| plate is a binary axis
It may be generally remarked here, that planes of symmetr)jll perpendicular to the photographic plate, will be manifested in the Réntgenpattern by their
resp. intersections with the plane of the photographic plate; and that in the case, where the perpendicular to the plate corresponds to the direction ofabinary
axis, this will appear in the pattern, as if a symmetry-centre in the photo were present. Binary axes in a plane parallel to that of the photographic plate are
of course not revealed in the diffraction-pattern. l
N.B. The symmetry-elements of the Crystals are indicated as follol s: 4n = symmetry-axis of the first order, with a period of %; Ap = symmetry-axis of the
second order (axis of composed symmetry) of the period ?ﬁ; HS=a horizontal plane of symmetry; Sy = vertical plane of symmetry; unequivalent axes
and planes are discerned by accents; G = centre of symmetryl The optical axis is always supposed to be wvertical; the cristallographical principal axis of
the same direction is discerned as the c-axis. In the case of the trigonal crystals, the symbols of BRavals are used; in the case of hexagonal and trigonal
(fystals both, the direction of the face (10T0) is supposed to 'Ibe parallel to that of (100) in the tetragonal crystals, and just so that of (12T0) parallel to
that of (010) in the case of tetragonal forms. In some trigonal crystals, the plates were cut parallel to (01T0) and (2170), what does not involve any
appreciable difference for the considered problem, but makes|it necessary to compare more directly the corresponding patterns with those obtained from
tetragonal crystals cut parallel to (110) and (1T0). The symmetry-classes indicated by * are those, whose crystals can appear in enantiomorphous forms.
(Enantiomorphism), . )
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of the points @, which are associated to the points P of V, this is
consequently a surface of order seven, @'

This order is also easily found from the number of intersections
with a o of the compléx; the latter intersects 7 in 4 points P,
contains therefore 28 points €J, associated to it.

The joining lines of associated points apparently form a con-
gruence (7,3).

§ 4. If the straight line / is one of the straight lines PQ, con-
sidered in § 1, a @* of the complex will intersect the straight line
[ in two associated points, consequently contain six points only,
which are associated to points of /. The locus of those points is
therefore a twisted cubic ¢°. The curve ¢’ has been replaced here
by the figure composed of / and the ¢® counted twice. The latter
intersects [ in two of the four points which / has in common
with A*; the two others are the double points of the involution
lying on PQ.

Let us bring through PQ a plane V, in which PQ stands there-
fore for the stiaight line ¢,. This.plane intersects ¢® moreover in a
point R outside g,; the joining lines of R with the two points
on g, associated fto it, must be the straight lines g, and ¢,. We
see therefore that the three intersections of ¢,, g, and ¢, are
mutually associated and that each plane V coniains one set of three
associnted points.

A o* of the complex passing through two associated points lying
on ¢,, intersects @' further in the 6 points associated to them and in
the 14 points associated to its two other intersections with V. As
the total number of intersections must be 28, the 6 points mentioned
first are mnodes of ®’. The three ¢ belonging to g,, ¢, and g, are
therefore nodal curves of &'

A o* passing through the three intersections of g¢,, g, and g, inter-
sects @’ further in the 5 points associated to them and in the 7 points
associated to the fourth intersection of ¢* and V. From this it easily
ensues that the five points mentioned are triple points of @'

§ 5. If P lies on A* one of the associated points coincides with
P. If R jis one of the others the locus of B may be inquired into.

A o* of the complex intersects A+ in 16 points, contains therefore
the 16 X 6 = 96 points R associated to them; that locas is con-
sequently a surface of order 24, A*.

Af and A? intersect in a curve of order 96; it avill, however,
degenerate:

B 29
Proceedings Royal Acad.”Amsterdam. Vol. XVIIL
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1. in het locus of the points P, coinciding with ¢wo of the points
associated to them. A* and A?* fouch each other along this curve.

2. in the locus of the points P, coinciding with one of their
associated ones while two more of the other points associated to
them coincide as well. -

§ 6. In order to find the first of these curves we investigate the
locus of the points B, associated to the points of the section ¢* of
V with A%

A @* of the complex intersects ¢* in 8 points, contains therefore
8 X 6 =48 points R, so that the locus of R is a cuarve of order
24, o*. : - -

The curve ¢* intersects V in 24 points, of which 2 lie on each
of the three straight lines ¢, and these are associated to the inter-
sections of ¢ with the associated ¢°; there remain 18, which must
lie on ¢* and in each of which the point P coinciding already
with @ coincides now moreover with E.

The locus wanted is therefore a curve of order eighteen, o'®.
s

§ 7. The o* found just now intersects A* in 96 points; 36 of
them are lying in the just found intersections with ¢*, the 60 remain-
ing ones lie on A4, coincide conseq{zent]y with one of the associated
ones while two others coincide on c¢'. We see thevefore that the
second of the curves mentioned in § 5 is really of order 60.

§ 8. The @*-of the complex passing through a point P of A*,
have a common tangent ¢ in P. As they form a net two more points
are necessary to determine one of them.

We now take these points infinitely near P, and in such a way,
that they do not lie with ¢ in one plane. The surface ®* thus
determined has two different tangent planes in P, must therefore
be a come which has P as vertex. &* is therefore nothing but the
locus of the vertices of the cones of the complex.

§ 9. The involution [® considered here is a particular case of
an [® investigated by Prof. Jan pE Vmiss'). Three arbitrary pencils
(®*) had been given there. Through a point P passes out of each of
them one ®?; these 3 #* will intersect moreover in 7 points outside
P. If we associate these to P we get the /® meant.

The I*® considered above is acquired by taking the 3 pencils as
belonging to one and the same complex; in that case the three ®*

1) These Proceedings volume XXI, p. 481.
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“passing through P determine a net and have the base-points of this
net in common.

For the more general /® the proposition of § 1 does not hold
good; consequently the joining lines of associated points form 'a
complex of rays instead of a congruence of rays.

The locus of the coincidences is now a surface of order 8; the
curve associated to a straight line [ is of order 23, the surface
associated to a plane V is also of order 23. The question arises
hew the results obtained above are connecled with the properties
of those more general [°.

§ 10. If the 3 pencils (®*) lie in the same complex o' pencils
(4*) may be introduced intersecting the three given pencils. If the @*
of the complex are represented by the points of a tridimensional space,
the (4% are represented by the generatrices of the ruled surface
having the images of the given @* as directrices.

For a point P on the base-curve 2* of a (4% the three @* from
the given pencils passing through P belong to (4*), consequently
they have 2 in common. For such a point P the associated points
Q become therefore indefinite, if we start for the definition of the I®
from the three pencils (®*) instead of directly from the complex.

In order to find the locus of P, we observe that the ®? of the
three pencils (®*) belonging to one and the same pencil (4% are
projectively associated to each other, as immediately follows from
the representation mentioned. The base-curves i* are consequently
sections of corresponding surfaces @* out of two projectively
associated pencils; their locus is therefore a surface of order four, Q°.

§ 11. If starting from the more general I®, the given pencils @* are
allowed to change in such a way that they come to lie in the same com-
plex, the occurrence of £2* will apparently cause various degenerations.

As the points associated to a point P of £t are indefinite they
may also be considered as coinciding with P, and consequently the
surface A® of the coincidences of the general /® will degenerate into
A* and L. . .

A straight line [ intersects £* in 4 points, intersects therefore
four 2%, the ¢ associated in the general case to / degenerates
consequently into the ¢’ found above and those four 4.

A plane V passing through / intersects ¢** in general 1n 15 points
outside /, of these 12 lie now on £¢, which are associated by 3’s
to 4 points of /.

_From the section of-V" with the associated surface ®** the section
29%
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with ¢ is therefore separated thrice, and as this section must
be counted once more as part of the section with A®, &* hag
degenerated into the surface &7 found above and in the four times
counted surface £‘,

§ 12. On each of the straight lines P considered in § 1 lies
an involntion of associated points, of which the double points are
sitnated on A‘. If these are associated 1o each other an inwvolution
on A is obtained. It has been deduced in a different way by STUuRM
(Die Lehre von den geometrischen Verwandischaften, Vol. III, p. 409).
He proves among others that in this way to each plane section ¢*
of A¢ a twisted curve o° of order six and rank sixteen is associated.

Chemistry. — “On the allotropy of the ammonium halides 1.’
By Dr. F. E C. Scuerrsr. (Communicated by ‘Prof. A. F.
HoLLEMAN).

(Communicated in the meeting of June 26, 1915).

1. Introduction. In the literature, in particular in the crystallogra-
phical literature, there are a number of papers to be found which lead
us to the conclusion that ammonium chloride and ammonium bromide
can occur in two different crystalline forms. Thus Sras?') found that
the transparent crystalline mass which deposits from the vapour of
subliming ammonium chloride, comes off from the wall when cooled,
and becomes opaque; he also states that the specific weight of the
transparent and the opaque ammonium chloride are different. Though
Stas does not enter into further details about these phenomena, these
experiments would already be sufficient to suggest dimorphy here.
It is remarkable that Sras has evidently succeeded in cooling the
transparent ammonium chloride, which according to the above is
metastable at the ordinary temperature, to room temperature without
the conversion taking place, the more so because in the papers that
have appeared later no indications are to be found for this possi-
bility. GossNer.”), who repeated Stas’ sublimation experiment, says
that generally conversion sets in already during the sublimation, and
the clear crystals can only be preserved for a short time.

Leamany ®) was the first to conclude to dimorphy; he tried

f) Stas Untersuchungen iher die Geseize der chemischen Proportionen u.s. w.
ibersetzt von ArownstEiN. S. b5 (1867 .

%) Gossner, Zeitschr. f. Kryst. 88 110 (1908).
8) Lemmann, Zeitschr, f. Kryst. 10 321 (1885).



