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Physics. . — “Entropy and” Probability.” By 0. Posrya. (Com-
municated by Prof. H. A. LorENTz).

(Communicated in the meeting 'of November 27, 1915).

§ 1. In the kinetic definition of the entropy it is necessary to
determine a function S which 1. satisfies the equation dS :%@
on transition from a state of equilibrium to a neighbouring one, and
2. increases in an isolated system which is notin equilibrinm. Many
such definitions have been given, in which now special attention
was paid to one, now to the other property. The S that satisfies the
second demand, must then also satisfy the first in the particular case
that there is equilibrium. Additional constants evidently have no
influence (by constant we understand here for 1: independent of
energy and volume; for 2: independent of distribution of place and
velocity).

In connection with the theory of quanta, however, these constants
have come more into the foreground, specially for so far as they
depend on the elementary region g of the extension in phase of the
molecules and the number of molecules .V. Of late attention has
also been drawn to other properties which the entropy-function should
satisfy, and more particularly: 3. the entropy of a quantity of
substance is equal to the sum of the eniropies of its parts. Further
the dimension of the entropy has also become of more importance.
When following Pranck’s example we calculate the entropy in the
state of equilibrium for a perfect gas by the aid of the definition
S =k log P (P = probability), and make use of the condition that
property (3) must be fulfilled, we come to the conclusion that the
above mentioned elementary region g must be proportional to V.

Important objections are, however, adduced against this result by
Loruntz in his article: “Observations on the theory of the mon-
atomic gases.” ?)

This result, hence also these objections are obviated by TeTRODE
by dividing the expression found for the emtropy by N/. In the
cited article LoruNTz observes, lLowever, in reference to this that
there is no physical reason to be found for this division.

The purpose of this article is chiefly to subject the existing diffi-
culties to a closer examination.

§ 2. If we define the entropy by means of S=1£%/log P, the
L) Verslagen Kon. Ak. v. Wel. Amsterdam, Deel XXIII (1914) p. 515,
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probability P should first be defined. In the calculus of probability
it is customary to define the probability as: the ratio between the
number of cases of equal chance favourable to the event and the
total number of cases of equal chance. If there is not a finite number
of such cases to be indicaled, we get instead the ratio’ between the
region of the favourable cases and the total region (either with a
variable weight or without one).

When we wish to determine the probability of a certain state for
a gas mass (and henceforth we shall only consider perfect gases)
we must understand by this region the region of the possible phases
of the gas-mass on definite suppositions of energy and volume. The
region of the favourable cases is then the phase-extension for which
the state exists, the probability of which is to be determined.

When following the example of BorLtzmany and GiBBs we consider
the weight-function at a definite energy as a constant (or constant
between Z and K- dE) we get for the probability simply the
relation between two regions in the I-space, of 6V —1 or 6N
dimensions, according as we suppose definite [, or variable E
between £, and £, + dE. 1Y)

The former is the move natnral supposition when with Ernsteix
we think of a time-ensemble, so that the probability is equal to the
ratio between the time in which the system is in the definite state
and the total time. The second is wore appropriate when with Gisss
we think of possibilities existing simultaneously, so that we can
imagine reality to be formed by a random choice from an ensemble.
The result is of course the same in these two cases.

If we choose the former method and think the state determined
by the series of the values n,, n,, etc.. which represent the numbers
of molecules, the p’s and ¢’s of which lie between definite limifs,
the molecule-phase-points, therefore, in definite elements g of the
u-space (phase-extension of the single molecule), then for definite
E, the probability of this state is equal to the fraction:
part of the surface E(pg)=2ZE; in the Z-star of the I'-space determined by that state

total area of the surface. )

If we follow the second method, the denominator becomes the
confents of a thin shell and the numerator that part of the shell
lying inside the Zstar in question. For a perfect gas surface and
shell are spherical.

Now the question suggests itself*): is this fraction also equal of the

1) Here and in whai follows ideas and names are made use of given in the
Encyclopaed. article by P. and T. Enrenresr.
% Cf. Eurenrest. 1. ¢. § 12 and § 13.
68*
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ratio of the contents of that Z-star to the contents of the “Schaale”
E(Zy= E,, the total of the stars, for which the energy = F,, if
the energy for an element ¢ is taken = that of the centreP It isg
easy to see that this is not the case. The fraction defined above
has a variable value beginning with O, if the surface of the shell
touches the extreme points of the cells of which the star consists,
increasing when the energy approaches that of the centre, and after-
wards decreasing again to 0. The last mentioned fraction has a
definite value when the energy is that of the slar and else 1s zero.
That the quantities are not of the same order either, appears from
this that in the former case a definite distribution of state belongs
to all kinds o1 shells, in the latter entirely to one «“Schaale”, whereas
reversely a definite “surface” contains much fewer mutnally differing
tar
“Schaale”
is further too dependent on comparatively accidental circumstances
to serve as measure for the probability.

The probability defined by us is, however, not easy to calculate,
when as was supposed up to now, we think the elements ¢¥ of
the I'space arisen from cube-shaped regions ¢' and ¢" in the con-
figuration-extension and the extension of momentum of the single
molecule. It becomes easigr when we think the I'space divided by
E (pg)-surfaces and surfaces normal to them.

It we think the I'space divided into a I"-space of the distribution
of place and a I'-space of the distribution of momentum, we get
as element: ¢'¥>element in I"-space. Hence the chance io a
certain state now becomes:

NI

— X ¢'¥ X element in I'-space
Jnd..

distributions than a definite shell. The value of the quotient

-

total extension

in which element and extension are both thought bounded by the
surfaces L(pq) = £, and K (pg) = L, 4 dL.

NI o N

This fraction is equal to: X — X ratio of the spacial angles
. v

nt n,l .
in I'-space = ——~——N! X (Q)N X (@)V if dw = spacial angular
ndnt ... v dn) ’
element for every molecule separately.

However this probability s not applicable for the entropy in the
state of equilibrium. When, namely, we make the probability maxi-
mum, the obtained value P appears on calculation to depend no
longer on 1 and v, so that & log P cannot represent the entropy
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which we know from thermodynamics as a function of £ and v.

Accordingly nobody has as yel made use of the real fraction of
probability for the entropy;/always either the numerator or the
denominator was taken') or a quantity which differed little from
it. With regard to the latter it is noteworthy that in % /log P terms
without the factor N may be cancelled againstterms with the factor
N, so that for the calculation of P quantities, the ratio of which is
of lower order than NV, come to the same thing. il

The denominator which represents the whole extension is available
in the state of equilibrium, the numerator both in the state of
equilibrium and outside it. In the state of equilibrium they represent
the same function of £ and v, so that the quotient is independent
of it. We should further notice that if not the fraction of probability
itself is taken, but e.g. the numerator it is of no consequence how
the space is divided into elements, since the extension itself, determined
by the state, is decisive. We may therefore just as well take the

N! ’

usual .
ntnt...

§ 3. This expression is, however, open to the objection that the
dimensions are not in order. In the expression % /og P P must bea
number without dimensions. If P has dimensions, the entropy will
have logarithmic dimensions, i.e. increase or decrease by a definite

1) In explanation of this fact, which seems so strange at first sight, that both
numerator and denominator may he taken as measure for the probabilily, Prof.
Lononrz was so kind as to wake the following remarks :

Let @ be a comparalively large region in the phase-extension, (either reduced
by a function of weight or not), ' the part of @ that is left when a certain
restriction (@) is introduced (e g. that the energy lies between two closely defined
limits) and Q" the part of @ where besides e.g. the numbers of molecules are in
the different elements 7y, 9,... The latter with restriction (@) may define a state 5.

Now the probability of all the states satisfying (@) conjointly may be represented

by Pz% (1), or if the denominator is disregarded by P= ¢’ (2).

But when remaining inside the limits of the restriction (@) we pay aitention to
i

the st;;te S, we may wrile for its probability P= T (8). This becomes for the

most probable state: Pun= —Q—Q—, On account of the “sharpness” of the maxima

Qn” differs so little from @' that (also in conneclion with the fact that log @ is
required for the calculation) @' may be replaced by Qu'. Now (2) becomes there-
fore: P= @Qu" (4).

It is clear: P is determined by the denominator of (3) in (2), and by the
numerator in (4), ! ‘
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value when the fundamental units are made a definite number of
times larger or smaller'). The differential of the entropy will have
other dimensions than the entropy itself etc.; in other words the
entropy will not be a physical quantity in the usual sense®). The
same objection holds for the denominator. To avoid this the numerator
or the denominator itself should not be taken, but it should be
divided by an expression of equal dimensions, e.g. by g¥. B
Planck takes the numerator divided by ¢g&; at least it comes
to this when bhe defines the ‘‘thermodynamic probability” as

the number of possible ways in which a certain distribution of

NI
state can come about. Thus we get: W = and now
nlngd ...

S=rklog P is taken again. i

This omission of ¢¥ is an essential point; for the consequence
of it is that Pranck’s entropy function contains the element g; the
original value was independent of g.

Tous we find the value:

S=Fk{NlogN—~ X flojfdo --Nlogds} if g=m*do
In this expression for S Borrzmany had left out the first and
the third term as constants, through which he arrived at:
S=—k 2 flog fdo
= flog fdo is Bourzmany’s H function.
In the state of equilibrium
S=4kN{3log(@amE)+ logv — 3 log (3 N) + 3 — logg}
follows trom Pranck’s formula, and
S=kN{glogR@amE)+ logv — 3log (3 N) + § — log N}.
from that of Borrzmanx. .

In Bourzmann’s formula the dimensions no longer come right; the
property (3) from §1, that the entropy of the whole is equal to the sum
of the entt-opiés of the parts, however, does hold, which property
does not come true in Pranck, if no definite assumption is made about
¢. To make up for this Pranck assumes that ¢ is proportional to V, quite
arbitrarily in my opinion; the reasoning, namely, by which he tries
to make plausible that this “elementary region of probability” would
be proportional to AV, does not hold for a perfect gas®).

1) Unless also logarithmic dimensions are assigned to %, which neutralise the
first. l'ut this would be very unpractical.

?) It should be remarked that Gises has not hesitated to state this abnormal
behaviour of the entropy explicitly. Cf. on this § 4.

8) Gf.: “Die gegenwirlige Bedeutung der Quantenhypothese fiir die kinetische
Gastheorie’” in “Vortriige iber die kinetische Theorie der Materie und der Electri-
zitdt, von Max Pranck u a.” Leipzig u. Berlin 1914.
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It would have been better, it seems to me, to divide the “thermo-
dynamic probability”, which does not represent the originally meant
probability at all now, also by N/, as Terrope did for the denominator,
by which property (3) is also satisfied.

Instead of the numerator, LorRENTZ uses the denominator in his
above-mentioned article. It may be represented by :

—3—.N——-1 i
(2w Em)? .2amoN
T@EN)

- LdlE—=

av
Now &£ represents the fanction 75 introduced by GisBs, of which

the log forms one of the three functions for the eniropy given by
GisBs (viz. ). If we now still divide by ¢¥, and if we omit the
terms which do not contain IV as a factor, we get again PLAI\CK 8
formula for S= £ log P.

TerroDE makes use of another function introduced by Gisss®).
This function (V') does not represent the extension of the microcanonic
ensemble, but the total extension below the £in question. We now find :

3

=N
V— 2xEm)® .oN
. T TGN+
while TETrRODE now puts:

S=rllog ———

1

7
N NI
from which follows: .

S=1lklog{3log (2 x Em)+ logv —3log (3 N) — log N+ % — log g}
which formula differs from that of Pranck in the term — log NV, %
having taken the place of 3. Property (3) is now satisfied without
a special assumption having to be made about the elementary volume g

Now the vindication of the division by ¢g&¥ and N/ is siill to be
discussed. As far as the former is concerned, that the dimensions
are not in order is of course no reason io divide particularly by
g~ , which causes the result to depend on g, whereas it would
otherwise be independent of it.

When it has oncé been assumed that S=~% log extension (either
of the state of equilibrium alone, of all states at definite Z or of
all states  between 0 and E), the division by ¢ may be justified
by this that not a purely microcanonic ensemble must be considered,
but a 10\1ghly microcanonic one, in which elements of certain

1) H. Terrope, *Die chemische Konstante der Gase und das elementale Wirk.
ungsquantum”. Ann, der Phys. 38 (1912
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extension ¢V represent cases of equal chance. Not the absolute
extent of the phase extension would therefore be of importance, but
the number of finite cases of equal chance contained in it.

If we assume that a gas, not in equilibrium, can be represented
by an arbitrary ensemble between narrow energy limits tending to
a microcanonic ensemble which represents the gas in the state of
equilibrium, the elements ¢~ have the practical signification that
they represent the extent of the parts of the extension with regard
to which the distribntion has become homogeneous, whereas this is
not the case inside it. Then the elements g% would, therefore, have
no fixed extent, but this would depend on the time during which
the considered gas is left to itself; they can, namely, be taken smaller
as the “stirring” has continued longer. ’

The division .by V! is necessary to ensure that the entropy of
the whole is equal to the snm of the entropies of the parts (for so
far as these parts are large with respect fo the space element ¢’),
or the extension of the whole equal to the product of the extensions-
of the parts. As a justification of this the following explanation may
be given. If we have L separate quantities of gas, each of n mole-
cules in a volume v, the total extension of this in the space of the
distribution of place is (vm)* = %, If, however, the volumes v are
not separated from each other, but parts of a larger volume v, we
may not take v* for the extension of the parts, because there need
not be n definite molecules in every volume v, but all the molecules
of the vessel can get there. It is, however, difficult to say, how
much every extension changes through the parts not being separated,
since the extensions are not independent of each other. For the
extension of all the states, in which there are n molecules in the
first volume wv,, is for the greater part the same as that in which
there are n molecules in v, etc. We can, however, say what change
must be effected in the total extension in consequence of the absence
of the partitions.

We must, namely, take into account that the molecules from the diffe-
‘rent (k) volumes v can be interchanged, so that instead of the original

: (kn) . N
extension (v")* = v¥» must be taken: pkn ><( W or in approximaition:
n’
(kn)kn . . . .
vht —— = (kv)®, which is also the extension which we should
n .
have found by direct calculation of the whole. The equation
(kn)! N
B¢ — (kpYer or (gn)k L — (kWY
(o) " !)k-—(kv)“" or (pn)e X G !)k_(kv)l can now be taken as

basis to obfain an available function, which can tale the place of

s
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the extension considered up to now. We can, namely, write for this:-

('U")k (7cv)N v\ oV . .
e % \m) T We take, therefore, now the function

1]
—v—/ instead of v*, and have retained the property (3).
n!

We arrive at the same result, when we do not take into account
the interchanges between the molecules of the different parts v,
hut also disregard the individuality of the molecules of each part
in itself, so that the number of generic phases instead of the number
of specific phases has become decisive. )

The remark might be made that a consideration as the above is
more of a mathematical than of a physical nature. It should, how-
ever, not be overlooked that no physical reason is given either why
the entropy should have to be S=1*%log P or %log extension.

These functions have been taken for the entropy because they
showed analogy with the thermodynamic entropy. It is, therefore,
natural to make changes in these functions which render the analogy
more perfect, when 1t is seen that the analogy is not perfect yet.
We may also call the division by N! such a change, through which
we get a mathematically determined quantity, which satisfies the
three or four conditions mentioned in § 1.

§ 4. We will now discuss for a moment the quantity for the

entropy which Gisss puts most in the foreground, viz. — % = — | ndt,

D
in which 4 =/g P and P:Z_\” when D is the density of the

system points in the element dr of the I*space, and IV the total
o—E

number of system points. For a canonic ensemble P=¢ ® , in

which attention is drawn to the fact that P has the dimensions of

1

phase extension’
But then % has logarithmic dimensions, hence also — 7; as was
observed above, this is no quantity in the strict sense of the word.?
E and 9 being of mutually equal dimension, also ¥ must have
logarithmic _dimensions; ¥ and & have therefore different dimensions,
are therefore dissimilar quantities. Yet GiBBs speaks of w as of lhe
energy, for which the coefficient of probability (P)=1.

1) Cf. also: H. Terropr, “Theoretical Determination of the entropy constant
of gases and liquids”. These Proc. XVII p. 1167.
%) Cf. GiBes, Statistical Mechanics, p. 19.

-~
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4—E .
The difficulties may be removed if ¢ ® is considered as a value
with dimensions 0, and then multiplied by a constant C to bring
the dimensions into order.
The procedure is the same in other parts of Physics where ex-

ponential functions dre used. Hence the relative density would now
v—F
become Ce¢ ® , or rather, because in this way we should get too
E Z

many constants: Ce #, so that f Ce ®=1. Now we should have"

- E
to take for the entropy not the mean — log P or — log C—}—5,

but the mean — log (P X certain constant extension). If we now
take ¢V for this constant extension, so that the form within paren-
theses represents the relative number of systempoints over an ex-
tension element ¢¥, we get, after multiplication by the usual con-
stant £, PLANCK’s above discussed formula.

+ If besides we multiply the form, the logarithm of wlnch is taken,
by N/, we arrive at Twrropg’s formula.

Botany. — “On the mutual effect of genotypic factors.” By
Dr. Tixe Tamuves. (Communicated by Prof. J. W. Morw).

-

(Communicated in the meeting of November 27, 1915).

The varieties of Linum usitatissimum L., which 1 have used for
my crossing experiments, show {hree types with regard to the
breadth of the petals. In two of these, however, the length of the
petal is the same. "

The broadest and also the longest petal belongs to the so called
Egyptian flax. I have previously') reported on the variabilily-curve
and the median value of both length and breadth.In the present
investigation, however, the use of the mean value was to be preferred,
because in some cases the measurements could not be very numerous.
Since this paper only deals with the breadth, it will suffice to give
the mean value of this dimension only. It is 13.4 millimetres.

The breadth of the petal was formerly taken and is still taken
to be the greatest breadth. The colour of the flower of Hgyptian
flax is blue and has been repealedly discussed before.

!y Das Verhalten fluktuierend variierender Merkmale bei der Bastardierung. Rec.
d. Trav, bot, Néerl. Vol. VIII, 911, p. 249. ¢ v
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