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Chemistry. - "Irt-, 1I10no- anc! diva1'Îrmt equilibria" lI. By 

Pl'of. F. A. H. SCHRETNEMAKERS. 

5. 'I'emaJ'y systems. 1) 

In an imariant point of a ternary system five phases OCCUl', 

which we -wiU call 1, 2, 3, 4 and 5; consequently this point is a 
quintuplepoint. Five curves, therefo1'e, start from this point, which 
we shall cal] (1), (2), (3), (4) and (5) according to OUI' former 
notation. Furthel' we find i (n + 2) (n + 1) = 10 rE'gions, viz. :12p, 
124, 1340, 234, 125, 135, 235, 1405, 245 and 345. 

We caB the three components of which the ternal'y system is 
composed: A, Band C; the five phases tben can be I'epresented 
by five points of the plane ABC. These {h'e points may be situated 
with respect to one another in three ways, as has been indicated III 
figs. 1, 3 and 5. In fig. 1 they form the anglepoints of a quint­
ang!e; in fig. 3 they form the quadrangle 1 2 5 3, within which 
tbe point 4 is situated; in fig. 5 they fOI'm the tl'langle 1 2 5, within 
whieh the points 3 and 4 are Rituated. 

We can however consider figs. 3 and 5 also as quintangles; in 
each of them the sides have been drawn and the diagonals bave 
been dotted. We caU fig. 3 a monoeOllrave and fig. 5 a ,biconcave 
quintangle. 

We are able to make of fig. 3 a monoconcitve quintangle in different 
ways; we do tbis, howevel', in the following way. We draw in the 
qnadrangle, within whieh the point 4 is situated, toe diagonals 15 
and 23. These divide the qlladrangle into foU!' tdangles; the point 4 
is situated within one of these triangles. Now w'e uni te tbe angle­
points 1 and 2 of this triangle with the point 4 and we consider 
the lines 14 and 24 as sides of the quintangle, so that a mono­
concave quintangle is formed. 

In order to change fig. 5 into a quintangle we draw ft, straight 
line through the points 3 and 4; this intel'sects two sides of the 
triangle, in our case the sides 12 and 15. We now l'eplace the side 
12 by the two lines 14 and 24, the side 15 by the lines 13 and 
35, so that a biconcave quintangle arises. 

In the ligs. 1, 3 and 5 the anglepoints al'e numbel'ed 111 the follow­
ing way . We take any anglepoint and we rail this the point 1 ; 
two diagonals start from tliis point. Now we go along one of 

J) For another treJtment confer F. A. H. SCHREINEMAKERS. Die heterogenen 
Gleichgewichte von H. W. BAKHUIS ROOZEBOOM lIP. 218. 
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these diagonals towards anothcr anglepoint and we eaU this 2, from 
this point we go again along a diagonal 10wardc:; another anglepoint, 
which we sllaH cal! 3; in the same way we go from point 3 
towards point 4 and from this point towards point 5. (See the figs. 1, 
3 and 5). VVe call this order of succession ··the diagonal sllccession". 
It wil! appeal' from Oul' fm·thee considerati0ns fol' what reason this 
definite order of succession has been chosen. 

Type 1. Now we shall deduce the P, T-diagram wh en the five 
phases form, as in fig. 1, the anglepomts of a convex qnmtangle. 

As the lines 23 anu 45 intersect one allother, it fo11ows for the 
phases of curve (1) : 

2+3~4+5 I 
(2)(3) I (1) I (4)(5) \. 

We find for the phases of curve (2): 

3+4~1+5 I 
(3)(4) I (2) I (1)(5)\' 

(1) 

(2) 

Now we draw in a P, T-diagram (fig. 2) arbitrarily the curves 
(1) and (:l); 1'01' fixing the ideas we take (2) at the left of (1). With 
regard to this the above mentioned reactions have been written at 
onee in such a way that also herein Cllrve (2) is sitllated at the left 
of (1). [Fot' the distinction of "at tbe right" and "at the left" of a 
curve we have previously assumed that we find ourselves 111 the 
invariant point on this curve faring the stabIe part]. 

Fig. 1 Fig. 2. 

Now we shaH determine the position of Cl1l've (3). It is apparent 
from the first reaction that the ('m'ves (2) and (3) are situated at 
the same side of Clll','e (1); as (2) is sitllated at the left of (l), (3). 
must conSetlllently be óituated also at the left of (1). 

It is apparent from the second l'eaction that (3) and (1) are 
situated 011 different sides of (2); aó, according to our assnmption 
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curve (1) is situated at the right of (2), (3) must conseql1ent1y be 
sitllated at the 1eft of (2). 

Oonsequently we find: curve (3) is situated, at the left of (1) and 
of (2); CUl've (3) is sitllated therefol'e, as is also dl'awn in fig. 2, 
between the stabIe part of curve (2) and the metastable part of 
curve (1). 

Now we determine the position of curve (4). It follows from the 
fil'st reactioTl t~at (4) is situated at the righl of (1); it is apparent 
fl'om the second reaction that (4) it- sitllated at the left of (2). Ourve 
(4), therefore, as is also drawn in fig. 2, must be situated between 
the metastable parts of tile curves (1) and (2). 

At last W'3 have still to detel mine the positlOn of curve (5). It 
is apparent t'rom the reactions above that curve (5) is sitllated at the 
right of (1) and of (2). Oonseqnently curve (5) is situated within 
the angle, formeel by the stable part of curve (1) and the metastab1e 
part of curye (2). Within this angle we aJso find however tlle 
metastable part of curve (3); consequently we now still have to 
examine in what way curve (5) is silllated with respect to curve (3). 
We take for this the reaction between tlle phases of CUl've (3); we 
find from fig. 1: 

4+5;:1+2 ! 
(4) (5) I (3) I (1) (2) \. 

As we knowalready tlw.t (1) and (2) are situated at the right 
of (3), we have written this l'eaction imrnedlately in th is way tb at 
a1so herein (1) and (2) aee sitnated at the right of (3). Prom this is 
at onee apparent that (5) must be situated at the left of (3). 
According to Ihe previons it IS apparent, thel'efore, that curve (5) 
mnst be situated between the metastable part5 of the Cl1l'ves (2) and (3). 

Besides the reactions 1, 2, arId 3 we may still dedLlce two other 
reactIOns fl'om fig. 1; those l'eactions refer to the phases of the 
curves (4) and (5). Althollgh those l'eactions are no more wanted, 
they may however be \lsed as con firmation. 'Ve find: 

1+5~2+3 
(1) (5) I (4) I (2) (3) 

anel 
1+2;::3+1 

(1) (2) I (5) I (3) (4) 

The partition of the curves, which follows from this is also Hl 

accol'elance with fig. 2. 
Now we ha.ve still 10 eledllce the pal·tition of tbe l'egiolls. Belween 

the èllrves (1) and (2) the region (12) = 345 extends ilselt', between 
(1) and (3) the l'egion ()3) = 245, between (1) anel (4) the l'egion 
(14) = 235 find between (1) and (5) the region (15) = 234. When 
dravlTing those regions we have to beal' in minel that fi l'egion-angle 
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is al ways smallel' than 180°. When we de'tel'mine in a simiIal' way 
the position of the othel' regions, we find a pal'tition as in fig. 2. 

The following is apparent from fig. 2. When we move, starting 
from a point ofthe curve (1), around tbe quintllplepoint, the succession 
of the curves is: (1), (2), (3), (4); (5) or the re verse order (1), (5), 
(4), (3), (2); we shall lexpress this in the following way: 

"The curves folIow one another in diagoual order". 
Further it is appal'ent that the partition of the curves is symmetrical 

in that respect, that we find bet ween every two cnrves the meta­
stabie part of another curve. Also we see that the_regions are 
dividecl symmetrically with respect to the different curves. 

This symmetrical position of curves and regions with respect to 
one anothel' is based of course on fig. 1; this is viz. also symme­
trical in so far that each phase is sitnated outside tbe qnadrangle, 
which is formed by the foqr othel' phases. 

FUl'ther we see in fig. 2 again the confirmation of the rllie that 
each region whicb extends over the metastable or stable part of a 
cur\'e (Fp) contains the phase F}J' Let JUs take e. g. curve (1); the 
l'egion 134 extends over the stabie part of this CUl'\'e, 1he l'egions 
124, 125 and 135 extend over the metastabIe part; each of these 
regions contains the phase 1. 

Type Il. Now w-e' consider the case that the five phases form 
the anglepoints of a monoconcave quintangle (fig. 3). In order 
to detel'mine the posit.ion of the curves (1)-(5) WE' take the fi ye 
reaclions : 

4+5~2+3 
(4)(5) I (1) I (2)(3) 

1+5~3+4 
(1) (5) I (2) I (3) (4) 

1+2+5~4 2+3~1+5 
(1)(2)(5) I (3) I (4) ('~)(3) I (4) I (1)(5) 

4~1+2+3 
(4) I (5) I (1)(2)(3) 

Now we draw in a P, T-diagram (fig. 4) the curves (1) and (2); 
for fixing the ideas we take (2) at the right of (1). According to 
this the above-mentioned reactions, which refer to the phases of the 
curves (1) and (2) have been wl'itten at once in such a way that 
herein curve (2) is sitllated at the right of (1). . 

It foliows at once from the fil'st and the second of the reactions 
above, that curve (3) is siLllated at the right of (1) and (2). Oonse­
qUE'ntly curve (3) is situated, as is also drawn in (fig . .4) wit,hin the 
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angIe, which is formed by the stabIe part of cnrve (2) and the 
rnetastable pal't of curve (1). 

It also fo11ows immediately from the first and the second of the 
reactions above, that curve (-1) is situated at the Ieft of (1) and at 
the ,right of (2). CUl've (-1) is consequently situated between the 
metastabIe parts of the curves (1) and (2), and l'evel'sally (he meta­
stabIe part of curve (4) is situated between the stabIe parls of the 
curves (1) and (2). This is therefore drawn in fig. 4. 

~---_ ..... , 
l~ig. 3. 

p 

12.3 
13~ 
.2.35' 

12S 

(3) 

(2.) T 

Fig 4. 

It follows also fwm the first two l'eactions that curve (5) is 
situated at the Ieft of (1) and (2). Consequently curve (5) is situated 
within the angle, which is fQrmed by the stabIe part of curve (1) 
and the metastable part of curve (2). [Confer fig. -1]. This angIe, 
however, is divided into two parts by the metastable part of rUl'\'e 
(3), so th~J we have still to lmow the position of (5) and (3) with 
respect to ,one another: We can do this with the aid' of the tbird of 
the reactions mentioned above; from this it appears viz. tbat the 
curves (1), (2), and (5) are situated on tbe same side of curve (3:; 
curve (5) is consequentIy sitl1ated on the 1eft side of (3), therefore, 
'(Vithin the angle, which is formed by the stabIe part of CUl'\'e (1) 
and the metastable part of curve (3). [Confer fig. 4]. 

We have used fOl' the determination of the mutual position of 
the five curves, tlle thl'ee first reactions onIy; we see that the division 
wilh respect 10 the Clll'ves (4) and (5), which. follows from the last 
two reactions, is a1so in accordance witb fig. 4. 

When we det~rmine, in the way treated above, the partition of 
tlle regions, we find this as is indicared in fig. 4. 
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It is apparent from fig. 4: that again albo in this case the curves 
follow one anothel' in diagonal surcession. The partition of the curves 
is 110 more symmetrical, however; between the CUl'\'es (1) and (5) 
and bet ween (2) and (3) no metastable curve -is found; between (1) 
and (2) we find the metastable paL't of one curve l VlZ. of curve (4)J; 
between (3) and (4) and also between (4) and (5) we find two meta­
stabIe curves. This is also in accol'clance wilh fig. 3; heL'ein phase 
4 has a particular position with respect 10 the phases 1 and 2; 
Ihis is also the case in fig. 4 with curve (4) with respect to the 
curves (1) aud (2). In fig. 3 phase 4 has also a pal'ticular position 
with respect to (he phases 3 and 5; this is moreover-the case in 
fig. 4 with curve (4) with respect to the curves (3) and (5). 

We see also in fig. 4 the conth'mation of the rule, that earh 
l'egion, which exlends over the metastable or stabie part of a curve 
(Fp), contains the phase ~" When we take e. g. CUl've (1); the 
regions 124 and 134 exteud themselves over the siabIe part of this 
CUl've; the l'egions 125 and 135 extend themselves over the meta-

stabie part; each of these regions contains the phase 1. 
The l'egiol1s 125 and 135 extend tbemsel ves over the metastable 

parts of the curves (1) and (5); both the l'egions contain the phases 1 
and 5. The region 124 exlends itself o\'er the curves (1) and (2); 
it contains therefore the phases 1 and 2. 

TYl-'e lIl. Now we sha1l yet consider the case that the five phases 
form the anglepoints of a bicon vex quintangle (fig. 5). In order 
to detel'mine the position of the five curves with respect to one 
another, we take the reactions: 

2 + 3;:4+5 
(2) (3) I (1) I (4) (5) 

3;:1+4+5 
(3) I (2) I (1) (4) (5) 

4;:1+2+5 1+2+5;:3 
(4) I (3) I (1) (2) (5) (1) (2) (5) I (4) I (3) 

1+2+3;:4 
(I) (2) (3) I (5) I (4) 

. (5) 

We nuw draw in a P, T-diagram (fig. 6) the curves (1) anel (2); 
we take curve (2) at the left Ride of (1). In connection with this 
we have Wl'ltten both the first l'eactions immediately in such a way 
th at also hel'ein (2) is situated at t!ie left of (1). 

The position of CUl've (3) follows also at on ce t'rom both the 
fil'st l'eactions, viz. at tlle left of (1) and of (2), conseqnently we 
have to draw in tig, 6 curve (3) within the angle, which is formed 
by the stabie pc:trr of curve (2) and the metastable part of curve (1). , 
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(S) 

(it) .2.35 

2- (I) 
1.2 5' 
13~ 

T 
l!'ig. 5. ~'ig. 6. 

It f'ollows also from both the nrst reactions that curve (4) is siluated 
on the rlghthand side of Cl) and of (2); consequenLly it is sitllated 
in fig. 6 wltlnn the angle, which is formed by the stabIe part of 
curve (1) and the metastable part of (2). Within Ihis angle, however, 
also the metastable part of the Cl1l've (3) whi.ch has alreacly been 
determined, is srtuated; con&equently we have yet to examine Ihe 
posltlOn of ClU\'e (4) with respect to Curve (3), This fol!ows from 
the thil'd reaction; we know viz. already fl'om the previous that (1) 
and (2) are sitllateu on the righthand side of (3) ,ill conllection with 
this the third reaction is Wl'ltten III snch a way that herein (1) and 
(2) at'e situated at the righthand side of (3)J, 50 that (4) must be 
situateu at the left of (3). Hence it follows that (4) is situated within 
the angle, formed by the metastable pal'ts óf curves (2) and (3) 

lt follows still also from both the {h'st reaclions that cune (5) is 
bitnated at the l'ight of (1) anel of (2); conseqllently curve (5) must 
be sÏtnated within the angle which is formed by the stable part of (1) 
and Lhe metastab!e pad of (2). Thi~ angle is di videel into three parts 
by the stabie part of curv€' (4) alld the metastable part of CUl'Ye (3), 
so that we have still to examine within w hich of these parts the 
curve (5) is situated. This appeal's immediately from the third reaction, 
from which it is apparent that curve (5) is situated at Ihe righthand 
srde of (3). Consequent!y curve (5) must be situated within Ihe angle, 
which is formed by the metastable )Jart of curve (3) and the slable 
PUt't of curve (1). 

\Vo have only used the tirst three reactions fol' the detel'mination 
of the mlltual position of the fi \'e curves. The partition of the curves, 
w hieh follows from ~ bot h the last reactions, is also in accordance 
with fig. Ö. 

, t 
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When we detel'mine, as has been indicated fOl'merly, the partition 
of the l'egions, til en we find th is as is indicated in fig. 6. 

It is apparent from fig 6 that 11,1so again in this case the cnrves 
follow one another in diagonal 5uccession. The partition of the 
Cl1l'ves is 1I0t symmetricaJ. Th~ phases 2 and 5 (fig. 5) are situated 
in the same way with respect fa 1, 3 anrl 4, the phases 3 and 4 
with respect to 1, 2 and 5, wilde phase 1 has a partic!llar position 
with respect to the othel's. TllÎs shows itself therefol'e in the position 
of tlle curves in fig. 6. 

Also we see again in fig. 6 the confirmation of the rule, that each 
region which extends itself o\'el' the metastable or stabie part of a 
cUl've (Fl»), contains the phase Ep. The region -125 extends itself 
over tlle metastabie part of curve (1), tbe regions j 24, 134 and 13~ 
extend themsel ves over the stabie part; each of these regions con­
tains the phase 1. 

The metastable parls of the curves (1), (2) and (5) are situated in 
the l'egion, which is limited by the Cllrves (3) :;t.nd (4); fhis region 
contains therefore the phases 1, 2 and 5. 

When we combine the l'eslllts, obtained above, rhen the fo11owing 
is apparent. 

1. Thl'ee types of P, T-diagrams exist 
a) as in fig. 2, when the five phases fOl'm the anglepoints of a 

convex qllintangle (fig. 1); 
b) ae in fig. 4, when the five phases form the anglepoints of a 

monoconcave ql1intangle' (fig. 3); 
c) as in fig. 6, when the fi\'e phases form the anglepoints of a 

biconcave quintangle. 
2. The thl'ee types diffel' from one another by the position of 

the metastable parls of the curves and by the partition of the regions; 
they are in accordance with one anothel' in so fal' that the curves 
follow one another in diagonal succession. "\ 

In order to formulate fhe abfuilled results in another way, we 
sha11 eall "a bundIe" a gt'Ol1p of curves, which fallow one another, 
withont metastable parts of CUl'ves occl1rring b~tween them. Oonse­
quently in fig. 6 (5), (1) anel (2) form a "bundie", which we shall 
eall a "th,'eeC'lll'vical" bnndie, as it consists of tl1l'ee curves; curve 
(3) forms a "onecur\lical" bnndle, the same applies to curve (4). 

In fig. 4 (1) anä (5) form a "twocurvical" bundIe ; the same 
applies ta (2) and l3); ~urve (4) forms a "onecllrvical" bundie. 

In fig. 2 each of lhe curves fOl'ms a "onecul'vieal" bunOle, We 
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may express the l'esults combineçl sub 1°, in the following way. 
There exist three types of. P, 1:diagrams; lhe tive phases form 

the anglepoints of: 
a) a convex quintangle (fig. 1); tiJen in the P, T-diagl'am the 

tlve curves form fi ve "onecUl'vical" bundIes (fig. 2). 
b) a monoconcave quintangle (fig. 3); tbeu in the P, T-diagram 

the five curves form two "twocul'vical" and one "onecul'vical" 
b1lnole (fig. 4). 

c) a biconcave ql1intangle (fig. 5); then in the P, T-diagl'am the 
five curves form one "tbreecul'vical" and two "onecl1l'vical" bundies. 
We can apply the obtained l'esults also in the following way. I 

When we know the position of the five curves of a P, T-diagram, 
then we can easily detemline to which of the types 2, ± or 6 this 
diagram belongs. Rence follows at ollce the position of the five 
phase8 wiîh respect to one àl1othel', viz. whether they fOl'm the 
anglepoints of a convex, monoconcave or biconcave quintangle. 

We shall disCllSS now an example of the pal'tition of the cnrves, 
starting from a quintuplepoint as is found experimentally in the 
system: water, CuCl2 and KCI. In Ihis system occU!' as solid phases: 
KCI, CnCl2 .2H2 0 and the doublesalts : CuC12.2KC1;2H2 0 and 
Cu C12 .KCI. We use the following; abbreviations: CUG'l2·2B2 O=Cu2 ; 

CuCl2.2KCI.2H2 0 = D19•2 and CuCl2 .KC1= D1.1' We represent by 
G the vapour, which consists in this system of waler Ol~ly. 

In fig. 7 the equilibria, experimentally defined, are r~presented; 
for the sake of clearness th is figul'e is stt'Ongly schematized, otherwise 
it would have to be much largel' e.g. the point CU 2 is sitnated far 
too close to tlle point Cu C12 , the point DI 2.2 fal\ too r'lose to the 
side CuC/n-KC1, etc. Yet we ha\'e taken into considet'ation that 

• iI 

the different points which we have to consider, fOrm togethel' in 
fig. 7 thé{> same quintangles as tl;-is is really nïe" cäse~ - --, 

At the temperatul'e l' = 56.1 0 OCCUl'S the equiliurimll: 

062 + Dl 2 2 + Dl.I + LJ + G 
'at Tb = 93.3° OCClU'S the equilibrillm: 

KGl + DI ~ 2 + Dll + Lb + G 
As the vapour G consists of water only, in fig. 7 the points Hl 

and G coincide. 
Of course five Clll'VeS start hom tbe point J, they are: 

(C16 2)f = D1.2.2 + D1.1 + L + G 
(D1.2.2)f= 062 + D I.l + L + G 
(Dll)! = C~62 + D1.22 + L + G 
(L)f / CU2 + D1.2.2 + Du + G 
(G)f = OU'2 + D1.22 + Dll + L 

Proceedings Royal Acad. Amsterdam. Vol. XVlII. 
\ 

35 
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Fig. 7. 

p (~ 

T 
Fig. 8. 

In order to indicate that these curres start from the point J, 
outside the parentheses the letter f is written. In fig. 7 gf repre­
sents the solutions of the equilibrium (Dil)!, Je those of the equili­
brium (D1.2.2)j and fb thm,e of the equilibrium ([lu 2 )!. The srnall 
arrows indicate the dil'ection in which the temperature increases. 

Also from the point b fire curves start i they are: 

1) W. MEYERHOFFER. lZeitscbr. f. pbys. Chem. 3, 336 (1889); 5, 97 (1890)] 
defined the compositions of the solutions of the quadruplecurves. . 

J G. C. VRIENS. lZeitschr. f. phys. Chem. 7, 194 (1891)] has measured the 
vapour-tensions of several points of these curves. 
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KCl)b = D122+ Dil + L + G 
(D12'1 )b = KCI + Dll + L + G 
(Dll)b = KCl + D122+ L + G 
(L)b = KCl + D122+ Dil + G 
(G)b = KCI + D12•2+ DIl + L 

The equilibria (Cu2 )/ and (KCl)b are the same, as is apparent 
from the occUl'l'ing phases. In fig. 7 fb l'epl'esents the solutions of 
the equilibrium (KCl)b, bc represents the solutions of the equilibrium 
(Dl 2 2 )b, and ab those of the equihbri urn (D11)6. 

Fig. 8 gives a figl1re of the P, T-dIagram, which is expel'imentally 
defined 1). This I is somewhat schematized fol' the sake of clearness. 
Tile point f l'epresents the ql11fJtuplepoint with the phases: 

Ot2, DI 22, Dl], Lf and G 

the temperature is 56.1°, the pressure is ± 73 mmo ofmercury. The 
curves (CIl2)j, (D122 )f, (L)f and ID11)/ starting from IhiR point, have 
been defined experirnentally. Omve (G)/ has not been defined; it 
is apparent, however, that Jt must proceed in fig. 8 steep))' onwal'ds, 
a little to tile l'ight Ol' to the lefl. 

The five phases of the quintllplepoint form a monoconcave 
qllintangle in fig. 7, its sides Gf,fG~t2, Cn2 D11' D11 D12 2 and DI 22 G 
are dotted in fig. 7. [The pomt f therefol'p, corl'esponds wlth the 
point 4, the points G and Otz with tlle points 1 and 2 of fig. 3J. 
When we take a diagonal succession of fhe phases, then we have, 
starting from G: 

G, Ou~, D122' Lf ~nd Dil, 

In the P,T-diagram conseqnenl)y the succession 

( G )/, (CU2)/, (Dl 2 2 )/, (L )/, (D11)/ 

must OCCUl', which is also found experimentally, U'l is apparen t from 
fig. 8. The metastable continll~tions of the Clll'ves are not drawn 
in fig. 8; we find fhem by the same dis(,uSSlOl1, whirh has led us 
to fig. 4. So far as some of these metastable condltlOlls ha"e been 
l'ealized, they are in accol'dance hel'ewith. 

The point b l'epresents the qnintuplepoint with the pbases: 
KCl, Dl 2 2, D1.1, Lb and G 

the tempel'aLm'e is 93.3°, the pl'essnre ± 340 m.m. Hg. The curves, 
starting t'I'om this point ha.ve been defined expel'imentally, except 
Clll've (G)b; it is apparent, ho wever, that this must pl'oceed in fig'. 8 
steeply onwal'ds and a little to the right or to the left. 

The five phases tOl'm a biconcave quintangle, the sides of 
which are: JiV.b, b. Pl.t, D .. l' D 12 2, DI 22. KCI and KCl. G [The 

1) J. G C. VRICNS, l.c. fig. 6, p. 208. 
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poin t DI I, therefore, cOl'l'espouds with the point 1, the points band 
D1.2.2 with the poilJts 3 and 4 of fig. 5 J. When we take a cliagonal 
sl1cC'es~sion of the phases, then we have, starting from pomt G: G, 
D12 2, Lb. KGl and Dll• In the P, T-diagram-the succession of the 
curves must be, therefore: 

(G)b, (D1.22)6 (Lh, (J(Cl)b, (D1.l}b 

As is appal'ent from fIg. 8, this snccession has been found also 
expel'imen tally. We find the metastable parts rof these C'lll'ves (not 
drawn in fig. 8) by a similar discussioll, as bas led ns to tig. 6. 

(To be continueel). --

Crystallography. - "On tlw Syrnmetry of the RÖNTGEN1JCtttems of 
Tl'iyonal anel Hexa,qonal Ci'ystrds, and on lVo1'1nal and Ab­
norrnal D~ffraction-Irnages of bi1'ef1'ingent C1'ystals in gene1Yr.!." 
By Prof. H. HAGA and Prof. F. M. JAEGEH. 

§ 1. In connection with the peruliar pbenomena observed some 
time ago with respect to a numbel' of RÖNTGEN-patterns of birefringent, 
and more especially of rhombic cl'ystals 1), we thought it necessal'y 
to investigate in a l'Igol'ously systematical way, what kind of sym­
metl'y would be found in the diffraction-patterns of umaxial cl'ysta1s, 
if l'adiated through in dil'ections pel'pendicular to the optical axis. 
Fot' if the supposition were rigbL, that the Rllppression of the sym­
metl'y-planes expected by theory in the RÖNTGEN-patterns of rhombic 
crystals were conneeted in any way with the don bie refraction, 
- as was thollght at that time by one of us, - then we 
migbt expect something of the kind also in the case of the pattet'ns 
obtained by means of planeparallel sertiom: of uniaxial crystals, if 
cut pal'allel to the optical axis, and radJated through m a dil'ection 
pel'pendicn lar to thaI axis. 

To obtain the closest analogy in the ol'ientation with that present 
in the case of the I'bomblC cl'ystals, whieh were always cut parallel 
tn the three pmaeoïdal fa('es POOI, 10101 and 10011, we imestigated 
in tlJe cabe .of tetl'agonal crystals tbofle sections, whieb were parallel 
to t he fil'st anc! the Re('ond pl'isms {lOOI and 11101; in the case of 
tl'igonal alld hexagonal cl'ystals we llóed in the same way the sections 

parallel fo file pl'Ïsm-faees 110JOl anel fI2TOI. In the last rnentioned 
cl-yt:!tals thus tbe se(~tions parallel to 11010j wilI be analogous to 
those pamllel to POOI in the case of l'bombic erystal'l, the sections 

parallel to iI:iI0I corl'esponding in the same wt\y to those parallel 
to 1°101 in tbe mentioned biaxial crystals. 

I) Tbpse Proceedings, 17, 1204, (1915), 


