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Chemistry. - "In-, mono- and clivfl1'iant equilibria". V. By) Prof. 

F. A. H. SCHREINElIfAKERS. 

(Communicated in the meeting of December 18, 1915). 

9. Another deduction of the P, T-diagramtypes. 
Up to now we have dednced the P,T-dlagramtypes for unal'y, 

binal'y, ternary and quaternal'Y systems and we have indicated also 
In what way we can find the P,T-dmgramtype for every defimte 
system, compoaed of an arbitral'y number of components. W_e have, 
however, supposed in all these deductions, that e~ther the concen~ 
tratlOn-dzagramtype Ol' the compositions of the phases, occurring in 
the invarIant point, are known. Now we shall dedllce, without 
knowing the type of the concentratlOn-diagl'am or the composition 
of the phases, the different types of the, P, T-dmgmm, which ~ay 
OCCLU' in an al'bItrary system of n-components. 

111 our previous considel'ations we have intl'oduced the idea 
"bundIe of curves". A bundie of curves is formed viz. by curves, 
which follow one another in a P,T-diagram, without being i'leparated 
from one another by metastable parts of curves, 

In fig. 2 (I) the curves (1) and (4) farm, therefore, a twocul'vical 
bundJe, the same is the case with the cur\'es~ (1) and (5) and also 
with the curves (2) and (3) of fig. 4 (11). [We have to bear in mind 
tlMt the figs. 4 (11) and 6 (Il) have to be changed mutually, as IS 

all'eady communicated 111 the previous publication J. Jn fig. 2 (lIl) 
we find thl'ee twocul'vical bun dIes, viz. B' + D', A' + F' and 
C' + E', in fig. 4 (lIl) the twocurvical bundie B' + D' and in 
fig. 6 (lIl) the twocuJ'vical bundie U + E'. 

We iind an example of a threecurvical bllndle in figs. 6 (lI) and 
6 (lIl), of a fomcur, ical bundle in fig. 8 (lIl) r viz. A' + D' + B' 
+ C'J. 

A bundIe of curves is consequently limited at the right and at 
the left by Olle or more mE"tastable parts of curves. As a limit 
we may caU one single cnrve, which is situated between two 
metastable parts of curves, a "onecurvical bundle". In fig. 1 (I) 
and 2 (Il) each curve forms, thel'efore, a onecurvical bnndle. 

Consequently we find in fig. 4 (lI) two twocurvical - and Olle 
onecurvical bUlldIe ; in fig. 6 (II) one tbreecul'vical and two one­
cnl'vical bundles, etc. 

It is evident tbat also the metastable parts of tbe curves form 
bundies, so that we mayalso speak of olle- and morecllrvical meta­
stabie bundies. 



- 3 -

1027 

In order to find the different types of the P, T-diagrams, we shall 
use the following theses . 

. In a P, T-diagram always a same number of bundies is situated 
at the right and at the 1eft of each bundle of curves. 

In every P, T-diagram the n umber of bundies of curves IS always 
odd and thl'ee at least. 

In accordance with thlS property, which we óhall show further, 
in a P, T-diagram occur, therefore, 3 or 5 or 7 etc. bun dIes of 
curves and diagral!}S with 2 or 4 or 6 bundies cannot exist. 

In the cases treated up to now, we see the cOJlfil'mation of these 
rules. In each of the figs. 1 (I), 2 (I), J (Il), 6 (II), 2 (lIl), 6 (Hl) 
and 8 (lIl) we find th1'ee bllndles in each of the figs. 2 (II) and 
4 (lIl) and in the symbolical diagram 21 (IV) we find five bundIes. 

We may deduce the above-mentlOned rules a.o. in the followmg 
way. First it is apparent that a P,T-diagram with only one 
single bundie cannot exist; in this case viz. one region at least 
should exist with a region-angle, larger than 180°, WhICh is not 
possible in accordance with our previouó considerations. 

Now we take in an arbitrary P,T-diagra01 a bundIe of curves ; we 
rall the stabie part of tbis bundIe a, the metastable part b. Now we 
go from a towards b along a cUl'\'ed line whirh doee not go throngh 
-the invariant point. Starting from a this curve intersects fil'st a 
metastable, aftel'\vards a stabie, further again a m€'tastable, afterwards 
again a stabIe bundie, etc. Art'Ïved at b, we have consequently 
intersected just as many metastable bundies as stabie ones. [At least 
1 metastable and 1 stabie bundie.] Thel'efore, when we find n 
metastable bundies going front a in righthandsiae direction towal'ds 
b, then we find there also n sta.ble bun dIes. As, however, evei'Y 
metastabJe bun dIe, which is situatea at 1he l'ight of a, is the pro­
longation of a stabIe bundIe, which IS situated at the Ieft of a, 
conseql1ently at the left of a also n stabie bundies must be sltuated. 
Therefore we find: at the right and at tlle left of every bundIe of 
curves always a same number of bundies is situated. Hence it 
follows immediately that the total number of curves is dlways odd 
and three at least. 

Now we shall deduce the different types of P, T-diagrams with 
the aid of these properties. 

1. Unary systems. (One component; three curves.) 
In an unary sJstem th ree curves occur, which have to be divided 

in accordance with our previolls considerations over an odd number 
of bundies (three at least). This can take place only in one single 
way, viz. in, sueh a way that th1'ee onerul'vical, bundies ·arlse. 
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Uonsequently one single type flxists only; this is represented in 
fig. 1 (1). We mayalso represent this diagram by BI + BI + BI: 
This means that the P, T-diagram consists of thJ'ee onecurvical bundlès. 

2. Binary systems. (Two components, four curves). Four curves 
may be divided over three bundIes ÎIlone single way only, viz. 
in sueh a war that one bundle contains two curves and two bundies 
each one curve. We J'epresent this by BI + BI + B 2 [the symbol 
Bn l'epresents a bundie which contains n curves]; this means that 
the P, T-diagram consists of two onecurvical and one twocurvical 
bundie. Fig. 2 (1) gives a represcntation of this diagram. ' 

3. Ternary systems. (Three components, fi \'e. curves). 
When dividing five curves into an odd number of bundies we may 

distingnish hvo principal types, viz. a division over 5 and over 3 
bundles. With a division over 5 bundles, the diagram: 

BI + BI + BI + BI + BI 

arises, cOllsequently a P, T-diagram with five' onecurvical bundles, 
as is also represented in fig. 2 (H). 

W ith a di vision over 3 bundles 2 diagrams may al'ise, viz.: 

BI + BI + Bs and BI + B 2 + B 2 • 

The first diagram consists of two onecurvical and one threecul'­
vical bundie and is represented in fig. 6 (1I), the second consists of 
one onecurvical and two twocurvical bundies and is drawn in fig. 4 (1I). 

4. Quaternary systems. (Four components, six curves). 
When dividing the 6 curves into bundJes we may aJso distinguish 

two principal types, viz. a division over 5 and over 3 bundies. 
With a division over 5 bundies the diagram 

BI + BI + BI + BI + B 2 

arises, consequently a P, T-diagJ'am with one twocurvical and four 
onecurvical b~mdles. We find tbis drawn in fig. 4 (lID. 

With a division over 3 bundles the diagrams: 

BI + BI + B4' BI + Bz + Bs and Bz + B 2 + Bz 

may arise. 
The first consists of one fourcllrvical and two onecurvical bun dIes, 

we find this in fig. 8 (lIl); the second cOllsists of one onecurvical, 
one twocurvical and one threeeurvical bundle and is drawn in 
fig. 6 (lIl). The third consists of th ree twocurvieal bun dies and is 
found in fig. 2 (Hl). 

5. Quinary systems. (Five components, seven curves). 
With a division of 7 curves into an odd number of bundies we 
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ean distinguish three pdneipal types, viz. a division into 7, 5 or 
3 bundies. 

With a didsion of 7 curves into 7 bundies, the diagram 

BI + BI + BI + BI + BI + Bl + BI 

arises, consequently a diagram with 7 oneeurvieal bundJes. It is 
represented in fig. 1 by a. 

(E) 

(8) 

(Al 

fA} 

(E) (J)J 

Fig. 1. 

Fig. 2. 

(R) 

.... 

et--

Ir) 

lp} 
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With a di vision of the curves over 5 bundIes the diagrams: 

Bl + Bl + Bl + Bl + Bs , Bl + Bl + BJ + B 2 t B 2 

and Bl + Bl + B 2 + Bl + B 2 r 

The first of these diagrams consists of one thl'eecurvical and four 
'onecul'vical bundies, it is represented in fig. 1 by b. 

The second and third diagrams con sist both of three oneéurvical 
and two twocurvlCal bundies. These diagrams differ, howevel', mutu­
a11y, becallse the bundies of curves have another position with 
respect to one another. The second is represented in fig. 1 by c 
the thil'd by cl. 

When dividing the curves over three bundies the diagrams: 

Bl + Bl + B5 , Bl + B 2 + B4 , Bl + Bs + Bs and B 2 + B 2 + Bs' ~ 
arise. The first consists of one fi vecUl'vical . and two onecurvical 
bun dIes ; we find it in fig. 2 e. The second consists of one onecul'vicaI, 
one tworul'viraI and one fourcurvical bundie [fig. 2 iJ. The third 
consists of one onecurvical and two fhreeClll'vical bundies [fig. 2 g l ; 
the fourtll consists of one threecurvical and two twocurvical bundies 
[fig. 2 hJ. 

Consequently we find that in a quinal'y system exist the eigbt 
types of the P,T-diagram, which are drawn in the figs. 1 and 2. 

In the previous communication IV we have deduced the type of 
the P,T-diagram for a definite case of a system of five components. 
For this we found the symbolical diagram 20 (IV); this consists of 
three onecurvical bundies (viz. V', U' and R') and of two two­
curvical bllndles (\Tiz. P' T' and S' Q'). We have seen above that in 
this case two types may be distinguished; it is apparent ti'om the 
symbolical diagram that it belongs to the type: Bl + Bl + B 2 + 
+ Bl + B2 ; consequently it may be represented by fig. 1 d. 

6. Senary systems rsix components; eight cur\·esJ. 
When dividing eight curyes into an odd number of bundies we 

may distinguish again three principal types, viz. a division into 
7, 5 or 3 bundIes. We then find the following eleven types of dia­
grams in which for the sake of simplification the letter B is 
omitted. 

1+1+1+1+1+1+2 
1+1+1+1+4 , 1+1+1+2+3 , 1+1+2+1+3 , 
1 t1+2+2+2, 1+2+1+2+2,1+1+6,1+2+5, 
1+3+4,2+2+4,2+3+3. @ 

The reader can easily draw or reprebent symbolically these types 
of P. T-diagrams. . . , 
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7. Septenary systems [se ven components, nine curvesJ. It is 
evident th at we may now distinguish four principal types, viz. a 
partition over 9, 7, 5, or 3 bundies. We find the following seventeen 
types of diagrams. 

1+1+1+1+1+1+1+1+1 
1+1+1+1+1+1+3,1+1+1+1+1+2+2, 
1+1+1+1+2+1+2,1+1+1+2+1+1+2 , 
1+1+1+1+5,1+1+1+2+4,1+1+2T1+4, 
1 + 1 + 1 + 3 + 3 , 1 + 1 + 3 + 1 + 3 , 1 + 1 + 7 _ 1 + 2 + 6', 

r 
1+3+5, 1+4+4- , 2+2+5, 2+3+4 ,3+3+3. 

Consequently wè find one diagram with 9, four diagrams with 7, 
five wIth 5 and seven with 3 bundIes. 

It. is evident that we ma,}' find in the same way as above also 
the types of P, T-diagrams for s,}'stems with more than seven com­
ponents. Aftel' the previous deduchons it is quite unnecessary to 
further discuss this matter. 

Now we shall still briefty discuss the occurrence of symmetry in 
the P, T-diagrams. We eaIl a diagram a symmetriealone, when all 
bundies contain an equal number of curves. Consequently we may 
distinguish different cases of symmetry, viz. with onecurvical, two-
cUJ'vical, threecurvical bundies, etc. _ 

Symmetry with onecurvical bundies is only possible as the num­
bel' of bun dies is always an odd one, when the P,T-diagram contains 
an odd number of curves. Consequently it can occur pnly in systems 
with an odd number of components, therefore in systems with one 
component [fig. 1 (l)J, wüh three components [fig. 2 (II)J, with five 
ccomponents [fig. 1 a J, with seYen components l the diagram 
1+1+1 +1+1+ 1'+ 1J, etc. 

As tlle nu mb el' of_ bundIes IS' al ways an odd one, (2n + 1) and 
three at least, symm~try with twocuryical bun dIes is only possible 
wh en the P, T-diagram contains an even number of curves (4n + 2), 
~ix at least. ConsequentIy it can occur, only in systems with 4n 
components, therefore in systems with ! components [fig. 2 (IIl)J, 
in systems with 8 components, etc. 

As the number of bundies is 2n + 1, symmetry with threecurvical, 
bnndles is on]y possible in diagl'ams of systems with 3 (2n,+ 1) -
2 = 6n + 1 eomponents. In a system with seven components the 
diagram is, therefore: Ba + Ba + Ba. ( , 
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It is apparent fl'om these considerations th at symmetl'y is possible in 
everr sJ/stem, of which the numbel' of curves is eqnal to or a multiple,-
of 3, 5, 7 ... (2n + 1). In systems, in which the number of curves 
is 4, 8, 16 ... 211 thel'efore in systems with 2, 6, 14 ... (211 - 2 
romponents, symmetry is nevel' possible.- We see the confirmation 
of this for systems with 2 components in fig. 2 (I), for those with 
6 components in the deduced types of diagrams. 

In connection with the deduction of the types of the P, T-diagram 
disf'ussed abûve, of course the question arises: the P, T-diagram-types 
deduced above, may they all really exist; Ol' in other words: is it 
possible to find fo).' every P, T-diagram-type of a system of n-com­
ponents, really n + 2 phases of such a composition th at they lead 
to th at P, T-diagram? We can also put in short this question in 
this way: does a definite type of concentl'ation-diagram belong to each 
of the P, T-diagram-ty pes, deduced in the way treated above? We 
may show that this is the case indicating in which way we can 
find with each given P,T-diagramtype a corresponding concentration­
diagram. 

For this we take fig. 3; this repre­
sents a P, T-diagram of n + 2 curves, 
which are divided over different bundies 
(A), (B), (C).... Although in this 

:IJ figure all bundies, except (A) and (R) 
are drawn onecurvical, yet we assume 
in our considerations that they are all 
morecul'vical. We caU the curves of 
bundie (A), gOillg from the left towards 
the right (Al)' lAs), (As) ... ; those of 

Fig. 3. bun dIe (B), also going from the 1eft 
toward& the right (B l ), (B2), ••• ; the same applie.s to the CUl'ves of 
the other bundies. We caU the n + 2 phases occurring in the invariant 
point: Al' As, As· .. Bl' Bs ... Cl' C2 • " etc. 

Now we shall deduce the reactions, which may occur between 
those phases. Pl'eviously we have seen that they are completely 
defined, when we know two equations of reaction. In order to 
determine these reactions, we start from the reactions which answer 
the 'position of the curves with respect to curves (Al) and (Rl); we 
eaU those curves the position-curves. [Of course we may choose for 
this eV'1ry two arbitrary curves]. 

We find from fig. 3 for the reaction of the phases with respect 
to curve (Al): 
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1\RI + 1'2R 2 + ... + 8181 + 8 282 + ... + tI Tl + t 2 T 2 + ... = I (1) 
a2A2+a t A s+ .. +blBl +bkB 2+,,,+Cl Cl +CzC2 +·,·+dl D l +d2D2+··· \ 
in which the reaction-coefficients 7"11'2' .. etc. are however unknown, 
but they are all positive. The sum of the reaction-coefficients at the 
right and at the 1eft of the sign of equation mU'lt be the same. We 
find from fig. 3 for the reaction of the phases with respect to 
curve (RJ; 

1,12R2 + T'aRa + ... + s'181 + 8'282 + '.' + t'l Tl + t'2 T 2 + ... ! 
+ a'lAl + a'2A2 + ... = b'lBl + b'2B 2 + . . . . (2) 

c' 1 Cl + C' 2 Cz + ... -I-- d' 1 D 1 + d' 2D 2 + ... 
in which ihe reaction-coefficients are still also unknown, but they 
are all positive. Also again the sum of the reaction-coefficients at 
the right and at the 1eft of the sign of equation must be the same. 
We multiply (1) by A. and deduct (2) therefrom; we find: 

A.1\Rl + (ÄT2 -T'2) R 2 + ... + (;81-8\) 81 + (ÄS2-S'2) 82 + ... 
+ (Àtl-t'l) '1\ + (lt2-t'2) T 2 + .. , = J 

a'lAl + (l.a 2 + a'2) Az + (A.as + a's) Aa + ... + (A.bl-b'l)BI + . (3) 
(lb2-b'2) B 2 + ... + (J.Cl-C'l) Cl + (I.C2-C'2) C2 + ... 

+ (Àdl-d'l) Dl + (A.d2 -d'2) D2 + ... 
In this equation (3) the coefficient a'l of the phase Al is a1ways 

positive. 
In order to find ,from (3) the reaction with respect e.g. to curve 

(Cl)' we put: 

C' 
i,c l - C' 1 = 0 consequently A. = ---.l. 

Cl 
. . , . . (4) 

Rence we find some conditions, which the reaction-coeffi('ients in 
(1) and (2) must' satisfy. It is apparent viz. from fig. 3 that all the 
('urves of the bundies (T), CA) and (B) are situated on the same 
si de of curve CCl) as curve (Al)' As in (3) the coeffi('ient of Al is 
positive, the coefficients of A2' As, ... and Bl> B 2 ••• in (3) must he 
also positive and those of the phases Tl> T z' ••• negative. The first 
condition, viz. ,that the coefficients of Az, A3' . .. are positive, is 
satisfied; we write the two other conditions : 

b' b' b' t' t' 
A. > --2, i.. > ---=, Ä >.---:. etc. i.. < ..2, i.. < -=- etc.. • . (5) 

bI b2 ba tI tz 

in which ;. has the value, indicated in (4). 
Furthel' it is apparent from fig. 3 th at the curves (C2 ), (Cs), ... 

and the bundies ,D), (R) and (S) are situated on the other side of 
curve (Cl) as curve (A 1)' Rence it follows that in (3) the coefficients 

I 
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o~ .the phaSfS C2 ,Ca ... and Dl, D2 ••• are negative, those of th~ 
phasès RI.R2'" and 81' 8 2 , •• must be positive. Consequently we 
find ~ 

. . . • (6) 

(wberein ), has again the vaIue, mdicated in (4). Consequently we 
find the following: when the curves must be situated with respect 
to curve (Cl) as is assumed in fig. 3, then the coefficients of the 
l'eaction-equations (1) and (2) must satisfy the condltlOIIS (5) and (6). 

Let us take still another example. In order to find from (3) the 
reaction with respect to e.g. curve (Da) we put: 

! 0 

d' 
Á da-d'a = 0 consequently À =~. 

da 
. . . . . (7) 

In ,fig. 3 the curves (Dl) and (D
2

) and the bundles (A), (B) and 
(C) ate situated on the same side of curve (Da) as curve (Al)' The 

I 

coefficients of the phases Dl and D2' those of Al, A 2 ···, BI, B 2 ••• 

and Cl> C2 ••• in (3) must, thel'efore, all be positlve. Rence it follows: 

d' d' ), > ~ J. >--.:: 
dl d2 

bi bi c' ),> -b\ ),>~ etc. ),>2, 
b2 Cl 

(8) 

wherein ).. has the value, indicated in (7). 
, . Further it follows from fig. 3 th at the curves (D4), (Di)'" and 
the bundies CR), (S) and (T) are situated on the other side of curve 
(Da) as curve (Al)' The coefficients in (3) of the phases D4' Do ... 
must, therefore, be negative, those of the phases RIJ R2 ••• , SI,82 ••• 

and Tl> T2 • " must, therefore, be poóitive. Rence It follows: 

. d' d' I ), < ~, I. < ~ etc. ').. > r \ À> ria etc.) 
ra 

\ • . • (9) 
I I ti ti \ 

d4 do r 2 

), > ~, À > ~ etc. ), > 2, À>"": etc. 
8 1 82 t t2 J 

wherein À. has again the vaIue, indicated in (7). 
Consequently we find: when the curves must be situated with 

.respect to curve (Da) as is assumed m fig. 3, then the coefficients 
. of the reaction-equations (1) and (2) must satisfy the conditions 

8)- and (9). 
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We eould a:et in the same way for each of the curves of' fig. 3; 
then we find all conditions whieh must be satisfied by the coefficients 
from (1) and (2). It follows, ho wever, rat her 800n from a comparison 
of fi~. 3 with the reactIOn-equation (3) that the conditions are: 

(10) 

and 

(11) 
< C'l < C'2 < ... < t'l < t' 2 <. . < d'l < d' 2 < ... 

Cl C2 tI t 2 dl d2 

The reader will easIly find a regularity in these conditions (10) 
and (11) in eonnection with fig. 3. In (11) we find viz. first the 
eoefficlents, relating to the phases of bundIe (R), afterwards to the 
phases of bun dIe CB), then to those of bundle (8), further to those 
of bundIe (C), etc. and for each bundIe in the same order, in whieh 
the curves in that bundIe succeed one another from left to right. 

In these condItions tile reaction-roefficients a'l and 1\ of the ph as es 
Al and Rl do not oecur; this is based on the fact that we have 
taken the curves (Al) and (Rl) as position-curves. 

Now the question arises whether we can always find reaetion­
coeffieients, satisf'ying 

Tl + 1'2 + ... SI + S2 + ... + tI + t2 -t ... = t 
= a2 + aa + ... + bI + b2 + ... + Cl + C2 + ... + dl + d2 ••• 

(12) 

~"2 + T 'a + ... + s\ T S'2 + .. + t\ + t '2 + ... -t a'l + a'2 + ... = I 
bI b' I I + + d' + d' + \ (13) = 1 + 2 + ... + Cl + C 2 ... 1 2 ... 

and also (10) and (11). It is evident that this is always the case 
and that we can find large series of values for those coefficients. 

Wh en we take definite values f'or the coeffieients in (1) and (2), 
then the question arises whether the compositions of' the phases are 
defined by this. We see, howevel', at onee that this is not at all 
the case and that th05e eompositions may stIll change within very 
large limits. With each type of the P,T-diagram consequently 
infinitely many coneentration-diagrams cOl'respond, which are, 
ho wever, all bound to the same hmiting conditions LiO, il, 12, and 
i3J and. they form, therefore, a definite type of coneentration­
diagram. \ , 

When we take a ternary system, it appeal's easily that the com­
positions of t1le phases are not perfectly defined, even if we assume 
definite values for the reaction-eqnations: 
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IJet us take e.g. the reaction-equation: 
aA + bB=cC + dD. 

Henee it is only apparent that the four phases form the 
anglepoints of a convex quadrangie, the point of intersection of the 
diagonals divides the diagonal AB into parts, which bear to one 
another the relation a: band the dmgonal CD into parts which 
bear to one another the relation as c: d. Hence it is \not only 
apparent that in!initely manr quadrangles exist, but also that the 
placë of those quadrangles in the flat plane is still quite arbitrary. 

Consequently we are allowed to conelude from the previous 
considerations: 

the P, T-diagramtypes, deduced above, can all exist; with each 
of the P,T-diagramtypes corresponds a definite type of the con cen­
tration-diagram, which may be deduced in tbe way indicated above. 

Herewith, of course, the question is not solved whether in the ex­
perimental examination of all systems e.g. with 5 components, all 
eight P,T-diag1'amtypes possible (fig. 1 and 2) will occur. For this 
it is necessary that the phases really oceurring, lead to the eight 
possible types of the concentration-diagram and only the experiment 
can deeide that. 

Now we shall apply the previous eonsiderations, in order to find 
with some P,T-diagramtypes"a corresponding coneentrationdiagram­
type. The types of concentrationdiagrams, belonging to the P,T­
diagram types of the binary, ternary and quaternary systems have 
already been diseussed before (I, II and lIl). As these concentration­
diagramtypes were represented graphieally, we have followed the1'e 
the reverse way, viz. we have deduced from these types the corl'e­
sponding P, T-diagramtypes. 

We take for ,an example a system with 5 components, in tlte 
invariant point of which the seven phases A, B, C, D, E, F, and 
G occur; we assume that the P,T-diagram consists of 70necurvical 
bundles, as in fig. ia. We ehoose the curves (A) and rE) as position­
curves. The reactions are: 

eE+1F+gG=bB+cC+dD 
fF+IG+dA=~B+dC+~D 

The reaction-coefficients must satisfy: 
e + 1 + 9 = b + c + d • . • (14) 

l' + I + al = bi + Cl + dl • " • (15) 
and also the conditions (10) and (11). 1t is evident that (10) dis­
appears and that (11) passes into: 

bi F Cl I dl 

-';<1 <-;<g<ä, . . . . . . . (16) 
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by which the concentrationdiagram-type is defined. When we wish 
a definite example, we may ·take among others: 

2E+F+3G=4B+C+D 
F+9G+A=2B+2C+7D 

wherein the coefficients satisfy (14), (15) and (16). 
Now we take a system wUh 5 components, in the invariant point 

of which the phases P, (J, R, S, T, U, alld V occur; we take 
fig. 1 d for the type of the P, T-diagram. 

When we take (R) and (U) as position-curves, the equations of 
the reactions are: 

uU+sS+qQ=pP+tT+vV 
s' S + q' Q + 1" R = p' P + t' '1' + v' V. 

De reaction-coefficients have to satisfy: 

u+s+q=p+t+v ~+i+~=~+t+d 
and 

p' t' s' q' v' -<-<-<-<-P t s q 1 V 

by which the type of the concentration-diagram is defined. We may 
take among others as a definite example: 

3U+5S+Q=4P+3T+3V 
7S+2Q+3R=2P+3T+7~ 

These are viz. the reaction-equations (15) and (18) which we have 
used in communication IV for the deduction of fig. 1d [symbolically 
represented in communication IV by (20) and (21)]. 

As third example we take a system with 5 components, in the 
inval'lant point of which the phases A, B, C, D, E, F, and G occur, 
for the type of the P, T-diagram we take fig. 2g. We take (A) and 
(E) as position-curves, so that the equations of the reactions are: 

e E + f F + 9 G = b B + c C + d D. 
f' F + 9' G + a' A + b' B + c' C = d' D. 

The l'eaction-roefficients ~ave to satisfy: 

e + f + g = b + c + d f' + g' + a' + b' + c' = d' 
Y d f ~ 4 
b >; and Y<;<d 

by which the type of the concentration-diagram is defined. 
We may take among otllers as a definite example: 

2E+3F+2G=B+2C+4D 
3 F + 8 G + 3 A + 4 B + 2 C = 20 D. 

The reader mayalso easily apply these considerations to othe~ 
types of the P, T-diagram. 

Leiden, Ano'l'g. Cltem. Lab. (To be continued). 


