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Chemistry. — “In-, mono- and divariant equilibria” 1I. By
Prof. F. A. H. SCHRUINEMAKERS.

5. Ternary systems. Y

In an invariant point of a ternary system five phases occur,
which we “will call 1, 2, 3, 4 and 5; consequently this point is a
quintuplepoint. Five curves, therefore, start from this point, which
we shall call (1), (2), (3), (4) and (5) according to our former
notation. Further we find § (n 4 2) (n 4 1) =10 regions, viz. 123,
124, 134, 234, 125, 135, 235, 145, 245 and 345.

We call the three components of which the ternary system is
composed: A, B and C; the five phases then can be represented
by five points of the plane 4 B (. These five points may be situated
with respect to one another in three ways, as has been indicated i
figs. 1, 3 and 5. In fig. I they form the anglepoints of a quint-
angle ; in fig. 3 they form the quadrangle 1 2 5 3, within which
the point 4 is situated; in fig. 5 they form the triangle 1 2 5, within
which the points 3 and 4 are situated.

We can however consider figs. 3 and 5 also as quintangles; in .
each of them the sides have been drawn and the diagonals have
been dotted. We call fig. 3 a monoconcave and fig. 5 a biconcave
quintangle.

We are able to make of fig. 3 a monoconcave quintangle in different
ways; we do this, however, in the following way. We draw in the
quadrangle, within which the point 4 is situated, the diagonals 15
and 23. These divide the quadrangle into four triangles; the point4
is situated within one of these triangles. Now we unite the angle-
points 1 and 2 of this triangle with the point 4 and we consider
the lines 14 and 24 as sides of the quintangle, so that a mono-
concave quintangle is formed.

In order to change fig. 5 into a quintangle we draw a straight
line through the points 3 and 4; this intersects two sides of the
triangle, in our case the sides 12 and 15. We now replace theside
12 by the two lines 14 and 24, the side 15 by the lines 13 and
35, so that a biconcave quintangle arises.

In the figs. 1, 3 and 5 the anglepoints are numbered in the follow-
ing way. We take any anglepoint and we call this the point 1;
two diagonals start from this point. Now we go along one of

) For another treatment confer F. A. H. ScHREINEMAKERS. Die heterogenen
Gleichgewichte von H, W. Baruuis Roozesoom 1. 218,
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these diagonals towards another anglepoint and we call this 2, from
this point we go again along a diagonal towards another anglepoint,
which we shall call 3; in the same way we go from point 3
towards point 4 and from this point towards point 5. (See the figs. 1,
3 and 5). We call this order of succession ‘“the diagonal succession”.
It will appear from our further considerations for what reason this
definite order of succession has been chosen.

Type I. Now we shall deduce the P, 7-diagram when the five
phases form, as in fig. 1, the anglepomts of a convex quintangle.
As the lines 23 and 45 intersect one another, it follows for the

phases of curve (1):

24+32445 W

DICNRON (4)(5)" - '
We find for the phases of curve (2):

34422145 o)

@@ @ [ @)Y
Now we draw in a P, T-diagram (fig. 2) arbitrarily the curves
(1) and (2); for fixing the ideas we take {2) at the left of (1). With
regard to this the above mentioned reactions have been written at
once in such a way that also herein curve (2) is situated at the left
of (1). [For the distinction of ““at the right” and “at the left” of a
curve we have previously assumed that we find ourselves in the
invariant point on this curve facing the stable part].

Fig. 1

Now we shall determine the position of curve (3). It is apparent
from the first reaction that the curves (2) and (3) are situated at
the same side of curve (1); as (2) is sitnated at the left of (1), (3).
must consequently be situated also at the left of (1).

It is apparent from the second reaction thai (3) and (l) are
sitnated on different sides of (2); as, according to our assumplion
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curve (1) is situated at the right of (2), (3) must consequently be
sitnated at the left of (2).

Consequently we find: curve (3) is situated, at the left of (1) and
of (2); curve (3) is situated therefore, as is also drawn in fig. 2,
between the stable part of curve (2) and the metastable part of
curve ().

Now we determine the position of curve (4). It follows from the
first reaction that (4) is situated at the right of (1); it is apparent
from the second reaction that (4) is situated at the left of (2). Curve
(4), therefore, as is also drawn in fig. 2, must be situated between
the metastable parts of the curves (1) and (2).

At last we have still to determine the positton of curve (5). It
is apparent from the reactions above that curve (5) is situated at the
right of (1) and of (2). Consequently curve (5) is situated within
the angle, formed by the stable part of curve (1) and the metastable
part of curve (2). Within this angle we also find however the
metastable part of curve (3); consequently we now still have to
examine in what way curve (5) is situated with respeet to curve (3).
We take for this the reaction between the phases of curve (3); we
find from fig. 1:

4+52142 3)
WE e o -

As we know already that (1) and (2) are situated at the right
of (3), we have written this reaction immediately in this way that
also herein (1) and (2) are situated at the right of (3). From this is
at once apparent that (5) must be situated at the left of (3).
According to the previous it 1s apparent, therefore, that curve (5)
must be situated between the metastable parts of the curves (2) and (3).

Besides the reactions 1, 2, and 3 we may still deduce two other
reactions from fig. 1; those reactions refer to the phases of the
curves (4) and (5). Although those reactions are no more wanted,
they may however be used as confirmation. We find:

1452243 and 14+2234 14
CIORNCREOIC) . IORRONREIC)

The partition of the curves, which follows from this is also in
accordance with fig. 2.

Now we have still to deduce the partition of the regions. Between
the curves (1) and (2) the region (L2) = 345 extends iiself, between
(1) and (3) the region (13) =245, between (1) and (4) the region
(14) = 235 and between (1) and (5) the region (15) = 234. When
drawing those regions we have to bear in mind that a region-angle
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is always smaller than 180°. When we determine in a similar way
the position of the other regions, we find a partition as in fig. 2.

The following is apparent from fig. 2. When we move, starting
from a point of the curve (1), around the quintuplepoint, the succession
of the curves is: (1), (2), (3), (4), (5) or the reverse order (1), (5),
@), (3), (2); we shall express this in the following way:

“The curves follow one another in diagonal order”.

Further it is apparent that the partition of the curves is symmetrical
in that respect, that we find between every two curves the meta-
stable part of another curve. Also we see that the_regions are
divided symmetrically with respect to the different curves.

This symmetrical position of curves and regions with respect to
one another is based of course on fig. 1; this is viz. also symme-
trical in so far that each phase is sitnated outside the qnadrangle,
which is formed by the four other phases.

Further we see in fig. 2 again the confirmation of the rule that .

each region which extends over the metastable or stable part of a
curve (F),) contains the phase F,. Let us take e.g. curve (1); the
region 134 extends over the stable part of this curve, the regions
124, 125 and 135 extend over the metastable part; each of these
regions contains the phase 1.

Type 1I. Now we- consider the case that the five phases form
the anglepoints of a monoconcave quintangle (fig. 3). In order
to determine the position of the curves (1)—(5) we take the five
reaclions:

4152243 | 52344

OIORNORROIC) IGRRORNCHICY

1194524 2432145 (o

OIGIONNCORNC) OICRNORNOIG)
4214913

CRIONROIOIC)

Now we draw in a /°, 7-diagram (fig. 4) the curves (1) and (2);
for fixing the ideas we take (2) at the right of (1). According to
this the above-mentioned reactions, which refer to the phases of the
curves (1) and (2) have been written at once in such a way that
herein carve (2) is situated at the right of (1).

It follows at once from the first and the second of the reactions
above, that curve (3) is situated at the right of (1) and (2). Conse-
quently curve (3) is situated, as is also drawn in (fig..4) Wit,l1jn the
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angle, which is formed by the stable part of eurve (2) and the
metastable part of curve (1).

It also follows immediately from the first and the second of the
reactions above, that curve (4) is situated at the left of (1) and at
the right of (2). Curve (4) is consequently situated between the
metastable parts of the curves (1) and (2), and reversally the meta-
stable part of curve (4) is situated between the slable parts of the
curves (1) and (2). This is therefore drawn in fig. 4.

P .

(3)

T

Fig. 3. Fig 4.

It follows also from the first two reactions that curve (5) is
situated at the left of (1) and (2). Consequently curve (5) is situated
within the angle, which is formed by the stable part of curve {1)
and the metastable part of curve (2). [Confer fig. 4]. This angle,
however, is divided into two parts by the metastable part of curve
(3), so that we have still to know the position of (5) and (3) with
respect to one another. We can do this with the aid of the third of
the reactions mentioned above; from this it appears viz. that the
carves (1), (2), and (5) are situated on the same side of corve (3';
curve (5) is consequently situated on the left side of (3), therefore,
within the angle, which is formed by the stable part of curve (1)
and the metastable part of curve (3). [Confer fig. 4].

We have used for the determination of the mutual position of
the five curves, the three first reactions only ; we see that the division
with respect to the cnrves (4) and (5), which. follows from the last
two reactions, is also in accordance with fig. 4.

When we determine, in the way treated above, the partition of
the regions, we find this as is indicated in fig. 4.
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It is apparent from fig. 4 that again also in this case the curves
follow one another in diagonal succession. The partition of the curves
is no more symmetrical, however; between the curves {1) and (5)
and between (2) and (3) no metastable curveis found; between (1)
and (2) we find the metastable part of one curve |viz. of curve (4)];
between (3) and (4) and also between (4)and (5) we find two meta-
stable curves. This is also in accordance with fig. 3; herein phase
4 has a particular position with respect to the phases 1 and 2;
this is also the case in fig. 4 with curve (4) with respect to the
curves (1) and (2). In fig. 3 phase 4 has also a particular position
with respect to the phases 3 and 5; this is moreover-the case in
fig. 4 with curve (4) with respeet to the curves (3) and (5).

We see also in fig. 4 the confirmation of the rule, that each
region, which extends over the metastable or stable part of a curve
(£), contains the phase F,. When we fake e.g. curve (1); the
regions 124 and 134 extend themselves over the stable part of this
curve; the regions 125 and 135 extend themselves over the meta-
stable part; each of these regions contains the phase 1.

The regions 125 and 135 extend themselves over the metastable
parts of the curves (1) and (5); both the regions contain the phases 1
and 5. The region 124 extends itself over the curves (1) and (2);
it contains therefore the phases 1 and 2.

Type lII. Now we shall yet consider the case that the five phases
form the anglepoints of a biconvex quintangle (fig. 5). In order
to determine the position of the five curves with respect to one
another, we take the reactions:

9+ 3>4 45 83214445
@) | D @) @ @] W)
4214945 14245223 5
@3] 1)) LG | @ | @ ©)
14924324

OICHCIRRORNCY

We now draw in a P,7T-diagram (fig. 6) the curves (1) and (2);
we take curve (2) at the left side of (1). In connection with this
we have written both the first reactions immediately in such a way
that also herein (2) is situated at the left of (1).

The position of curve (3) follows also at once from bhoth the
first reaclions, viz. at the left of (1) and of (2), consequently we
have to draw in fig. 6 curve (3) within the angle, which is formed
by the stable part of curve (%) and the metasiable part of curve (1).
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Fig. 6.

It follows also from both the fivst reaclions that curve (4) is situated
on the righthand side of (1) and of (2); consequently it is situated
in fig. 6 within the angle, which is formed by the stable part of
curve (1) and the metastable part of (2). Within this angle, however,
also the metastable part of the curve (3) which has already been
determined, is situated; consequently we have yet to examine the
position of curve (4) with respect to curve (3). This follows from
the third reaction; we know viz. already from the previous that (1)
and (2) are situated on the righthand side of (3) [in connection with
this the third reaction is wiitten 1n such a way that herein (1) and
(2) are situated at the righthand side of (3)], so that (4) must be
situated at the left of (3). Hence it follows that (4) is situated within
the angle, formed by the metastable parts 6f curves (2) and (3)

It follows still also from both the first reactions that curve (5) is
sitnated at the right of (1) and of (2); consequently curve (5) must
be situated within the angle which is formed by the stable part of (1)
and the metastable part of (2). This angle is divided into three parts
by the stable part of curve (4) and the metastable part of curve (3),
so that we have still to examine within which of these paris the
curve (B) is situated. This appearsimmediately from the third reaction,
from which it is apparent that curve (5) is situated at the righthand
side of (3). Consequenily curve (5) must be situated within the angle,
which is formed by the metastable part of curve (3) and the stable
part of curve (1).

We bave only used the first three reactions for the determination
of the mutual position of the five curves. The partition of the curves,
which follows from both the last reactions, is also in accordance
with fig. 6.
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When we determine, as has been indicated formerly, the partition
of the regions, then we find this as is indicated in fig. 6.

It is apparent from fig 6 that also again in this case the curves
follow one another in diagonal succession. The partition of the
curves is not symmetrical. The phases 2 and 5 (fig. 5) are situated
in the same way with respect to 1, 3 and 4, the phases 3 and 4
with respect to 1, 2 and 5, while phase 1 has a particnlar position
with respect to the others. This shows itself therefore in the position
of the curves in fig. 6. ,

Also we see again in fig. 6 the confirmation of the rule, that each
region which extends itself over the metastable or stable part of a
curve ([7p), contains the phase Fp. The region 125 extends itself
over the metastable part of curve (1), the regions 124, 134 and 135
extend themselves over the stable part; each of these regions con-
tains the phase 1.

The metastable parts of the curves (1), (2) and (5) are situated in
the region, which is limited by the curves (3) and (4); this region
contains therefore the phases 1, 2 and 5.

When we combine the results, obtained above, then the following
s apparent.

1. Three types of P, T-diagrams exist

a) as in fig. 2, when the five phases form the anglepoints of a
convex quintangle (fig. 1);

0) as in fig. 4, when the five phases form the anglepoints of a
monoconcave quintangle: (fig. 3);

¢) as in fig. 6, when the five phases form the anglepoints of a
biconcave quintangle.

2. The three types differ from one another by the position of
the metastable paris of the carves and by the partition of the regions;
they are in accordance with one another in so far that the curves
follow one another in diagonal succession.

In ovder to formulate the obtained results in anothe1 way, we
shall call “a bundle” a gronp of curves, which follow one another,
without metastable parts of curves occurring between them. Conse-
quently in fig. 6 (5), (1) and (2) form a “bundle”, which we shall
call a “threecurvical” bundle, as it consists of three curves; curve
3) forms a “onecurvical” bundle, the same applies to curve (4).

In fig. 4 (1) and (5) form a “twocurvical’”’ bundle; the same
applies to (2) and (3); curve (4) forms a ‘‘onecurvical” bundle.

In fig. 2 each of the curves forms a ‘“onecurvical” bundle. We

J
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may express the results combined sub 1°, in the following way.

There exist three types of P, 7-diagrams; the tive phases form
the anglepoints of : -

@) a convex (uintangle (fig. 1); then in the P, 7-diagram the
five curves form five ‘“onecurvical” bundles (fig. 2).

b) a monoconcave quintangle (fig. 3); theu in the P, 7-diagram
the five curves form two “twocurvical” and one “onecurvical”
bundle (fig. 4).

¢) a biconcave quintangle (fig. 5); then in the P, 7T-diagram the
five curves form one ‘“threecurvical” and two “onecurvical” bundles.
We can apply the obtained results also in the following way. |

When we know the position of the five curves of a P,7-diagram,
then we can easily determine to which of the types 2, 4 or 6 this
diagram belongs. Hence follows at once the position of the five
phases with respect to one another, viz. whether they form the
anglepoints of a convex, monoconcave or biconcave quintangle.

We shall discuss now an example of the partition of the curves,
starting from a quintuplepoint as is found experimentally in the
system: water, CuCl, and KCI. In {his system occur as solid phases:
KCIl, CuCl,.2H,0 and the doublesalts: CuCl,.2KCL2H,0 and
CuCl,.KCl. We use the following abbreviations: CuGi,.2H,0="Cu,;
CuCl,2KCl2H,0 = Dyo5 and CuCl,. KCl= D;;. We represent by
G the vapour, which consists in this system of waler only.

In fig. 7 the equilibria, experimentally defined, are l'épl'esented;
for the sake of clearness this figure is strongly schematized, otherwise
it would have to be much larger e.g. the point Cu, is situated far
too close to the point CuCl,, the peint D95 far too close to the
sidle CuCl—KCl, etc. Yet we have taken into considejration that
the different points which we have to consider, formn together in
fig. 7 the' same quintangles as this is really the case.

At the temperature 7" = 56.1° occurs the eguilibriom:

C’Mg —I— Dlgz + Dl,l + Lj + G
‘at 1%, = 93.3° oceurs the equilibrinm :
' KCl+ Diye + Diy+ L+ G

As the vapour G consists of water only, in fig. 7 the points W
and G coincide.

Of course five curves start from the point f, they are:

(C’LL.J)f = D1,2‘2 + D1,1 —I— L + G
(Dl_g_g)fz Cug -I— Dia —I— L + G
.D1 1)f -:/ 0162 —I— D1_22 —I—- L —]— G

(Lyy =Cu, + Diss+ D1+ G
(G)f = Cu, + Dis2-} D+ L

Proceedings Royal Acad. Amsterdam. Vol. XVITL

35

-10 -
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Fig. 7.

Fig. 8.

In order to indicate that these curves start from the point f,
outside the parentheses the letter f is written. In fig. 7 gf repre-
sents the solutions of the equilibriuin (Dy.)s, fe those of the equili-
brium (Dy29)r and fb those of the equilibrium (C'u,)r. The small
arrows indicate the direction in which the temperature increases.

Also from the point & five curves start; they are:

) W. Meveruorrer, |Zeitschr. f. phys. Chem. 3, 836 (1889); 5, 97 (1890)]
defined the compositions of the solutions of the quadruplecurves. =

J G. G. Vriens. |[Zeitschr, f. phys. Chem. 7, 194 (1891)] has measured the
vapour-tensions of several points of these curves.

-11 -
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KC)y =Dise+Dy +1L +@
(Digo)y=KCl 4+ Dyy +L H G
(D11)b = KClI +D122—|—L +G
(L)y = KCl 4 Diss D1 L G
(G)[, = KClI +D1z,g—f— D11+L

The equilibria (Cu,)r and (KCl), are the same, as is apparent
from the occurring phases. In fig. 7 fb represents the solutions of
the equilibrium (KCl)s, bc represents the solutions of the equilibrium
(Dio2)s, and ab those of the equilibrium (Dj 1)

Fig. 8 gives a figure of the P,7-diagram, which is experimentally
defined ). This is somewhat schematized for the sake of clearness.
The point f represents the quintuplepoint with the phases:

CZ&Q, D|2fg, D11, Lf and G
the temperature is 56.1°, the pressure is = 73 mm. of mercury. The
curves (Cus);, (Dyg22)p (L)r and ( Dyq)y starting from this point, have
been defined experimentally. Curve (G)r has not been defined; it
is apparent, however, that 1t must proceed in fig. 8 steeply onwards,
a little to the right or to the lefi.

The five phases of the quintuplepoint form a monoconcave
quintangle in fig. 7, its sides Gf, fCus, Cus D11, D1y Dygsand Dy ss G
are dotted in fig. 7. [The point f therefore, corresponds with the
point 4, the points G and Cu, with the points 1 and 2 of fig. 3].
When we lake a diagonal succession of the phases, then we have,
starting from G':

G, Cuy, D 93, Ly and D, .
In the P,7-diagram consequently the succession

(@) (Cua)py, (Dra2)s (L) (Dia)r

must occur, which is also found experimentally, as is apparent from
fig. 8. The metastable continnations of the curves are not drawn
in fig. 8; we find them by the same discussion, which has led us
to fig. 4. So far as some of these metastable conditions have been
realized, they are in accordance herewith.

The point b represents the quintuplepoint with the phases:

ICCZ, D122. D1,1, IJ(, and G
the temperalure is 93.3° the pressure == 340 m.m. Hg. The curves,
starting from this point have been defined experimentally, except
curve (G);; it is apparent, however, that this must proceed in fig. 8
steeply onwards and a little to the right or to the left.

The five phases form a Dbiconcave quintangle, the sides of
which are: W.b, 5.D\s, D.,.Dias, Dias.KCl and KCI. G'[The

H 4. G C. Vemws, le. fig. 6, p. 208.
35%
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point Dy, therefore, correspouds with the point 1, the points b and
D192 with the points 3 and 4 of fig. 5]. When we take a diagonal
snccession of the phases, then we have, starting from pomnt G: G,
Diss, Ly, KCl and Dyi. In the P,7T-diagram~the succession of the
curves must be, therefore:
(GYos (Dr2e)s (D)o, (KClsy  (Dr1)s
As is apparent from fig. 8, this succession has been found also
experimentally. We find the metastable parts-of these curves (not
drawn in fig. 8) by a similar discussion, as has led us to tig. 6.
(To be continued). ~~
Crystallography. — “On the Symmetry of the RoNT6EN-patierns of
Trigonal and Hewagonal Crystals, and on Normal and Ab-
normal Diffraction-Images of birefringent Crystals in general.”
By Prof. H. Haea and Prof. F. M. Jasckr.

§ 1. In connection with the peculiar phenomena observed some
time ago with respect to a number of RoNTGEN-patterns of birefringent,
and more especially of rhombic crystals'), we thought it necessary
to investigate in a rgorously systematical way, what kind of sym-
metry would be found in the diffraction-patterns of umaxial crystals,
if radiated through in directions perpendicular to the optical axis.
For if the supposition were right, that the suppression of the sym-
metry-planes expected by theory in the Roxteen-patterns of rhombic
crystals were conpected in any way with the double refraction,
— as was thought at that time by one of us, — then we
might expect something of the kind also in the case of the patterns
obtained by means of planeparallel sections of uniaxial crystals, if
cut parallel to the optical axis, and radiated through m a direction
pevpendicular to that axis.

To obtain the closest analogy in the orientation with that present
in the case of the rhombic crystals, which were always cut parallel
to the three pmacoidal faces {100}, {010} and {001}, we investigated
in the case of tetragonal crystals those sections, which were parallel
to the first and the second prisms {100} and {110}; in the case of
trigonal and hexagonal crystals we used in the same way the sections
parallel to the prism-faces {1010} and {1210}. In the last mentioned
crystals thus the sections parallel to {1010} will be analogous to
those parallel to {100} in the case of rhombic crystals, the sections
parallel to {1210} corresponding in the same way to those parallel
to {010} in the wmentioned biaxial crystals.

Y} These Proceedings, 17, 1204, (1915),
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