Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

Verschaffelt, J.E., The viscosity of liquefied gases. |. The rotational oscillations of a sphere in a viscous
liquid, in:
KNAW, Proceedings, 18 I, 1915, Amsterdam, 1915, pp. 840-859

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'



840 .

Physics. — “The wviscosity of liquefied gases. 1. The 1otational
oscillations of a sphere in a wviscous lguid.” By Prof. J. E.
VerscHA¥PELT. Comm. N°. 1484 from the Physical Laboratory
at Leiden. (Communicated by Prof. H. KaMErLINGH ONNES).

(Communicated in the meeting of October 30, 1915).

1. With a view to an investigation of the viscosity of liquefied
gases at low temperatures, especially in the case of hydrogen, which
on the invitation of Professor Kamrruiznes ONNEs I hope to under-
take, 1n conjunction with Mr. Ch. Nicaisk, by the method of damped
rotational oscillations of a sphere suspended in the liquids in question,
I shall here give the theory of the method. The problem has been
dealt with before by a number of writers!) and the formulae which
embody the results of their. calculations have also found application
in the discussion of different experiments; still [ do not consider it
superfluous to publish my method of dealing with the problem,
because in my opinion 1t is simpler and less invoived than the one
followed by previous writers, while the formulae which I have
arrived at are much better adopted to numerical calculations.

The sphere will be supposed to swing freely about a diameter
under the action of a couple of forces (the torsional moment of the
suspension) the moment of which M« is proportional to the angle
of deflection ¢. In the absence of friction the sphere would perform
a harmonic oscillation with a time of swing given by :

: K !
T, = 2z TR )

/

K heing the moment of inertia of the sphere about a diameter (or
more correctly the moment: of inertia of the vibrating system of
which the sphere forms parts), 4 the angular moment per unit of
angle. If the sphere swings in a viscous'liquid, the motion is dam'ped
and it appears (although properly speaking an experimental confirm-
ation is lacking), that when the friction is not too strong the sphere
execules a damped harmonic vibration, according to the formula:

3y CG. J. H. Lampg, Programm des stadt. Gymn. zu Danzig, 1866,

G. Kircusorr, Vorlesungen iiber mathematische Physik, No. 26, 1877.

Ie. Kromexcic, Wien Ber. 11. 84, 146, 1882,

G. G. Stoxes, Math. and Phys. Papers. Vol. V, p 207.

W. Konig, Wied. Ann. 32, 193, 1887.

H. Lams. Hydrodynamies, 1906, p. 571, 599, 58lL.

G. Zemprén, Ann. d. Phys. 19, 783, 1906; 29, 899, 1909.

M. Bruroum. Legons sur la viscosité des liquides et des gaz, 1907; 1ie partie
p- 96. .
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_aiT ?
a=ae cos2ni, . 3
where 7' is the new time of vibration and ¢ the logarithmic decre-
ment of the elongations for one vibration.') The problem bhefore us
is, how d and 7T depend upon the specitic properties of the liquid,
in particular on the viscosity 7, and how % may be calcnlated from
obsevvations on the two quantities in question.

2. We shall confine our investigation to- the two cases in which
the liquid is either externally unlimited (ie. practically speaking,
fills a space the dimensions of whiclh are very large compared with
the radius of the spherej or is limited by a stationary spherical
surface which is concentric with the oscillating sphere; in these
cases we may naturally assume. that the motion in the liquid is
such, that it divides itself into spherical, concentric layers, which
each separately oscillates as a solid shell about the same axis as the
sphere, with the same periodic time and the same loganthmic decre-
ment; it will be shown further down that this assumed state of
motion is actually a possible one, at least when the motion is very
slow®. In that case it is only the amplitude and the phase of the
motion which differ from one shell to another, and for a shell of
radius » we may therefore put:

t
- ¢
@ =ua e 70032.7(—1—,—(;),). N )]

where d, and ¢, are funections of . 1f we further assume that the
liquid layer which is contiguous to the sphere, adheres to it, as is
well known to be generally the case, expression (3) must become
identical with (2) for »r = R; thus ag —=a and g = 0.

3. In order to find the functions @, and ¢ we proceed to estab-
lish the equation of motion for a spherical liquid shell. For this
purpose we shall consider the ring whose section is ABCD = r.de.dr
(comp. adjoining figure) and whose radius is ¢ ==7cos e On its side-
faces AB and CD this ring according to our assumption does not
experience any friction; on the inner surface 4B, owing to friction
against a shell closer to the centre, it experiences a tangential force

F per unit area in the direction of ils motion, and on the outer
- . oF .
surface BC similarly a force — (F + 6——([7’ ; writing down the
»

1) If the motion of the sphere without friction were a compoind harmonic motion,
as would be lhe case, if the sphere were coupled to other oscillaling systems, the
motion with friction would be compounded of damped harmonic vibrations,

) For the necessary condition of slowness of the motion see note in Comm N9, 143d.

54%

)
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du

condition, that the work of these forces during a small angular dis-
placement equals the increase of the kinetic energy %mw,* of- the
ring, we find, when the density of the liquid is g,

e, oF \'
F. 2 coss . vds . 7cos & ot — Fd —dr|2a(r + dr)° cos’g.ds,_aa_r:
0t Or o
) = 2 (g =2 ds . & 9o
.__&(2 mv,*) == 2;r cos € . rde . r.y,.v,—a;
or
OF 3F v, 9a,
—_——_———— = = L P C0S ET—,
5 TS S os e

According to the elementary laws of internal friction the force /'
is proportional to the velocity-gradient in the direction of the radius;
in determining this slope we must only take into account the gradient
which is due to the change of the angular velocity with r*). The

. . 0 (Oe
velocity-gradient thus becomes equal to 7 cos ¢ E—(T)t_r) and therefore
»
1) The gradient of velocity which is the consequence of a uniform rotation of
the lignid does not produce dny friction. In the classical hydrodynamical theory
~ this results from the circumstance that in a uniform rotation there is no deformation
and consequently no stress., (Note added in the translation).



843

0
F:—nrcoss—w, B €))
or
de, .
when 0= represents the angular velocity of the shell under con-

sideration and v the viscosity of the liquid. The equation of motion
of the sphericall shell may now be written in the form

! 0w 4 0o pow
Ot + r Or 5_67
4. This equation determines how « depends on r; as it does
not contain the angle &, it is in accordance with our assumption,
that the individual shells oscillate to and fro as solid bodies!). As
regards the law of dependence of w on ¢, which we have already
presupposed in equation (3), it appears that it also is compatible
with (5); substituting (3) in (5) and expressing the condition, that
equation (5) must be fulfilled at all times (by putting the coefficients
of cos and sin equal to zero), two differential equations are obtained,
which do not contain the time and which determine the funections
ar and .
This method is, however, very cumbrous. 1t is mnch simpler first
to reduce (3) to the form

®)

i

—o t t ’

ar=—=e T(wcos2.7r—+ysmz.7rf) N ()
where 2 and y are new functions which for » = R become equal
to a and O respectively and are deteumned by the two differential
equations :

d*z 4 dx
) + ———l———((h——erJ)——O
d*y 4dy (0
- _|____+—(o" -+ 2mz) =0
r dr

The simplest method of all is to consider (6) as the real part of

an exponential function
or=uekt , . . . . . . . . 8

where % and % are in general complex quantities; in that case (2)
is the real part of

1) Tt should not be overlooked that in this manner the possibility of the afore-
said assumption has been proved, not its necessity (for this proof, see Lawms,
loe. cit.). 1t is moreover easily seen, that with a different law of friction, eg.
in which » would also depend on the velocity itself, the assumption would become
unallowable.

4
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a=aédt , . . . . . . . . (8)
and u is a function of » only, which for »= R obtains the value
a. Pulting -

b=k 4k G=V=-1), . . . . . . (9
it follows by equating (6) to the real part of (8) that

{

]c':—% and k"_—_%;f N )

The real angular velocity o is the real part of the complex
quantity -
o=rhudt, . . . N ¢ ()]

the function v satisfying the equation

v  4ddu u
S N ¢ )
ar* " rdr 9

which is obtained by substituting (10) in (5).%)
5. The general solution of (11) is well known to be

1
W= [Aebr (br + 1) + Bebr (br — 1)),

k]

or
1
w= 5 [Pei0—R(br + 1) 4 Qebr—R(br — 1)],. . (12)

where

1y Equation (10) is a particular solutivn of equation (3). The mode of motion
which it represents is, therefore, a possible one but not necessarily the actually
existing one. The reason why we only consider this solution is that we suppose
the sphere not to perform forced vibrations In the case of a compound harmonic
motion » would consist of a number of terms, each with its own k, the w's of
which would salisfy as many equations (11).

It is also obvious, that the condition of motion considered cannot exist from
the beginning, but can only be reached after a theoretically infinite period, so that
the motion of the sphere cannot correspond either to equation (2) from the moment
at which the motion begins. The experiments show, however, that the final
condition is practically reached after a comparatively short time (a few minutes),
i. e. very soon T and > have become constant; this may be expressed mathema-
tically by saying, thai the assumed condition of motion is the limiting condition
to which the real motion approaches asymptotically and this approach is in general
so rapid, that even after a conparatively short time the deviations of the actual
motion from the final [imit are within the limits of the errors of observation. The
- question as to the real motion during the said period of approach is one which
would have to be settled by a separate theoretical and experimental investigation,
but is of no importance for our present purpose.
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:b/h;. e £
Ui S

A, B, P and ( are complex constants which are determined b:y
the conditions at the boundaries.
In the first place we have u =a for r = R, so that
POR+1)+ QOR —1)=ak® . . . . . (14
If the liquid is unlimited or at any rate may practically be con-
sidered as unlimited, u = 0 for » = o; this leads to the condition
Q=20 (unless b were a pure imaginary quantity, i. e. £ were real,
in which case the motion would be aperiodic, a case which we do
not consider here), and therefore
3 By
wmal UL em L s
r® bR+1
On the other hand, if the liquid is bounded by a stationary
spherical surface of radius R’, the condition is that uw =0 for
r=— R’ at all times (again in the supposition that the liquid adheres
to the surface of the sphere) so that

Pe-BE-R (R + 1) 4 Qe®—R (R —1)=10; . . (16)
in that case

aR}{bR —1)et(B—ER) aR* (bR + 1)e—HE—R)

Q=— v (17)

P= ,
D D

)
where

= (bR + 1) QR — 1) HB—B) . bR — 1) bR + 1) e~HE—B), (17')
s0 that .

— 1) BR—=) — (br — 1) (bR + 1) e—HEB-1] (17")

6. If we put
V== "+ v")
it follows that :
Y:P— " =F and 2¢y9Y" =%,
and therefore, seeing that ¥ and 7" from their nature represent
real quantities:

y=|/ wrivETE = e

. ‘ 2T

Y==L//—Jk+lVW” T L//”*‘VU”+4”’ \
a7 '

As a rule the circumstances under which the experiments are

. (18)
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conducted are such, that J is a small number, of the order of
magnitude 0,1; in that case the expressions (18) can be developed
into series progressing according to the ascending powers of y =

:—(—f—, which leads to:
2ar
' ; s
Y-——I/?(l—éxﬂL%X‘ )]
" ; 2 g’
Yzl/f,(1+%x+%x +..0)

b= [/:? [(1—[—'5) — (1-—5)% + (1+z’)’-‘81 4. ] 20)

7. As mentioned above in section 1, the real part of (8) may in
general be written in the form
a, = ekt [X, cos (B"t—0"r) 4 Y, sin (K't—0b")]

+ eFtbr [ X, cos (R't+0"7) + Y, sin (K't+0"r)], . . (21)
where X,, X,, Y, and Y, are again functions of », but now real
quantities. This form shows, that the motion of the liquid is the
result of the propagation of two waves, the one moving away from
the oscillating sphere, the other moving towards the sphere; writing

(19)

80 that

27 ,
k't = b"r in the form T (t += %_), the speed of propagation appears
to be

=t _2x

P T (=2)
this velocity therefore depends not on the specific properties of the
liquid only, but in addition on the time of swing of the sphere.
2
The wave-length is A_—__b—zr.
For d very smail we have by (19%),
vea| 2 and a=2],/ "L,
uT 7
When the liquid extends to infinity (practically), we have only to
deal with the former of the two waves: bul when the liquid is
bounded, the wave which is emitted by the oscillating sphere is
reflected on the fixed wall, in such a manner that the phase is
reversed, and thereby the amplitude « becomes zero at the wall.

In addition the waves undergo a damping effect during propagation,

(22)
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in such a manner that, independently of the algebraic dependence
on 7, the amplitude is reduced in the ratio 4:1 over a distance 1,
where A = ¢—7%',

With a small value of ¢ according to (20) the damping increases
as T becomes smaller and with a sufficiently small value of T it
may happen, that even a comparatively narrowly bounded liquid is
practically unbounded, because the motion which starts from the
sphere is practically completely damped, before it reaches the external
boundary ; to this point we shall return later on (§ 12).

8. We can now proceed to calculate the time of swing and the
logarithmic decrement of the damped oscillations of the sphere from
the specific constants of the liquid (viz. the viscosity % and the
density w). The equation of motion of the oscillating sphere is

dfa
Eor = CH Ma=0,) . . . . . (29
‘where C, the moment of the frictional forces, is given by (comp. § 3)
i, _7’-'_
(SN + /
N . O
C= — | F.2aR’cos’ ede = § aR*y (-—) .. (28)
or Jpr

™

2

According to (10) and (12) we may write

dw kekt
s [P (b%r*+8br48) e~b0—~R) — Q (6°»'— 8br-3) eblr—R)],
and therefore
(a—w) = ——ke—kt [P(O*R*438bR43) — Q (b*R*—38bR+-3)] =
or Jp R -
= — ! [P (p*R*4-8bR-+3) — Q(o*R? —36R—l—3)]fzg
alR? dt’
so that for the case of a damped harmonic motion we may write
K%’+L§-§+Ma=0,2). N 7))
where

1) The equation once more expresses the fact that the sphere oscillates freely.
%) In the case of a not purely harmonic damped motion the proportionality of
., da . - .
C with 3 ne longer exists. As far as I can see, it is in that case impossible to
say, how in general C depends on the motion, so that it will then probably be
impossible to establish a general differential equation for ».
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xR
L™ (5 R4 SDR SR -1 AR R (3 RP-SBRABGRD)e-RE] (24

D being the form given in (17'). L is again a complex quantity. )
When the liquid is (practically) unbounded and the motion periodic

(i.e. @ =0), we have simply:
b*R? -+ 3018 48

L=2$§ xR
bR 41

(29)

9. The expression (8’) actually satisfies the equation (24), when
k satisfies the equation ;

K ALk +M=0. . . . . . . (26)
If we put again L = L’ 4 L", we find-
K(H*—¥") + LF — L'¥' + M=0 and 2KFE' + L'¥' + L'F =0, (26')
or according to (9) and (1),
rr o T rr T

¢ —4x® — df———&ﬂ +47r - =0 and 4nd = 2:rr—E—J— 27

These are therefore the equatlons which determme £’ and £,
and thus also d and 7, under the given experimental conditions;
conversely they enable us to compute L’ and L" from the experi-
mental values of 7T and dJ and thereby by the aid of (24) to
calculate 1.

From (27) it follows that:

LI [T A4x L' 2a[ 1 4w
gy el I B e —1/.(28)
E T|T 4zt & K~ T|T dn+o*

-
——° (as is usually the
'10

When d is a small number, as also p =

case), we may write:

L 2d 2d
=TV -+ =211 + @) + -]

" A Wi — Xﬁ A 1”2"}‘)(2 :
e 1 ki —_—
R et A R I

10. As we have been using complex quantities all along, we

(28)

1) The meaning of this is as follows: the real angle . satisfies equation (23),
where everything is real, even C, the moment of the frictional forces, which is
determined by (28") with w« slill real. If, however, a complex angle « is introduced,
the real part of which is the real «, C will be the real part of (23'), where « must
he laken as a complex quantity, and this is at the same time the real part of

da
an expression of the form I —, where L is then similarly a complex quantity.

\

-10 -
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have not come across the fictitions addition to the moment of inertia
which usually occurs 1 problems of this kind. This addition does
not show iself, until the real part is extracted from equation (24).

This real part is equal to

d*a’' de da"
— L ——L'— + Mod' =0, .. (29
S TR a T (29)
having put a =& 4 &"i; and as is easily found from (8)
de" 1 &% ¥ do
T vaETva
so that
L'\ d* Y\ do
K4—)— LI—L'—|—+Md=0,. . . (29
( +/c”)dt“ +( k") a ~ #9)
which means an apparent increase of the moment of inertia by the
"
amount XK'= = )

Substituting the expression (2) in (29) and again expressing the
fact that for all values of ¢ the equation must be satisfied, by
equating to zero the coefficients of cos and sin, the same equations
(26’) are arrived at.

11. The separation of the general expression (24') into its real
and imaginary parts is a troublesome performance, which 15 of no
practical value; the general expressions for L' and L" are so involved,
that they are practically useless for the computation of 7 from the
observed values of 7" and J by means of the equations (28). As a
matter of fact it 15 only under simplified conditions, that the deter-
mination of n by observation of the oscillations of a sphere is
practically possible. Now the whole problem becomes most simple,
when the liquid may be considered as unbounded; in that case
it follows from (25) which may also be written as
L=23%ak (bR + 24 b—R]?—_l)’ .

)

) From (29) it also follows, that even in the case of friction in a liguid the
well-known equation

\ e . To'z P
Ty T 4a®
still holds, on condition that for T, is taken the fictitious periodic time 7}, given by
K+ K'
T =2n —_—
’ M

-11 -
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that

VR+1
I — 8 3 ! .
_L — 3 ﬂ]‘a 72 (bR+ 2+ (b'_R—I—],)ﬂ—i—b”ERﬁ) (

y .. (30)

1
"—=8 RV 1 —
L 8 AR "Z( (b’R—[—l)"—{—b"“’R”) !

For a furtber approximation 'in the case, that the liquid may by
approximation be considered as unbounded, (24") can be developed
in the form of a series. For this purpose we write first:

bR’ -- 3bR4-3 bR 41

. , e—26(R'—R)
3 P2 ! 292 _ 1
L:%nRs?‘.bR -|—36R—,~3. b'R*--3bR+3 bR o)
bR+1 bR—1 BR+1 ,
1 —— ., —2R—R)
bR+1 bR —1

when ¢—2bR—R) is sufficiently small®), formula (25) will hold as a
fivst approximation; if necessary a first correction-term may be added
of the form »

bR —1 ,
=1 ARDy — e—2bR—R) . . (31)
OF + DR+1)
the value of which can be computed fairly easily, when an approximate
value has been found for 7.

L

1

1) If k(%) is replaced by the conjugate imaginary quantity %,, it is clear, that
the real part of =z and also of z, do not undergo any change (b, and b, are
similarly conjugate), so that exactly the same results must be obtained, in particular
the same equations (30). That this is actually true wmay be easily seen from the
fact that I; and L, according to (24') are also conjugate imaginary.

We might even, in general, have represented the damped harmonic oscillation
by the real part of

a=ua, + a,=a,ch! 4 gl '
We should then have obtained
© = k,u, et 4+ ku ks,

and have found, that 2 must satisfy the equation

d*a da det N
K—+L—4+L,—24+ Ma=0,
dz’+1dt+”dt+a
which, owing to I’y = L} and L”, = —L”; may also be written as:
dia' , de d (", —da",) ,
](-dt—a- —I— L,_ —d?-L’1 —T +Ma :0.

By putling @, = a, « may then be real (form. (2)).
) The coefficienls of this factor in (24”) cannot become infinite in this case,
on the contrary they donot differ much from umity,

-12 -
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12 In our experiments we intend to choose the conditions such
that the liquid may, at least approximately, be considered as unbounded;
moreover we shall arrange to make ¢ small. It is easily found, what
conditions these simplifications are subject to.

Clearly it is necessary that the factor ¢¥(E—E) obtains so high a
value, that the terms containing this factor are sufficiently prepon-
derant; this condition does not necessarily involve a specially Ligh
value of &/, for if eg. R’ —R =1 ie. if the distance of the two
spherical surfaces is only 1 cm. (and this will be about the case
in our experiments) still even for &’ =10, the value of ¢#R—R)
will be as high as 10000 about. For water in C.G.S. units y = 0,01
and u=1, so that even with 7'=3, i.e. a time of swing of 3
second, &’ will reach the value 10, so that even in that case the
desired condition will be fulfilled of the wave-moiion, which starts
from the oscillating sphere, when arriving at the external sphere,
being practically completely damped out (§7). If it is further taken
into account, that the oscillating sphere can only undergo an influence
from :the bounding wall by the waves reflected on the wall returning
to the sphere and that the returning waves again undergo a damping
process, it becomes clear, that the damping on the way from the
inner sphere to the outer wall does not need to be so very cowmplete,
in order to be able to consider the liqmd as being practically
unbounded.

This fact is also expressed in our equations (24") and (31). Prac-
tically (24") is identical with (25), or L, = 0, when ¢2(EB-£&) jg
sufficiently small, i.e. when the damping over a distance 2 (R'— R)
is sufficiently strong; in order that ¢—2¢'E'-E) may be say tobo
with R'—R =1, even &’ — 3 would be sufficient and this would
still be the case for water with 7" as high as 30. A somewhat
large time 'of swing of about that magnitude is favourable to the
readings from which the logarithmic decrement must be determined
and it is accordingly intended in our experiments to make the
periodic time about that size. ’

With R'—R=1 and 7'=30 even when working with water
the liquid can thus approximately be considered as unbounded. But,
moreover, it appears from (20) that with a given time of swing &’
and §" become greater, and therefore the conditions more favourable,

according as the ratio n is smaller; for very mobile liquids, like
u

ether and benzene, they would therefore be even more favourable
than with water, and, as the available data show, most favourable

-13 -
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of all for liquified gases. The oscillation-method appears thus a
particularly suitable one for liquid gases‘). -

-~ ~
A

13. With a view to our experiments it appeared to us desirable
to have a rough idea as to the value of the viscosity for liquid hydrogen,
say at the boiling point; an estimate may be obtained by the appli-
cation of the law of corresponding states. Kameruines ONNES®) has
shown that for two different substances obeying this law the expres-

sions

[yT ) \

n P_]Eﬂ__[:;’

must have the same value at corresponding temperatures, where
T: and p, are the critical temperature and pressure and M the
molecular weight. It is therefore possible by the application of this
rule, which will be at least approximately valid, to calculate % for
hydrogen by comparison with a substance whose viscosity is known

over a somewhat wide range of temperatures, such as methyl-chloride
according to measurements by px Haas®). For methyl-chloride 77=4186,

[sal

T *
i = 66 (atm.), M == 50, and therefore [/W = 0,024; for hy-

e

6 T
drogen similarly 7%=31, py=11, M =2, so that l/p - ;[3 =0,40.
&

The boiling point of hydrogen is 20°K. and the corresponding tempe-

416
rature for methyl chloride is 20 X T 268° K., or about 0°C,, at

which temperature n for methyl chloride is 0,0022 ; it follows that for
hydrogen at 20° K. 0,40 n=10,024.0,0022, which gives n=0,00013.
As at this temperature the density of liquid hydrogen is about

0,071, we have Z:0,00lS.

1) On the other hand, in ZeMPLEN’s experiments (Ann. d. Phys., 19, 783, 1906)
on the viscosity of air in which concentric spheres were used of 5 and 6 cms.
radius the condition of nearly complete damping of the reflected wave is not
satisfied by a long way; with »=0,0002, x =0,00012 and 7 =30, & =08 i.e-
¢—26(R'—L)=1 about. The damping is thus so weak in this case that the first
correction-term (31) is not sufficient: we have therefore been obliged to abandon
our intention originally formed, of recalculating ZeMPLEN's experiments by means
of our formulae.

) Comm. phys. Lab. Leiden, n% 12, p. 9.

%) Gomm. phys. Lab. Leiden, n". 12, p. .1

4) Comm. phys. Lab. Leiden, no 137d.

-14 -
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14. In all the above calculations it is assumed that the oscillations
of the sphere are only weakly damped; this condition can in any
case be satisfied, independentiy of the specific properties of theliquid.
For, even when L’ obtains a high value, the logarithmic decrement,
by formuala (28) can be made as small as desired by giving the
oscillating system a high' moment of inertia; this does notnecessarily
involve a corresponding increase of the time of swing, because the
rotational moment M may still be chosen at will.

It is, moreover, easily seen, that for substances with a small value

of 1 the circumstances must again be the most favourable: according
w
to (28) and (30) it is exactly for these substances, that under other-

wise equal circumstances the oscillations of the sphere will be least
damped.

15. When equation (25) holds, the calculation of v, the quantities
u, R, K, T,, T and d being known from the experiment, can be made
in a fairly simple manner. First L’ and L’/ are calculated with the
aid of equations (28) or, as the case may be, (28’). ‘An approximate
value of 1 baving been found, »’ and 0" can be obtained in first
approximation by means of (20) and using these values a suffi-
ciently accurate value can in general be calculated from the terms

bR 4+ 1 1 .
p: ! 2 3 P2 a'nd q: U 2 Ha 2
(VR+1)*+b"R (BR+1)" bR
Finally it only remains to solve the following quadratic equation

in v

in equations (30).

CrputvEVIm=ars . L @

An alternative method of calculation would be from
3L"

~ BaRYVu(l—g)

but in general this will yield a much less accurate value owing to

vV

()

”

. - -7, . .
the smaller accuracy with which 1!;:7m° is determined as com-

0
pared with d. Equation (b) ought rather to be looked upon as a
kind of check on the result obtained; but it may also render excel-
lent service for the purpose of obtaining an approximate value for
#, if this should not be known; in that case it is even sufficient to
neglect ¢ with respect to 1.

}
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16. As an example of a calculation the results of a preliminary
experiment made by Mr. Cu. Nicarse in water of 20° C. may be
given here. A brass sphere of 1,927 cm. radius and weighing
250,8 grms. was suspended from a wire of phosphorbronze, such
that in air the time of swing was 12,05 sec.; immersed in a large
vessel with pure water the sphere had a periodic time of 12,24 sec.
the amplhtude of the oscillations diminishing per time of swing in
a constant ratio, the natural logarithm of which was 0,1148 (it was
found that this did not increase appreciably, until much narrower
vessels were used, which shows that the liquid could be considered
as being practically unbounded). For this experiment we have
therefore B=1,927, K=3872,5, T,=12,05 (properly speaking the
time of swing ought to have been measured in vacuo, but this
would not have made a difference within the limits of accuracy of
the observation) 7'=12,24, ¢=0,1145 (freed from the internal
friection of the wire)!) and p = 0,998.

This gives f}t = 0,0091 and q;:i—fﬂzo,om, and therefore

0
within the limits of acenracy of the observation

20K A K
L':—q—-:7,08 s L":——J:z-,lp——zﬁ“.
T, T, —
A first approsimation with %==0,01, gives ' =06"= 7_”; =35,
n

therefore 8'R = 6"R =10, so that p = 0,05, ¢ = 0,004. The visco-
sity is now given by
2,05m + 0,966 /7 = 0,1181,
hence:
59 = 0,01014,
a value which agrees very well with the known data. The equation
with L" gives as a very rough verification 5 = 0,010.

17. The formulae become even simpler, if 'R and 0"R are large
numbers (say of the order 1000); in that case we have:

u = @ — ¢—bi—R)
P2

L'=%aRby , L'=3aRbn . . . . (33)

N £:))

1) Observation gave 3=0,1148; in air 3 =0,0011, of which, according to a
calculation of L' with »=0,0002 and x=0,0012, the fraction 0,0008 is due
to the friction of the air, so that 0,0008 is left for the internal friction of the
suspension.

-16 -
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If ¢ is small at the same time, we have in first approximation

I'=I1'—=3%aR" ’-’g‘—" C . (3
from which, by (28"
L1 7 TA N — 77 d
E=F VT, , — =, 3
) I( “l“? [4 T 251 ( 5)

0

This extreme case is discussed by Kizcrrorr in his Vorlesungen
T

uber mathematische Physik, N°. 26, it occurs when —% is a very
ulRe

small number?). This case would be realized, if in a liquid

K . .
with small k (suy a liqmd gas) a large sphere was made to swing
" .

quickly ; taking say E:O,()Oi, in order to have 'R =1000 with
w

R =10, it would be necessary for 7" to Le 0,3. Apart from the not
very practical nature of these conditions, it may be considered very
doubtful, whether with the comparatively high velocities, involved in
a rapid vibration of that kind the preceding theory would still hold.
It seems to me, therefore, that the extreme case in question has no
experimenial physical importance.

When 0’R and b''R are only moderately large L’ and L’/ may
be developed according tot ascending powers of b_lR and b—,—,lR ; if in
addition the series (20) and (28'), are introduced, and the development
15 stopped at a definite point, formulae such as those of Lamegn?),
Krumencic®), Borrzmany ®) and Konie®) are obtained.

1) KirCHHOFF assumes » to be very small, which must of course be taken to
mean: uader otherwise normal circumstances, for, taken absolutely, it has no
sense to suppose a quantity which is not dimensionless to he very small, seeing
that the value depends on the choice of units. For the rest, the liquid need not
-necessarily have a very small viscosity in order to obtamn the simple case in
question ; & small {riction would even be a disadvantage, if combined with a small

. . . . 7 . ,
density, as in the case of gases. For air for mstancel is about 0,2, and thus

much larger than for water, notwithstanding the much smaller value of ,
" (comp. 12 note).

%) loc. cit.

%) Vid. Lamer, Wien Ber. IL 93, 291, 1886. These formulae are as a rule, not
very suitable for accurate calculations, because a sulficient accuracy cannot be
obtained with only a few terms; as an instance, Kénig's experiments can be cal-
culated much more simply and accurately in the manner of section 15 of this
paper, than by Kinie’s own method. From one of K&nig's experiments (the last

55

Proceedings Royal Acad. Amsterdam. Vol. XVIIL
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18. The opposite extreme case is that, in which o R and d( R’ —R)
are very small numbers; in that case R’ cannot of course be
infinite, i. e. the liquid must be bounded.. With normal dimensions
of the spheres and usual times of swing this case might be realized
with liquids of very high viscosity; for ordinary liquids the time
of swing would have to be much greater than practice allows.

In that case (24’) leads to:

13

L =1 =8aR% and L'=0, . . . (386)

R R’
dx R*I? m—-r2 4 -
therefore Jd= —R— ﬁﬁjﬁ ’l’]T \ and —‘—7?2—:2;. (37)
Seeing that by (22)
2nR 2aR :
PR— TR 38)
VT p)

% being the wave-length in the liquid, the physical meaning of the

given simplifying condition is thus, that the radii R and R’ are

small as compared to the wavelength. In that case all the spherical
shells in the liquid swing practically in the same phase®) (¢, and y
are nearly zero, so that u becomes real; in that case u = x (sect. 4)
and equation (11) reduces to the first equation (7)); at the same
time approximately ¢—0(R—&)= ¢/(R'—K) =1, ie. the waves are
propagated without being appreciably damped, as they move forward.
The resulting equation is this time :

R® RS_—pt 7)

U=
* R3—R

(39)

with sphere 3) I find for water of 15° 4 =0,01103, whereas Konig¢ himself found
0,01140

1) This is the simplifying condition used by Zemprién (Ann. d. Phys. (4) 19, 788, 1906)
as the basis in the deduction of the formulae which served for the calculation of
the results of his experiments; thereby he overlooked the fact, that in that case
his coefficient m (our factor &) is very small, so that cos m (R—7') and sin m
(R—7') ought to have been developed according to powers of-m (F—7");
carrying out this development, lLis equation (14) leads lo our equation (39) (it
may be noted here, thot a small error has crept into his equalion (14); the terms
miRr? and m2Rr,® should be m’Rr and m2Rry respectively). As a maltter of fact
in Zoweitn's experiments the assumed approximation is not applicable, for in his
case A =29, and thus not large as compared to the radii of the spheres( & =5,
R’ =6); his result is, therefore, very doubtful. Later on (Ann. d. Physik. 29, 899,
1909) he discovered this bimsolf and gave a more accurate lreatment of the
problem; but owing lo the very complicated nature of the correct formulae he
did not submil lis experiments lo a new calculalion.

%) This distribution of velocities is the samc as the one found for uniform
rotation .comp. for instance Brirouin Le. p. 89); this explains itself by the consi-

i
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When OR and bR’ are only moderately small numbers, L’ and
L’" can be developed according to powers of those quantities; the
equations (36) are the first terms of the series which are obtained
in that manner. Probably % might be found by that method for
ordinary liquids at low temperature.

19. The formulae become also very simple, when R’'—R is
small with respect to R, a case which may possibly be of some
importance experimentally: In that case:

“=a El_tl ) (40)
TR
L= S By — (41)
R—R

20. Although probably not of any practical utility I will for
the sake of completeness discuss the case, in which the oscillating
sphere is hollow, contains the liquid ard swings about a smaller
fixed sphere. Seeing that our general discussion of the state of
motion in the liquid is not altered thereby, the preceding treatment
retains in general its validity ; the boundary-conditions also remain
the same, so that equations (17) and (17') remain valid. Only owing
to the fact that B> »"> R', it is now more logical to write

=L [Pet® Aor—1)+ QAR 1), . . ()
K f

and the conditions at the boundaries now give
«R}OR -+ 1)eb(R—R) 0= aR* (DR —1)e~bR—R)

- , = (42)

P =

where
D= (R — 1) bR + 1) #R~R) — bR +1) BR — 1) e-KR—R), (44)

As regards L, the expression given in (24" still holds for it,
except that it has to be provided with the negative sign, because
now that the sphere undergoes friction on the inside, the tangential
force is not &7 but — " (comp. sect. 3 and 8); we thus have?):

deration that, when the wave-length is large as compared to the radii of the
spheres, the condition may at any moment be cousidered as stationary.

1) This distribution of velocities agrees with that between lLwo parallel planes,
which move with respect to each other at constant speed; this result could have
been expected.

%) All the formulae for this case are obtained from the coriesponding ones in
5 and 8 by giving R, R’ and r everywhere the opposite sign; this is quite
intelligible from a mathematical point of view.

55*
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3bR+3)(bR’4-1)eb (R=R'4(b* R*+ 30 R+-8)(b R'~1)e—bR-R)|(45)

For the rest no alterations have to be made to section 9 -and the
calculation of 7% would proceed in the same wmanner as with an
internal oscillating sphere.

21.  Another case which is of practical importance and has found
experimental application ), is that of a hollow sphere completely
filled with liquid which is made to swing. It may be expected that
this case can be derived as a special case from our general formulae
by puttmg R’ = 0. In that case according to (33): _

R3
Plo-bR — bR — ¢
o= (bR—l)eblf+(b1»—{—1)e—bR '

(46)

and
B (br— l)ebr- + (br {-1)e—or
) ) w ——aTT(bR__l)ebR_l_(bR_{_l)e—bR . . . . . (4:7)
Physically, however, this is only possible, if for » =20, « does

not beéome infinite and, as a matter of fact, it does not, for with

2 3 Ra
o =Fab (OR—1) bR + bR+ 1= =~ ~ 7 (4,8)
In the general case the liquid cannot be at vest at the centre:
the wave-motion starting from the oscillating sphere passes through
the centre and expands again beyond it; this may also be formulated
by saying, that the waves are reflected at the centre, this time as
upon a free boundary, i. e. withoui reversal of phase. Only when
bR is so large, that the motion is damped out before reaching the
centre, 1, = 0 practically and further’
3
) u:af—i—. bb;_—_ll e—WR—r) . . . . . . (49)
+ 22. In the case of a sphere filled with a liquid we have further
(by putting R’ =0 in (45)):
(0*R*—8bhR+-8) ebR — (b°R*+ 3bR+-8) e—0R
(bR—1) eoR 4~ (bR+-1) e—0R
If the wave-motion is damped out when arriving at the centre,
i. e. if e-(’R may be put very small, the value of 1 is given by
T P32
b*R* — 3bR 4 3 ’ (51)
bR —1
which is obtained ﬁom (25) by reversing the sign of ; in the same
) H. v. Hermsorrz und G. v. Prorrowski, Wien. Ber. 40 (2), 607, 1860. H.
> v, Hewmuonrz, Wissensch. Abh., 1, p. 172.
G. Zewprén, Ann. d. Phys., 19, 791, 1906; 29, 902, 1909.
Vid. also Laug, Hydrodynamics, p. 578.

u

L =% xRy (50)

t

L=$xRy
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manner (30) will then give:

.
b R—1

I'=3%aRn| VR —2 ,

‘d a 77 ( + (blR_l)? __+__ b”?Rﬁ)y

: 1
' =saRUy (1 — C L. e
57 "( (BR—1y + bR) 2)

The calculations are to be carried out as in § 15.

When 'R and 'R are very large, the same formulae (33) are
arrived at as before, which means that, when the motion is com-
pletely extinguished at a very short distance from the oscillating
sphere. it makes no difference whether the friction is internal or
external; this might of course have been foreseen.!)

23. When bOR, and therefore also b7, are very small, that is:
when the wavelength is very large compared tothe radius of the
sphere, as would probably be the case with very viscous liquids
(comp. § 18), it follows from (49) that w = a, i. e. the sphere swings
as a completely solid mass, as might have been expected a priori.
There will thus be no damping and the time of swing must be
that of a system the moment of inertia of which is equal to K with
the addition of the moment of inertia of the liquid.

This actually follows from the above formulae, for (50) then
reduces to ;
L= & 7 VR = & auR°F,
and introducing this into (26", we find that

| lc'—O'd]—-Tg——-lKK’
=0 un ﬁ_ﬁ_ﬂ( + K'),
where K’ = 1% auk®, the moment of inertia of the liquid. ?)

1) In PioTrRowsKl's experimenls the aforesaid condition was not fulfilled, no
more than in K¢nra's experiments; R was = 12,5, T'= 30, and hence YR =175
about. Still this value is sufficiently large to make the application of (51) allow-
able, and as in Komeg's experiments, this leads without difficulty to the value
of v Similarly in/ZEMPLEN's experiments with air equation (51) is applicable fo
the inside-friction on the oscillating sphere, for with « = 0,0012, » = 0,0002,
7'=230 and R=5 one finds &’ = l/%=0,8, hence 6—25'R=e—8=—2”]—00
about.

2} This result may be expressed as follows; L is imaginary in this case and

. L'=0 and L' =& auR'¥' \
showing that the addition to the moment of inertia (comp § 10), is here equal
to the actual moment of inertia of the liquid, and the equation of motion of the
sphere becomes (29):

.

o d*a -
(E+K) _d-t?*’_ + Mda' = 0.
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