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Chemistry. — “In-, mono- and divariant equilibria”. V. By Prof.
F. A. H. SCHREINEMAKERS.

(Communicated in the meeting of December 18, 1915),

9. Another deduction of the P,7-diagramtypes.

Up to now we have deduced the P,7T-diagramtypes for unary,
binary, ternary and quaternary systems and we have indicated also
i what way we can find the P,7-diagramtype for every definite
system, composed of an arbitrary number of components. We have,
however, supposed in all these deductions, that either the concen-
tration-diagramtype or the compositions of the phases, occurring in
the invariant point, are known. Now we shall deduce, without
knowing the type of the concentration-diagram or the composition
of the phases, the different types of the P,T-diagram, which may
occur in an arbitrary system of n-components.

In our previous considerations we have introduced the idea
“bundle of curves”. A bundle of curves is formed viz. by curves,
which follow one another in a P,7-diagram, without being separated
from one another by metastable parts of curves.

In fig. 2 (I) the curves (1) and (4) form, therefore, a twocurvical
bundle, the same is the case with the curves” (1) and (5) and also
with the curves (2) and (3) of fig. 4 (II). [We have to bear in mind
that the figs. 4 (II) and 6 (II) have to be changed mutually, as 1s °
already communicated wn the previous publication]. In fig. 2 (III)
we find three twocurvical bundles, viz. B’ 4 D', A’ + F’ and
C’' -+ E, in fig. 4 (III} the twocurvical bundle B’ 4 D’ and in
fig. 6 (III) the twocurvical bundle (' 4 E'.

We find an example of a threecurvical bundle in figs. 6 (II) and
6 (1II), of a fourcurvical bundle in fig. 8 (IIl) [viz. 4’ 4 D’ 4- B’
+ C'].

A bundle of curves is consequently limited at the right and at
the left by one or more metastable parts of curves. As a limit
we may call one single curve, which is situated between two
metastable parts of curves, a “onecurvical bundle”. In fig. 1 (I)
and 2 (II) each curve forms, therefore, a onecurvical bundle.

Consequently we find in fig. 4 (I) two twocurvical — and one
onecurvical bundle; in fig. 6 (II) one threecurvical and two one-
curvical bundles, etec. ) (

It is evident that also the metastable parts of the curves form
bundles, so that we may also speak of one- and morecurvical meta-
stable bundles.
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In order to find the different types of the P,7-diagrams, we shall
use the following theses.

‘In a P, 7T-diagram always a same number of bundles is situated
at the right and at the left of each bundle of curves. _

In every P,7-diagram the number of bundles of curves is always
odd and three at least.

In accordance with this property, which we shall show further,
in a P,7-diagram occur, therefore, 3 or 5 or 7 etc. bundles of
curves and diagrams with 2 or 4 or 6 bundles cannot exist.

In the cases treated up to now, we see the confirmation of these
rules. In each of the figs. 1 (I), 2 (I), + (I), 6 (II), 2 (1II), 6 (III)
and 8 (III) we find three bundles in each of the figs. 2 (II) and
4 (III) and in the symbolical diagram 21 (IV) we find five bundles.

We may deduce the above-mentioned rules a.o. in the following
way. First it is apparent that a P,7-diagram with only one
single bundle cannot exist; in this case viz. one region at least
should exist with a region-angle, larger than 180°, which is not
possible in accordance with our previous considerations.

Now we take in an arbitrary P,7-diagram a bundle of curves ; we
call the stable part of this bundle @, the metastable part 5. Now we
go from a towards & along a curved line which does not go through
the invariant point. Starting from @ this curve intersects first a
metastable, afterwards a stable, further again a metastable, aflerwards
again a stable bundle, etc. Arrived at &, we have consequently
intersected just as many metastable bundles as stable ones. [At least
1 metastable and 1 stable bundle.] Therefore, when we find »n
metastable bundles going from @ in righthandside direction towards
b, then we find there also » stable bundles. As, however, evetfy
metastable bundle, which is situated at the right of @, is the pro-
longation of a stable bundle, which is sitnated at the left of a,
consequently at the left of a also n stable bundles must be situated.
Therefore we find: at the right and at the left of every bundle of
curves always a same number of bundles is situated. Hence it
follows immediately that the total number of curves is always odd
and three at least.

Now we shall deduce the different types of P,7-diagrams with
the aid of these properties.

1. Unary systems. (One component; three curves.)

In an unary system three curves occur, which have to be divided
in accordance with our previous considerations over an odd number
of bundles (three at least). This can take place only in one single
way, viz. in- such a way that three onecurvical -bundles .arise,
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Consequently one single type exists only; this is represented in
fig. 1(I. We may also represent this diagram by B, 4 B, + B,.
This means that the P,7-diagram consists of three onecurvical bundlés.

2. Binary systems. (Two components, four curves). Four curves
may be divided over three bundles in one single way only, viz.
in such a way that one bundle contains two curves and two bundles
each one curve. We represent this by B, 4 B, + B, [the symbol
B, represents a bundle which contains n curves]; this means that
the P,T-diagram consists of two onecurvical and one twocurvical
bundle. Fig. 2 (I) gives a representation of this diagram. ’

3. Ternary systems. (Three components, five.curves).

When dividing five curves into an odd number of bundles we may
distinguish two principal types, viz. a division over 5 and over 3
bundles. With a division over 5 bundles, the diagram:

'Bl +B1+Bl +B1+‘Bl
arises, consequently a P,7-diagram with five onecurvical bundles,
as is also represented in fig. 2 (II).
With a division over 3 bundles 2 diagrams may arise, viz.:
B,+ B, + B, and B, + B, + B,

The first diagram consists of two onecurvical and one threecur-
vical bundle and is represented in fig. 6 (II), the second consists of
one onecurvical and two twocurvical bundles and is drawn in fig. 4 (II).

4. Quaternary systems. (Four components, six curves).

When dividing the 6 curves into bundles we may also distinguish
two principal types, viz. a division over 5 and over 3 bundles.
With a division over 5 bundles the diagram

B, + B, + B, + B, + B,
arises, consequently a P, 7-diagram with one twocurvical and four
onecurvical bundles. We find this drawn in fig. 4 (IID.
With a division over 3 bundles the diagrams:

B1+B1+B4’ BI+B2+B3 a‘nd-Bz_l'-Ba_l_-Bz
may arise.

The first consists of one fourcurvical and two onecurvical bundles,
we find this in fig. 8 (IIl); the second consists of one onecurvical,
one twocurvical and one threecurvical bundle and is drawn in
fig. 6 (IlI). The third consists of three twocurvical bundles and is
found in fig. 2 (I1D).

5. Quinary systems. (Five components, seven curves).

With a division of 7 curves into an odd number of bundles we

~
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can distinguish three principal types, viz. a division into 7, 5 or
3 bundles.
With a division of 7 curves into 7 bundles, the diagram
B1+B1+Bl +BI+BI +B1 +B1
arises, consequently a diagram with 7 onecurvical bundles. It is
represented in fig. 1 by a.

(A)
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With a division of the curves over 5 bundles the diagrams: )

B1+B1 +BI+BI+B3 ’ B1+Bl+Bx +-Bz ']'-Bz
and B, +~ B, + B, + B, + B, .

The first of these diagrams consists of one threecurvical and four
‘onecurvical bundles, it is represented in fig. 1 by b.

The second and third diagrams consist both of three onecurvical
and two twocurvical bundles. These diagrams differ, however, mutu-
ally, because the bundles of curves have another position with
respect to one another. The second is represented in fig. 1 by ¢
the third by d.

When dividing the curves over three bundles the diagrams:
B, + B, + By, B,+ B, + By, B+ B, + B, and B, + B, + B,.-
arise. The first consists of one fivecurvical and two onecurvical
bundles; we find it in fig. 2 e. The second consists of one onecurvical,
one twocurvical and one fourcurvical bundle [fig. 2 f]. The third
consists of one onecurvical and two threecurvical bundles [fig. 2 ¢];
the fourth consists of one threecurvical and two twocurvical bundles
[fig. 2 7).

Consequently we find that in a quinary system exist the eight
types of the P,7T-diagram, which are drawn in the figs. 1 and 2.

In the previous communication IV we have deduced the type of
the P,T-diagram for a definite case of a system of five components.
For this we found the symbolical diagram 20 (IV); this consists of
three onecurvical bundles (viz. V’, U’ and R’) and of two two-
curvical bundles (viz. P’7” and S'Q’). We have seen above that in
this case two types may be distinguished; it is apparent from the
symbolical diagram that it belongs to the type: .B, 4+ B, 4+ B, 4
-+ B, + B,; consequently it may be represented by fig. 1d.

6. Senary systems [six components ; eight curves].

When dividing eight curves into an odd number of bundles we
may distinguish again three principal types, viz. a division into
7, 5 or 3 bundles. We then find the following eleven types of dia-
grams 1in which for the sake of simplification the letter B is
omitted. '

14+14+1114+1 4142
141414144, 141414248, 1414241438,
141424242, 14+241424+2, 14146, 14245,
14+844,242+4, 2483+38.

The reader can easily draw or represent symbolically these types
of P,T-diagrams. -,
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7. Septenary systems [seven components, nine curves]. It is
evident that we may now distinguish four principal types, viz. a
partition over 9, 7, 5, or 3 bundles. We find the following seventeen
types of diagrams. .

141414141 41414141
14+14+141414+14+8 , 14141 4+14+14+242,
141+4+1+14+2+14+2 , 141414+2+1+14+2,
1F1414+145 , 141414244, 14+1+2+144,
1+14+1484+8,14+14+84+14+8,14+14+7_ 14246,
14845, 14444, 24245, 24844, 34+-83+3.

Consequently we find one diagram with 9, four diagrams with 7,
five with 5 and seven with 3 bundles.

It.is evident that we may find in the same way as above also
the types of P,7-diagrams for systems with more than seven com-
ponents. After the previous deductions it is quite unnecessary to
further discuss this madtter.

Now we shall still briefly discuss the occurrence of symmetry in
the P,T-diagrams. We call a diagram a symmetrical one, when all
bundles contain an equal number of curves. Consequently we may
distinguish different cases of symmetry, viz. with onecurvical, two-
curvical, threecurvical bundles, ete. )

Symmetry with onecurvical bundles is only possible as the num-
ber of bundles is always an odd one, when the P,7-diagram contains
an odd number of curves. Consequently it can occur only in systems
with an odd number of components, therefore in systems with one
component [fig. 1 (I)], with three components [fig. 2 (II)], with five
‘components [fig. 1 «], with seven components [the diagram
1+14+14+14141-4 1), ete.

As the number of bundles 1s-always an odd one, (2n 4 1) and
three at least, symmetry with twocurvical bundles is only possible
when the P,7-diagram contains an even number of curves (dn - 2),
six at least. Consequently it can occur only in systems with 4n
components, therefore in systems with 4 components [fig. 2 (III)],
in systems with 8 components, etc. '

1

As the number of bundles is 2n 4~ 1, symmetry with threecurvical_
bundles is only possible in diagrams of systems with 3 2n—+ 1) —
2=06n-+4+1 components. In a system with seven components the
diagram is, therefore: B, 4 B, -+ B,. S ‘.
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It is apparent from these considerations that symmeiry is possible in
every system, of which the number of curves is equal to or a multiple,
of 3, 5, 7...(2n -+ 1). In systems, in which the number of curves
is 4, 8, 16...27 therefore in systems with 2, 6, 14...(2» —2
components, symmetry is never possible- We see the confirmation
of this for systems with 2 components in fig. 2 (I), for those with
6 components in the deduced types of diagrams.

In connection with the deduction of the types of the P,7-diagram
discussed above, of course the question arises: the P, T-diagram-types
deduced above, may they all really exist; or in other words: is it
possible to find for every P,7T-diagram-type of a system of n-com-
ponents, really n - 2 phases of such a composition that they lead
to that P,7-diagram? We can also put in short this question in
this way: does a definite type of concentration-diagram belong to each
of the P,7-diagram-types, deduced in the way treated above? We
may show that this is the case indicating in which way we can
find with each given P,7-diagramtype a corresponding concentration-
diagram.

For this we take fig. 3; this repre-
sents a P,T-diagram of n 4 2 curves,
which are divided over different bundles
(4), (B), (C).... Although in this

8 figure all bundles, except (4) and (R)
are drawn onecurvical, yet we assume
in our considerations that they are all
morecurvical. We call the curves of
bundle (4), going from the left towards
the right (4,),(4,),(4;)...; those of

Fig. 3. bundle (B), also going from the left
towards the right (B,),(B,),...; the same applies to the curves of
the other bundles. We call the n 4~ 2 phases occurring in the invariant
point: A, A4,,4,... B, B,... C,C,... etc.

Now we shall deduce the reactions, which may occur between
those phases. Previously we have seen that they are completely
defined, when we know two equations of reaction. In order to
determine these reactions, we start from the reactions which answer
the “position of the curves with respect to curves (4,) and (R,); we
call those curves the position-curves. [Of course we may choose for
this every two arbitrary curves)].

We find from fig. 3 for the reaction of the phases with respect
to curve (4,):
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r R A7, R 4. 488, 48,8+ .+ T, +8,T,+...= 1
) 1)
a,A,+a, A+ ..+b B, +b,B,+...4+¢,C +¢,C,+ .. +d, D, +-d,D, 4.0
in which the reaction-coefficients 7, 7, ... etc. are however unknown,
but they are all positive. The sum of the reaction-coefficients at the
right and at the left of the sign of equation must be the same. We
find from fig. 3 for the reaction of the phases with respect to
curve (R,);

YR+ R+ ...+¢8 +6,8 4. .+, T, +¢,T,+...
+dd +dd,+...=6B +V,B, +... g @
dC,+¢,C,+...+d D +d,D,+...
in which the reaction-coefficients are still also unknown, but they
are all positive. Also again the sum of the reaction-coefficients at
the right and at the left of the sign of equation must be the same.
We multiply (1) by 2 and deduct (2) therefrom; we find:

B A (Gr,—r )R, + .. (25,—5) S, + (As,—5,) 5, + - -
+ (Atl—tll) Tl + (Atz—t,z) Ta + .= )
o A+ (Qa, +d) A, + (day, ')Ay + ... @b, =0 )B, +) . (8)
(2b,—b') B, + ...+ (de,—¢,) C, + (de,—¢,) C, + ...
+ (ldz_'d’1) ‘D] + (Zda_d,z) -Dz + ...

In this equation (3) the coefficient o', of the phase 4, is always
positive.
In order to find from (3) the reaction with respect e.g. to curve
(C,), we put:
i¢,— ¢, =0 consequently 2:2—1-. R ()
1
Hence we find some conditions, which the reaction-coefficients in
(1) and (2) must satisfy. It is apparent viz. from fig. 3 that all the
curves of the bundles (7'), (4) and (B) are situated on the same
side of curve (C)) as curve (4,). As in (8) the coefficient of A4, is
positive, the coefficients of A4,, 4,,... and B,, B, ... in (3) must be
also positive and those of the phases 7, 7}, ... negative. The first
condition, viz. that the coefficients of A4,, 4,,... are positive, is
satisfied; we write the two other conditions:

bll bl2 b'll t'l t,2
1> —a> A >—de a2 Zete.. o L (B)
bl bﬂ bS tl 62

in which A has the value, indicated in (4).

Further it is apparent from fig. 3 that the curves (C)), (C,), ..
and the bundles D), (R) and (S) are situated on the other side of
curve (C)) as curve ‘4,). Hlence it follows that in (3) the coefficients
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of the phases C,,C . and D,, D,... are negative, those of the
phasés R,.R,... and S,, S, ... must be positive. Consequently we
find :

U ! dl dl
22022 e, Al AL Y et
Cy Cy d, d,
< L. (6
7 7 s s'
2> A>Lete. A>-2,2> 2 ete.
>7'2 h> Ty Z 81 > Sy

wherein 2 has again the value, indicated in (4). Consequently we
find the following: when the curves must be situated with respect
to curve (C)) as is assumed in fig. 3, then the coefficients of the
reaction-equations (1) and (2) must satisfy the conditions (5) and (6).
Let us take still another example. In order to find from (3) the
reaction with respect to e.g. curve (D,) we put:
an 4+ d,—d', = 0 consequently A:% N )
3
In ﬁg 3 the curves (D and (D,) and the bundles (4), (B) and
( are sitnated on the same side of curve (D,) as curve (4,). The
coefﬁclents of the phases D, and D,, those of 4,, 4,..., B,, B,.
and C, C;... in (3) must, therefore, all be positive. Hence itfollows:

d d
A>3
‘ u > d, >d,,

! 1 ! U .. (8)
AN R WP N gy ‘

b, b, 6 C, J
wherein A has the value, indicated in (7).
- Further it follows from fig. 3 that the curves (D,), (Dy)... and
the bundles (R), (S) and (7) are situated on the other side of curve
(D,) as curve (4,). The coefficients in (3) of the phases .D,, D;.
must, therefore, be negative, those of the phases B,, B, ..., S,, ;.
and T3, T,... must, therefore, be positive. Hence 1t follows:

. d d 7 7
2<d—‘, 2'<Ei ete. A>;3, l>r—3 ete.

L. . (9)
i.>— A>— etc. }.> l>—— etc\

wherem i has again the value 1nd1cated in (7).

Consequently we find: when the curves must be situated with
respect to curve (D,) as is assumed 1 fig. 3, then the coefficients
‘of the reaction-equations (1) and (2) must satisfy the conditions
8).and (9). , .

-10 -
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We could aet in the same way for each of the curves of fig. 3;
then we find all conditions which must be satisfied by the coefficients
from (1) and (2). It follows, however, rather soon from a comparison
of fie. 3 with the reaction-equation (3) that the conditions are:

a”? a’ﬂ a’4
Z>Z>Z>“""' . . (10)
and U ! ! ! ! !
S T 3 P P P
T? 7'8 1 bﬂ Sl sﬂ
(1)
¢, ¢, ¢, ¢, d, _d,
<a<c:<"'<tf<6_z<' '<Z<Z<m .
The reader will easily find a regularity in these conditions (10)
and (11) in connection with fig. 3. In (11) we find viz. first the
coefficients, relating to the phases of bundle (), afterwards to the
phases of bundle (B), then to those of bundle (S), further to those
of bundle (C), ete. and for each bundle in the same order, in which
the curves in that bundle succeed one another from left to right.
In these conditions the reaction-coefficients ', and »; of the phases
A, and B, do not occuar; this is based on the fact that we have
taken the curves (4,) and (R,) as position-curves.
Now the question arises whether we can always find reaction-
coefficients, satisfying

ry g+, oG = 2(12)
=a,+a,+...4+b +b+...+e,+e,+...+4d, +4d,...
R T I e N i a2 e a2 e a'l-{—a'z—]—...:z(ls)

=V, +¥V,+...+,+dF+ A+
and also (10) and (11). It is evident that this is always the case
and that we can find large series of values for those coefficients.
When we take definite values for the coefficients in (1) and (2),
then the question arises whether the compositions of the phases are
defined by this. We see, however, at once that this is not at all
the case and that those compositions may still change within very
large limits. With each type of the [P,7-diagram consequently
infinitely many concentration-diagrams correspond, which are,
however, all bound to the same hmiting conditions |10, 11,12, and
13] and. they form, therefore, a definite type of concentration-
diagram. v
When we take a ternary system, it appears easily that the com-
positions of the phases are not perfectly defined, even if we assume
definite values for the reaction-equations:

-11 -
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Let us take e.g. the reaction-equation:

- ad 1 bB=C -+ dD.

Hence it is only apparent that the four phases form the
anglepoints of a convex quadrangle, the point of intersection of the
diagonals divides the diagonal AB into parts, which bear to one
another the relation a:5 and the diagonal CD into parts which
bear to one another the relation as ¢:d. Hence it is not only
apparent that infinitely many quadrangles exist, but also that the
placé of those quadrangles in the flat plane is still quite arbitrary.

Consequently we are allowed to conclude from the previous
considerations:

the P, T-diagramtypes, deduced above, can all exist; with each
of the P,T-diagramtypes corresponds a definite type of the concen-
tration-diagram, which may be deduced in the way indicated above.

Herewith, of course, the question is not solved whether in the ex-
perimental examination of all systems e.g. with 5 components, all
eight P,7T-diagramtypes possible (fig. 1 and 2) will occur. For this
it is necessary that the phases really occurring, lead to the eight
possible types of the concentration-diagram and only the experiment
can decide that.

Now we shall apply the previous considerations, in order to find
with some P,7-diagramtypes a corresponding concentrationdiagram-
type. The types of concentrationdiagrams, belonging to the P,7-
diagramtypes of the binary, ternary and quaternary systems have
already been discussed before (I, IT and III). As these concentration-
diagramtypes were represented graphically, we have followed there
the reverse way, viz. we have deduced from these types the corre-
sponding P, T-diagramtypes.

We take for .an example a system with 5 components, in the
invariant point of which the seven phases 4, B, C, D, E, F, and
G occur; we assume that the P,7-diagram consists of 7 onecurvical
bundles, as in fig. 1a. We choose the curves (4)and (Z) as position-
curves. The reactions are:

¢eE 4+ fF +9gG@=bB+c¢cC+dD
fF+¢dG+adA=VB+dC+dD

The reaction-coefficients must satisfy:

et+Ff+g=db+c+d . . . . . . (14
- f+g+d=b+4+4d. . . .,. . (15)
and also the conditions (10) and (11). It is evident that (10) dis-
appears and that (11) passes into:
U
—<<<<d—(16)

-12 -
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by which the concentrationdiagram-type is defined. When we wish
a definite example, we may ‘take among others:
QE L+ FL8G@=4B+C+D
FL9G+A=2BL2C+7D
wherein the coefficients satisfy (14), (15) and (16).

Now we take a system with 5 components, in the invariant point
of which the phases P, Q, R, S, T, U, and V occur; we take
fig. 1d for the type of the P,7-diagram.

When we take (R) and (U) as position-curves, the equations of
the reactions are:

wU+s84+9gQ=pP+tT -+toV
§8+¢dQ+r"R=p' P+ VT +4V.
De reaction-coefficients have to satisfy:
utst+g=p+t+v , S +q¢ +r=p +t+
and '
pl t' s! gl v
AN AT
by which the type of the concentration-diagram is defined. We may
take among others as a definite example:
SU+581-QedPL3T 42V
784+2Q04+3R=2PL 3T +7V.

These are viz. the reaction-equations (15) and (18) which we have
used in communication IV for the deduction of fig. 1d [symbolically
represented in communication IV by (20) and (21)].

As third example we take a system with 5 components, in the
invariant point of which the phases A, B, C, D, E, F, and @ occur,
for the type of the P,7-diagram we take fig. 29. We take (4) and
(E) as position-curves, so that the equations of the reactions are:

¢eE+fF+9gG@=0B4+cC+dD.
fF+gdG@+dA+0B+dC=dD.

The reaction-coefficients have to satisfy:

e+f+g=b4ct+d , flHgd+d+¥+=d

b c' J!'l g' dl
7o o F<;<g
by which the type of the concentration-diagram is defined.

We may take among others as a definite example:
2EL3FL2G=B+2C1+4D h
3F18G+34+4B1+20=20D. ;

The reader may also easily apply these considerations to other

types of the P,7-diagram. :

Leiden, Anorg. Chem. Lab. (To be continued).

1

;
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