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Chemistry. — “In-, mono- and divariant equilibria”. VI. By
Prof. F. A. H. SCHREINEMAKERS.

(Communicated in the meeting of January 29, 1916).

10. Relation between concentration- and P,T-diagrams.

We have seen in our previous contemplations in what way can
be deduced the types of the P,7-diagram which may oceur in a
system of n-components and in what way the concentration-diagram
belonging to each of those can be found. Now we shall consider’
more in detail the correspondence between the two diagrams.

Instead of 2 reactions, each between n 4 1 phases, we consider
2 reactions between the'n 4 2 phases of the invariant point. We
write these reactions:

a ¥, +aF, + ot e e =0. . . . . (D)
and
b1F1+baF24“"°+ b1z+2Fn+2=0 Sl (2)

We take @, and b, always positive, so that in each of these

reactions one of the other coefficients at least must be negative.

Further we suppose that we have written the phases F, F,... in
(1) and (2) in such order of succession, that:
b, b, _ b b
xS L)
a,” a,” a, an43

These 1atios may all be positive; when one of the ratios e.g.
by:a, 18 negative; then in (3) going from Ileft to right also all
following ratios are negative. When we multiply (1) with 2 and
when we subtract (2) from it, then we may write:

a, ().—Z-)l)Fl—l—a,(l——-l-)—’)Fa—l—a_.,(l—-E)Fa +...=0. (4
a, a, a,

Hence we may deduce n-}2 reaction-equations, each between
n-+1 phases. When we put 2 =20,:a, then the coefficient of F,
becomes zero; it is apparent from (4) that the coefficients £, 7, . ..

have the same sign as a,, a,... We represent this by the series:
Ot+a,4ay+a,...tage - - . . . . (5
When we equate A=20,:a, then the coefficient of F, has the
opposite sign of a,, those of F,, F,... obtain the same sign as
g, @y ... We represent this by the series:
—a,04a,4+a,...F+a e . . - . . . (6)
For 2=10,:a, we obtain the series:
—a—a,04a,...appe . . . . . . . (D)

and at last for 2= b,4s: ante
76
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—a, —a, —a, —a, —a 0. . o 0 (8) .

It is apparent from those series that the removal of the O from
left to right causes a regular change of the signs.

Now we have n -4 2 reaction-equations, so that we can easily
find the type of the P,7-diagram. It is evident that this type shall
depend on the signs of a, a,... (@, is viz. positive); we could think
now that those signs can be quite arbitrary, we can show however,
that this is not the case for the sake of (2) and (3).

Let usimagine that the signs of @, a, ... are represented by the series:

- +++-—++—+—++++. . . . 9

This means that a, a,a, are positive, a, and a; negative, a,
and a, positive, etc. We shall call a group of n equal signs following
one another: an n-group; as case of limit n can also be =1.
Consequently we find in (9) firstly a positive 3-group, afterwards a
negative 2 group etc. As @, is taken positive, the first group
therefore must always be positive.

Now we can show: ‘‘each series consists of three groups, at least”.

It is apparent, without more, that the occurrence of one single
group only is not possible. The impossibility of two groups occurring
appears in the following way.

When we put in 3) b,: 0, =u,, b,:a,=u, etc. then it follows
from (1) and (2):

i a,ta; 4+ taptapts .o Fange=0. . . (11)
an
@wyoa, + o0, .00+ Up ap + Up+1 Apt1 + . e T Uni-2 atz+2:0 (12)
in which
B E > S E> S - . (13)

We take herein q,...a, positive and a,{y1...a,4s negative; as
regards the signs of u, u,, we take u, . .. u, positive and pg . .. a2
negative ; in this ¢ may change from 1 towards n - 2.

Let us take ¢=mn | 2; this means that all values in (13) are
positive. AS @py1...anpe are negative, we replace them by — o, 14,
— apte ete. Now (11) and (12) pass into:

ay+a, . o=t o o oL (14)
and
B @y + @, a, by @y = Gy v g2 ange . (15)

The first side of (15) is smaller than g, (@, +a, 4 ...+ a,) and

larger than w, (@, 4-a, + ... - ap) ; consequently we may write for this:
a(a, +a, + ... 4 @) in which g, > a >uy,.
We write for the second part of (15):

3 (ap+1 + ek an+2) in which o1 > B > Un4-2.
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Consequently (15) passes into:
ale, +a,+...+ap)=8@gp1+ ... +anp2). . . (16)
in which « > 8. )

As neither @, nor B, nor the reaction-coefficients may be —0,

(11) and (12) can, therefore not be satisfied.

When we give another value to ¢, then we come to the same
conclusion. Hence it follows, therefore, that the occurrence of two
groups is not possible. As further we may easily prove that three
and more groups may occur indeed, we may consequently conclude :

“each series consists of three or more groups’.

Now we take in (1) for a, a, ... the series:

A 8 c D
Pl Nl Pl M o) N Wil

This series consists of four positive groups, which are indicafed
by 4, B, C, and D and of three negative groups, which are indi-
cated by K, S and T; for the sake of clearness these groups are
separated from one another by vertical lines. Going from the left
to the right, we number in each group the curves: 1, 2,..., con-
sequently 4,4,..., B,B,...

When we deduce from (1) and (2) with the aid of (4) the-n-}-2
reaction equations, then we find the series:

04 e —aee] = —
O =~
e 0= ==

and at last:
e = = =0

These series represent the signs of the coefficients of the reactions,
which may occur each time Letween n -+ 1 phases; they indicate,
however also which curves are situated at the one and at the other
side of the curve, whiech is represented by O; the curves with the
positive sign are situated viz. at the one side, those with the nega-
tive sign at the other side of the curve O.

Now we find easily that the P,7" diagramtype can be represented
by fig. 3(V) and that with each group of signs in (17) a bundle
in the P,T diagramn corresponds, which contains just as many curves
as the group contains signs. We shall refer to this later.

We have assumed in series (17) an odd number of groups, when
we add another negative one, then arises the series

+j.1..—-R.+].37. ‘-— ‘1_ ‘ - U8)
76*

(17)
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3

Hence we deduce the type of the P,7 diagram in the way indi- .
cated above. Although there are in series (18) eight groups of signs,
yet in the diagram not 8, but only 7 bundles are found. We obtain
viz. again fig. 3 (V), in which we have, hgwever, still to draw the
curves U, U,... and in such a way that they form with 4,4, ...
one single bundle only, in which the order of succession from left
to right is U,U,...4,4,.... Consequently we find a diagram,
satisfying also the series:

- UAIR‘BIS'O‘T‘D (19)

== = )

Hence it is apparent: when the last group of a series is negative
(series 18) then we may place this last group, after reversing its
sign, before the first group and unite them to one single group
(series 19).. /

[Below we shall indicate in another way that a similar removal
is possible and in what way we can carry it out.]

From the previous considerations follow at once the rules:

in each P,7" diagram the number of bundles of curves is always
odd and three at least;

in a P,T diagram always a same number of bundles of curves
is sitnated at the right and at the left of each bundle of curves.:

We can also find in this way the types of the P, 7" diagram,
which may occur in a system of n components. We have viz. to
examine in how many and in what ways the n - 2 signs of a
series can be divided into an odd number of groups. This s perfectly
the same as the way followed in communication V viz. examining
in how many and in what ways n <4 2 curves can be divided into
an odd number of bandles.

The following is apparent for the relation between the type of
the concentration- and the P,7-diagram. .

1. We know 2 reactions between the phases, which occur in
the invariant point and we seek the corresponding type of the
P, T-diagram. We write then those two reactions just as the equations
(1) and (2) viz. in such a way that condition (3) is satisfied. Now
we take the series of the signs of reaction (1); when the last group
is negative, then we combine it with the first in the way indicated
above (compare series 18 and 19). We may use the following pro-
perties for drawing the type of the P,7-diagram.

With each group of the series a bundle of curves corresponds,
which contains as many curves as the group contains signs.

These bundles succeed one another im the same order as the
groups in the series, on condition that we follow it from left to right

[
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and when we take firstly consecutively the positive groups and then
the negativ‘e ones |consequently in series 18 the order of succession :
ABCDRSTU, this is in accordance with fig. 3 (V)].

We can also take the ovder of succession of the groups, without
taking the sign into consideration [conseqnently in series 18 the order
of succession: ARBS...] Then we consider in the P,7-diagram not
only the stable —, but also the metastable parts of the bundles
[Consequently in fig. 3 (V) the order of succession of the bundles
is ARBS....} Now we may say: in the P,7T-diagram the bundles
succeed one another in the same order as the groups in the series;
the positive groups indicate the stable parts, the negative ones the
merasiable parts of the bundles.

In each of the bundles the curves succeed one another as in the
corresponding group of the series.

2. We know the type of the P,7-diagram and we seek the
corresponding type of the concentration-diagrarm, therefore, two reaction-
equations between the phases.

For this we firstly define the series of signs, which corresponds
with the P,7T-diagram; this "is- easiiy found after the above con-
siderations. As by this only the signs of the coefficients~of (1) are
given, we may satisfy this reaction, therefore, in infinitely many
ways. Equation (2) is also still to be chosen quite arbitrarily, on
condition that (3) only is satisfied. Consequently we find an infinite
number of solutions, which satisfy all, however, the same conditions
and which form together the type of the concentration-diagram.
Consequently the type depends on the series of signs, so that we
may consider the series of signs as a representation of the type of
the concentration-diagram and of the P,7-diagram.

We shall vefer with an example to this deduction of the type of
the concentration diagram.

We shall apply those general considerations to some definite cases.
We .have taken in communication IV as an example (reactions 13
and 14) of 2 reactions in a septuplepoint:

Q+2R +388S=T+U+4V . . . . . (20)
and 2P +- R+ T=842U4+V . . . . . (2]
and we have found for the corresponding type of the P, 7 diagram the
symbolical diagram 20 (IV) or fig. 1d (V). We shall deduce this
diagram following the method indicated above. As in both the equa-

tions (20) and (21) one phase is missing, we are not allowed to
apply to it without more our previous considerations; for this reason we
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shall deduce from (20) and (21) two other equations, which contain .
each the seven phases. We may obtain infinitely many of those
equations, which are however of coursc dependent on (20)and (21).
When we multiply e.g. (20) by 2 and when (21) 1s added to this
then we find:
P L 2Q4+5RL58S— T —4U—9V=0. . . (22)
When we multiply (20) by 3 and when we add (21) to this,
then we find:
9P18Q+7TRL88—2T —50—13V=0. . (28
Now we have to choose in (22) and (23) the order of succession
of the phases in such a way that condition (3) is satisfied.
As:
I>8>4>9 > >8>4%

we must consequently write (22) in the form:

T—-58—2Q-+9V—5R+4U—2P=0 . . (29
Therefore we obtain the series of signs:
7|8 Q ’V}R U‘P
for which we can also write: i
PTSQ(VRP.. @)
+ +i - =+t

Hence it appears consequently that the P,7-diagram cousists of
the 2 twocurvical bundles (P4 7) and (S Q) and of the 3 one-
curvical bundles (V), (B) and (UJ). Starting from (P) 1s, therefore,
in accordance with (25) the order of succession of the curves:
(P, (D), (), (0), (S), (@) and (R), which is in accordance with the
symbolical diagram 20 (IV) and fig. 1d (V).

We assume that in a system with 5 components the reactions:

P—2Q+R—8+T+U—V=0. . . . (26
and 2P +2Q—4R+28+T—6U+3V=0 . . (27)

occur. We have to choose in those equations the order of succession
of the phases in such a way that condition (3) is satisfied. As

PS> 3> —1> 1> 4>

we have to write, therefo‘re, for 26:

P+T—2Q—8S—V+R+U=0. . . . (28)
we obtain consequently the series of signs:
PT|QSV|IRU

= 29

The P,T diagram consists, therefore, of two twocurvical and one
threecurvical bundle and it can be represented by fig. 2 4 (V).



1181

Now we ‘shall seek the concentration-diagram belonging to a P,T
diagram. We take fig. 1 a (V); as each bundle is onecurvical, the

series of signs becomes:
A’E'B F l c ’ G|D
+=1+I—=1+
so that the type of the concentration diagram is defined. We can
find it in the following way. From (30) follows the reaction :
6A—eE+bB--fF+¢C—gG+dD=0 . . (31)
wherein @, e, b, ... are positive. We write for the second reaction :
dA+eE+YB+fF+dCrgd@+dD=0 . (39
wherein the coefficients may have positive and negative values.
Now we have the conditions :
a—e+b—f4c—g+4+d=20
dfd L g+ d=0
i NN N
a e” b F e 77 d
by which the type of the concentration-diagram is defined. It is
evident that those conditions can be satisfied in infinitely many
ways. We may take as example amongst others:
A—2E+B—~F+C—G+D=0
and 6A—TE+83B+F—2C+8G—4D=0
Herein is viz. :
B>1I>8>—-1>—2>-—-8>—4.
Below the corresponding series of signs follow for each of the
PT dlagramtypes in quinary systems [figs. 1, (V) and 2 (V)]

(30)

figglea VM) +—+—4+—4+ . . . . (33
fig 16 V) +++—~+—+4+ . . . . 39
fig.1c (V) +——F—+4+ . . . . (35)
fig. 1d (V) +—++———+ . . . . (36)
fig. 2¢ (V) +——++4+++ . . . . 30
fig. 2/ VM +——++++ . . . . (39
@2MW+———+++----(%
) fig. 24 (V) -4+ ——+++ . . . . (@0

Series 33 contains seven, each of the series 34, 35 cmd 36 contains
five and each of the series 37, 38, 39 and 40 contains three groups

of signs.
The reader himself can now easily deduce the series of signs for
systems with 6 and more components.

Above we have deduced: when the last group of a series is
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negative, then we may place this last group, after reversion of its
sign, before the first group and combine them to one single group.
We have deduced this by indicating that from both the series (18
and 19) the same P,7 diagram-type results.

Now we shall indicate that both series may be converted mutually
and in what way this can take place.

We write reaction (1) when we put n 4+ 2 =17 for the sake of
abbreviation

4y Fy 4 ayFy s+t Fog + 0 Fo+ o +ar Fr=0 . (41)

we assume that o, is positive, and that a,...a, are negative, so
that those last form a separate negative group, just as group U in
(18). We represent the ratios by u, ...y, so that ~

U >l > Sle1 S > S
is satistied. Reaction (2) now passes into :
!"1“1F1 + @"ﬂ'ng + e Yo ax—l—.F.v—l + Ut Fy 4.+ M?“IE =0 (42)
It follows from (41) and (42) ’
(,~)a F o (o121 o + (g—t)ap I 4. - (0, —2)a, F, =0 (43)
wherein  is arbitrary. We choose = in such a way that

B> Sl S>E S > DO - - . . (44)
is satisfied.

The negative coeff. of F...F, from (41) become positive in (43);
the coefficients of 7 .. F,_; keep all the same sign. We place the
positive group F...F, at the beginning of the series ; then we obtain
(e F et 4 (0 )0 Frot (u,- )0, P - (- 1-90)aq 1 Foy =0 (45)
wherein the coefficient of the first term is positive [viz. u,—x<0
and a, < 0]. Now we take pu, > 0, so that also = > 0. We write for (42):
— g, Iy — =g P — a0 By — . — g 10, 1 Fe 1 =0 (46)
so that also herein the first term is positive [viz. u; > 0 and a, < 0].
Now we shall show that condition (3) is satisfied. We write this :

> SL>SAS. S, . . . . (47)

wherein :

e =1,2...0...1].

fts—2%
Now we have:

W T #(up—iq) . (48)
/ W—x  pg—x  (—w)(ug—x)

When we apply (48) every time for two values of 2, and A,
which succeed one another, consequently for A, and 2, for 2, and 2,,
etc. and also for 2, en 4., then we find when we take (44) into
consideration /

Zp—lq:
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> > S a1 <2 22 >0 >0, and _21<).,
so that (47) is satisfied.
When we take u, <0, then we write for (46) in order to make
the first term positive [viz. p; <0 and az < 0]:
o e o oo+ par Fr+pa, i oo g1 Fromy =0 (49)
Consequently we equate now :

s

—=As .
fs— %
Now we have:
L u t —_
Ip— g = % By — ) .. (50)
Mp—%  Ug—% (pp — 2)(peg—)

As p, is taken negative, % can be in accordance with (44) as well
positive as negative ; we now give to » one of the many negative
values, which satisfy (44). With the aid of (44) and (50) we then
find that again (47) is satisfied.

Consequently we find: when the last group of a series is negative,
then we may place this, after reversing its sign, before the first one
and combine them to one single group; also it is apparent in what
way we can find the new coefficients.

We can still put the question whether all pairs of reaction-
equations, which we can deduce from (1) and (2) will have. the
same series of signs. As a P, T-diagramtype is perfectly defined by
its series of signs and reversally the series of signs is perfectly
defined by a P,7-diagram, consequently this must be the case. When
we deduce, therefore, from (1) and (2) another pair of reaction-
equations, then the series of signs for this latter pair must, therefore,
be the same as that for the first. Let the series of signs of the
reactions (1) and (2) be given by (17), then this is also valid for
each other pair of reaction-equations which can be deduced from
(1) and (2). Of course it is possible that this new series of signs
begins with another group; the order of succession, however, remains
the same. In (17) the series begins with group 4; when a new
series begins e.g. with the group .S, then is the order of successionf

T | D| A| R | B
RS R

C
4. ‘~ J+ -
S R ‘
T P o B R
In the first series the signs of the groups S, C, T, and T are
the reverse of those from (17), in the second series this is the case

or

-10 -
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L

with the groups 4, R, B and S. Both the series are, however, the _

same as in (17); when we go in fig. 3 (V), starting from bundle 4

towards the right, then series (17) follows; when we go. however, start- -

ing from S towards the righi or the left, then the above series follow.
We can also deduce this property without using the P,7-diagram.

For this we form from (41) and (42) the two new reaction-equations:

(u,—’—x)alFl—{—... +y—®)ay Fy4 ...+ (o —2)ar F, =0 (509

((ul_l) alFl + ‘-'-{‘i“ (&‘y"“l) ayFy"]‘ ‘f"(!h'—'l) ar Fr =10 (501))

wherein we give arbitrary values to / and #. As we are allowed

to always take the last group in (41) positive, we suppose a, > 0.

We distinguish three principal cases. _

1% u. > II°. %>y, 1I% u, >%>ur.
Principal case I. We may distinguish three cases:

a. w, >land!>=; 6. p >Slandl<x; ¢ [>u, therefore I >x.
Now we can show that the equations (507) and (50%) satisfy con-

dition (3), if we take them in the given or in opposite order of

succession as it appears necessary. [The reader, to whom we leave
this deduction, has to bear in mind that the coefficient of the first
term must be positive in both equations; in the case ¢ this term is

negative in (50%), so that we have to reverse all signs of (50%)].

As all signs of (509) are the same as in (41) the series of signs

of (50%) is, therefore, the same as that of (4l).

Principal case II. We distinguish three cases:

@ [>up,and] >u; 0) [>p,and < 2; ¢) [<p, therefore [ < .
It appears that the series of signs of (50¢) is the same as that in (41).
Principal case 1IL. u, >z > u,.

We take x between the two ratios @,y and w, which succeed
one another, so that is satisfied:
> S Sy S>> S e D>
We assume that in (41) the phases F,..F,..F. belong to the
same series of signs; ay..a,..a. are, therefore, all either positive
or negative. We write (50,) and (50;) in the order of succession:

(t—pg)aylfy + . . . ot ~p)a-Fz + ... e—p)e, Fr + . ..
- (—w)a A —pe)agF g L (—py 1)ty b7y =0
(—upayFy + .. . (—p)aFe 4 ... (—p)a Fr + ... E (509
coel=py)a Fy L () - (C—py—t)ay—1Fy =0
We distinguish again three cases viz.:
@) I >pyand I >%; 0) A>pyand I <%; ¢) {<py therefore [ < x.
When we take care that in all those cases the coefficient of the

(509

-11 -
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first term is positive, then we can show that the two reaction-
equations, taken in the given or in opposite order, satisfy condition (3.

Counsidering the signs of the phases in (41) and in (50¢), then it
is apparent that the phases form in (50¢) the same groups as in
(41); only the group F,..JF,..F, makes an exception; this is viz.
separated into two groups, of which the one viz. I7..F, is found at
the beginning and the other viz. F,.. Fj,—; at the end of (50°). As
both those groups have, however, an opposite sign, we can again
unite them {0 one group. Consequently we find in (41) and in (50¢)
the same groups and with respect to one another in such an order
of succession, that the series of signs of (41) and that of (50¢) are
the same.

We could put the question why in all considerations the series

of signs of the reaction-equation:
aF .ot Py Fap oo e Frpa =0 . (509

is used and not that of the equation:

ol + o+ w1 Fp—1+wapFy + - - + oo e =0 (507)

We might just as well have used this, for both the reaction-
equations have the same series of signs. In order to find the series
of signs of (50/), we must give another order of saccession to the
phases, viz. in such a way that condition (3) is satisfied. Now the
ratios are, however, no more:

11 1
Py fly oo ltade but —, —, ... .
By Q& a2

When we take w,...p,—y positive and p, ... u,4s negative, ithen
we find:
! ——> > > > >*
Up—1 ]
Hence it is apparent, thetefoxe, that we have to write the reaction-
equations :
!"’p—l“p—le—l + .ot we, + Mn+2an-{-2Fn+2 + e+ l‘papr:O (509)
ay 1 Fpq + . oo o F - appoFpgpe + oo apF, =0 . (50%)
When a,_; is negative, then we give the opposite sign tc all
phases. Considering the signs of the phases in (50¢) and (507) then it
appears that both equations contain the same groups, so that both
have the same series of signs.

It is apparent from our considerations that with each concentration-
diagramtype corresponds a P,7-diagramtype and reversally and that

.

-12 -
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each series of signs is a representation of both diagrams. Consequently .

a certain relation must exist between the two diagrams; we shall show:
a P,T-diagramtype can be considered as a schematical reaction-
diagramtype of the corresponding concentration-diagramtype; and
reversally a concentration-diagramtype can be considered as a
schematical representation of the corresponding P,7-diagramtype.

When we take e. g. the P, 7-diagramtype of fig. 2 (II). Hence it
is apparent that the curves (1) and (2) are situated at the one side,
curves (3) and (4) at the other side of curve (5). We may express
this by

GGG @ . .« . . . . . . (1)

This relation (51) expresses however also, that in the monovariant

equilibrium (5) =1 42 4 3 4- 4 a reaction occurs of the form:
14+228+4. . . . . . . . (52

This reaction expresses that a complex of the phases 1 and 2
can pass into a complex of the phases 3 and 4 and revevsally, the
quantilative proceeding of this reaction, however, does not show
itself in (52). We may deduce this quantitative proceeding from the
concentration-diagram [fig. 1 (II)]; herein it is determined by the
 ratio of the parts into which the diagonals 12 and 34 divide one
another. As 52 represents the proceeding of the reaction schematically
only, we shall call for this reason 52 a schematical reaction.

Now it is evident in what way we can contemplate a £,7-
diagram as a schematical reactiondiagram. For this we first change
the meaning of the curves; in the P,7-diagram a curve,e.g. curve
(F,) represents the temperatures and pressures under which the
monovariant equilibrinm (#)=F, 4 ... F,4» can occur; now we
assume that this curve (/) represents nothing else but the phase
F.. [In fig. 2 (II) curve (1) represenis therefore, the phase 1, curve
2 the phase 2, etc.]. Now the diagram is no more a P,7T-diagram;
it is also not a concentration-diagram, for, although we represent
in it the n - 2 phases, their compositions do not show themselves.

It is a schematical reactiondiagram only.

Now it follows from the previous: each phase divides the other
into two groups; each of those groups represents a complex of phases
and in such a way that. both the complexes may be converted
mutually.

In the reactionequation the phases of the one complex are situated
at the one side, those of the other complex at the other side of the
reaction-sign.

Let us apply these considerations to fig. 2 (II), which we consider
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now as a schematical reaction-diagram. From the position of the
phases with respeci to one another, the reactions follow:

2-+-324+5 14+523+4+4 1422445
14+522+43 1422344

Consequently we find the same reactions as from the concentration-
diagram [fig. 1 (II)]; the difference is only that they may be deduced
schematically from fig. 2, quantitatively from fig. 1.

When we consider also the other P,7-diagrams of binary, ternary
and quaternary systems, then we find perfect concordance between
those and the corresponding concentration-diagrams.

It is apparent from the previous that we may deduce the sche-
matical reactions from both the diagram-types and that the concen-
tration-diagrams have the advantage that they indicate the reactions
also quantitatively; the schematical reaction-diagrams have, however
the advantage, that they can be drawn in a plane for each
system of n components; the concentration-diagrams, however, are
situated \in a space with n—1 dimensions and consequently they are
difficult to draw for systems with more than four components.

(53)

We can also obtain schematical reaction-diagrams in other ways.

When we wish to know the reactions quantitatively, then the
concentration-diagram has to be known. A similar diagram of a
system of n components is represented however in a space with
n—1 dimensions and it is difficult to draw it for systems with 5 and
more components; but this is unnecessary for our purpose. It is
viz. unnecessary for the deduction of the P,7-diagrams to know
the reactions quantitatively, but it is sufficient when we know them
schematically. )

Consequently we put the following question : is it possible to draw
for each system with n components without using a space with more
than three dimensions, a diagram, which represents all reactions
schematically P

We shall discuss one of the different ways, in which this is
possible. We imagine an invariant point with the phases A, B, C,
D, E, and F; suppose in the monovariant equilibrivm (4) the reaction :

B+C+DZELF. . . . . . . (54
occurs. We represent each of the phases by a point on a closed
curve, e. g. a circle, in this we shall place at the outer side of the
circle the letlers or figure-signs, belonging to these points).

First we draw in fig. 1 on the circle the point 4 and we
imagine through this point the diameter 4.4, which is not drawn;
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as the point 4, does not represent a phase, we shall draw it on .
the inner side of the circle. In order to express reaction 54, we place
the points £ and F at the one side, B, C and D at the other side
of the line AA,. _ .

Fig. 1 gives a graphical representation of reaction 54 and in such
a way that any error is excluded. When we had not drawn the
point A, in it, the representation would be indistinct, as we could
not know then, to which monovariant equilibrium the reaction related,
so that we might make six suppositions. This doubt, however, is
entirely taken away by the point 4,; this means that the reaction
relates to the monovariant equilibrium (4). ~

In this way of representing the position of the points & and F
at the one side and that of the points B, C and D at the other
side of 4 is quite arbitrary with respect to one another. Consequently
it is not allowed to deduce from fig. 1 the reactions which occur

F £ £
' £

A

D B
C - ¢ B
Fig. 1. Fig. 2.

in the equilibria (B), (C) etc. Suppose one wishes e. g. to represent the
reaction in the equilibrium (C), then for this another figure is wanted,
in which we draw a point 'C, within the circle. When this reaction
happens tobe 4 -+ B+ £ 2 D+ F, we can represent both reactions
in fig. 1; then we obtain fig. 2.

As 1n asystem of n components n - 2 monovariant equilibria occur,
we should want n -2 diagrams for representing those 7 -2 react-
ions. We can, however, give to the phases with respect to one
another such a position, that all reactions can be represented in a
same diagram.

Let us take for an example a quaternary system with the phases
A, B, C, D, E,and . We assume that herein occur the reactions :

A+B+D2C+E , A+F2ZB+C+ D
B+C+DZ2E+F , A+B+DZELF(. . (55
A+F2B+C+Ead A+ D+ F2C+ E

A
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In order not to make those equations discord, they have been
taken from fig. 3 (11I). )

We imagine that in fig. 3 preliminary the circle is only drawn
and on it the points &, Z,, F,and F,; we take the points Zand
arbitrarily. We take the first reaction in order to examine where the
point A must be situated ; hence it is apparent that 4 and £ must
be sitnated on different sides of the line FI7,. It is apparent from
the second reaction that 4 and 7' must be situated on the same
side of the line FF,. Consequently the poini 4 must be situated in
figure 3 on the arc FE, ; now we draw this in the figure and also
the point 4,.

In order to define the position of the point C, we take again the
first reaction, hence it follows that C must be situated at the same
side of the line FF, as the point B consequently point C'is situated

Fig. 4.

on the arc FIZF,. It appears from the second reaction that ¢ and
I must be situated on different sides of the line EE, ; consequently
point ¢ must be situated on are EF L. It follows from both these
conditions that point C must be situated on arc EF,. As on this arc
also the point A4, is situated, we have still to determine the position of
C with respect to A,. This follows at once from the third reaction,
from which it appears that we must take C and E on different
sides of the line A44,. Consequently the point (' takes its place
between A, and F, and the point C,, therefore, between A and F.

When we determine also in a similar way the position of the
other points, then we obtain fig. 3; this represents, as is easily
seen, the six schematical reactions. For the deduction of this figure
the six reactions are not exactly wanted, this is not accidental; but
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it is based on the fact that the reactions are dependent on one
another and that of course it is not allowed to take them in discordance.

Now we have represented the six schematical reaction-equations
by a schematical reaction-diagram ; when these equations were given
quantitatively and when we would also express them quantatively,
then a representation in space would be necessary ; then we should
obtain fig. 3 (III). [The six equations 55 are viz. taken from this
figure].

Consequently 1t is apparent from the previous that we may
draw a schematical reaction-diagram in a plane for each system of
n-components, while a space with n—1 dimensions is wanted for
the corresponding concentration-diagram. -

Now we shall give another form to fig. 3. For this we draw the
diameter 4,4 and we prolong it {hrough 4; we dot the part 4, and
we omit the letter A,, which is not necessary now. This line, which
we shall also call A, represents the phase A just like the point,
situated on tims line. When we do the same with the lines B, B,
C,C ete., then fig. 4 arises. It is evident that we may find from
fig. 4, just as from fig. 3, the six reactions schematically.

When we compare this diagram (tig. 4) with the P, 7-diagram-
type belonging to fig. 3 (III), which is represented in fig. 4 (1II), then
we see that both figures are perfectly in accordance with one another.
The only difference is that in fig. 4 the lines represent a phase and
in fig. 4 (I1I) the lines represent monovariant equlibria.

Hence it is apparent, therefore, that a schematical reaction-diagram
and a P,7-diagramtype ave 1epresented by the same figure and that
the only difference exists in the meaning which we give 1o the lines.

It might seem strange fo the reader that we have deduced in
the way followed above a schematical reaction-diagram, which is
a perfect representation of a P,7-diagram, without having spoken
anywhere 1n our considerations of temperatures and pressures.
When we compare, however, the deduction of fig. 3 and 4 from
the reaction-equations 55 with the deduction of fig. 4 (III) from
fig. 3 (III) then we see that this deduction is perfectly the same.

From those considerations it is apparent once more that a PT-
diagram can be considered as a schematical reaction-diagram of the
corresponding concentration-diagram.

The reader himself can deduce that a concentration-diagram can
be considered as a schematical representation of the corresponding
P,T-diagram. .

(To be continued).

Leiden, Inorg. Chem. Lab.
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