Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J.J. van Laar, On the Additivity of the Values of b and Va of the Equation of State, and on the Fundamental Values of these Quantities for Different Elements, in Connection with the Periodical System, in:
KNAW, Proceedings, 18 II, 1916, Amsterdam, 1916, pp. 1220-1239

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Physics. - "On the Additivity of the Values of b and V a of the Equation of State, and on the Fundamental Values of these Quantities for Different Elements, in Connection with the Periodical Systen". By Dr. J.J. van Laar. (Communicated by Prof. H. A. Lorentz).
(Communicated in the meeting of Jan. 29, 1916)

1. Introduction.

The additive qualities of the quantity b of the equation of state have already been pointed out by Prof. v. D. $W_{\text {AALs }}{ }^{1}$), partıcularly as far as the elements $\mathrm{C}, \mathrm{O}, \mathrm{H}$ and Cl are concerned. I have extended this research over many other elements, in which remarkable regularities have come to light with regard to the fundamental values of b for the different elements in connection with the periodic system.

In reference to the values of $a \mathrm{~V}_{\mathrm{AN}}$ der $\mathrm{W}_{\text {abls mentions nine }}$ Papers by Mathews ${ }^{2}$), adding that this writer had come to "very remarkable" relations with respect to these values. "Remarkable" Mathews' assertions decidedly are '- but in an entirely dufferent sense, I am sorry to say, from that probably meant by Van der $W_{\text {alis. }}$. From the critque which I have ventured to give in the following paper on Mathews' treatises, it will be clear to the readers that Mathews' views and the rule at which be thanks he has arrived, lack every sound foundation.

On the other hand 1 have found that also the values of $V a$ are perfectly additive, and that here too we meet with striking regularities with regard to the periodic system.

But there is more. In this I have found that in all cases, in which the central atom - e.g. C in $\mathrm{CH}_{4}, \mathrm{CCl}_{4}, \mathrm{CHCl}_{3}, \mathrm{C}_{2} \mathrm{H}_{6}$ etc. etc., Ge and Sn in GeCl_{4} and $\mathrm{SnCl}_{4}, \mathrm{~N}$ and P in NH_{3} and PH_{3} - is entirely surrounded on all sides by other atoms or atom groups, the attraction of this central atom to the outside on other molecules entirely vanishes. That namely the lines of force of the attractung (cohesive)

[^0]action are totally absorbed by those surrounding atoms, and do not exert any force whatever outside the molecule.

This is, indeed, in perfect harmony with what was found lately by Einstern ${ }^{1}$) with regard to the influence of the molecules on each other as far as their sphere of action is concerned (this would namely not extend any further than to the surrounding molecules). But now the same thing is found with regard to the atoms in the molecule. Only the peripheral atoms take part in the cohesive attraction, the central ones - for so far as they are entively shut off by the surrounding atoms - are perfectly inactive. If, however, these central atoms are partly free, as e.g. with the doubly and triply bound C-atoms, either half the action or the full action immediately shows itself again. This is certainly one of the most remarkable results to which our researches have led us.

In what follows I shall confine myself to what is indispensable as a support of my contention, reserving the fuller discussion of this subject for another occasion. ${ }^{2}$)
2. The calculation of the values of a and b.

As a and b are in general functions of v and T (a is probably independent of v), it is desirable to calculate these quantities for corresponding states, and for this the critical state is first of all to be taken into account. Also when we pay attention to the fact that the variability of b with the volume is different for every substance, and that therefore something special continues to adhere even to the critical state, this circumstance can yet be elimunated by the introduction of a new parameter. As I have lately demonstrated ${ }^{3}$), in the first place we may take for this the quantity γ, i.e. the coefficient of drection of the straight joining line between the densities D_{c} and D_{0} in a D, T-diagram, which quantity is at the same time $=1 / 2\left(b_{k}: b_{0}\right)$. We can then express all the quantities in γ, which henceforth represents the only independent parameter; thus the idea of correspondence will also have obtained a wider meaning.

Thus e.g. the quantity $s=R T_{k}: p_{k} v_{k}$ is always $=8 \gamma:(\gamma+1)$, and the quantity $r=v_{k}: b_{k}$ will always be $=(\gamma+1): \gamma$. For $f^{\prime}=R T_{k}: p_{h}\left(c_{k}-b_{k j}\right)=1+\left(m_{h}: p_{k} v k_{k}^{2}\right)$ we find $8 \gamma .\left(f^{\prime}\right.$ is the critical coefficient of pressure for the case that a and b may be taken independent of T at T_{k}). Further $r s=8, f^{\prime}(r-1)=8,\left(f^{\prime}-1\right) r^{2}=$

[^1]$=27: \lambda,\left(f^{\prime}-1\right): s^{3}=27: 64 \lambda$. Compare moreover the table on p. 819 of the first of the cited articles, and that on p. 1052 of the third paper.

For the quantities T_{k} and p_{k} we find then perfectly accurately:

$$
R T_{k}=\frac{8}{27} \star \frac{a_{k}}{b_{k}} \quad ; \quad p_{k}=\frac{1}{27} \lambda \frac{a_{k}}{b_{k}^{2}},
$$

at least for normal substances which are not assoaciated at T_{k}. In this (see loc. cit.) the factor λ is given by $\lambda=\frac{27}{8 \gamma-1}\left(\frac{\gamma}{\gamma+1}\right)^{2}$. For sub- stances with a particularly high critical temperature γ has the limiting value 1 and 2 becomes $={ }^{27} / 28=0,964$. For "ordinary" substances $\gamma=0,9$ and λ becomes $=0,977$; for argon, where $\gamma=0,75$, 2. becomes $=0,992$; for H_{2} with $\gamma=0,6, \lambda=0,999$; while for He , where $\gamma=0,55, \lambda$ will be $=0,999$. For ideal substances, where b is constant, γ approaches 0,5 and 2 approaches 1 .

We see from this that the correction factor λ deviates about $2,3 \%$ from unity for ordinary substances, so that in the second of the relations:

$$
b_{k}=\frac{1}{8} \frac{R T_{k}}{p_{k}} \quad ; \quad a_{k}=\frac{27}{642} \frac{\left(R T_{k}\right)^{2}}{p_{k}}
$$

the value of a_{k} must then be augmented by this amount; and by a smaller amount when the critical temperature, as for argon, $\mathrm{O}_{2}, \mathrm{~N}_{2}$, H_{2}, etc., is particularly low. We hare always taken this factor into account.

When the substances at T_{k} are still associated, the above simple formulae must be replaced by much more intricate ones. ${ }^{1}$) For the few abnormal substances, however, which occur in the following tables, we have calculated the values of a_{k} and b_{k} on the supposition that these substances are normal at T_{k} and then added that the accurate values are smaller. (Always in reference to a single molecular quantity.)

For R we have put the value $0,0036618=1: 273,09$, so that the values a_{k} and b_{k} are expressed in the ordinary "normal" unities, i.e. b in the normal volume $v_{0}=22412 \mathrm{~cm}^{3}$ (the volume of 1 gr . mol. of substance at 1 atm . and $0^{\circ} \mathrm{C}$. in the Avogadro state), and a in atm., when $1 \mathrm{gr} . \mathrm{mol}$. has the volume v_{0}.

Want of room obliges me to omit the extensive table of 74 substances, in which $T_{k}, p_{k}, b_{k}, a_{k s}, V a_{k}$, and 2 have been given; therefore the values of T_{k} and p_{k} have been added in the following partial tables for b_{k}. These values have been taken from the best

[^2]and newest sources (tables of Abraham and Sacerdote, Tables Annuelles, values given by K. Onnes and his collaborators, determinations of Cardoso and others).
3. The additive qualities of b in connection with the periodic system.

The values of $b_{l c}$ found can now be composed additively from the following fundamental values for $b_{k} \times 10^{5}$.

The regularity is very striking. In every vertical column the increase is 55 units, whereas in every horizontal row the decrease amounts to 15 units. (Only $\mathrm{Cl}=115$ fits in better than 110). Hydrogen seems to belong to the first series, the noble gases evidently always prolonging the horizontal rows. (The value for He still continues to be very uncertain; nor is Ne quite certainj.

It must be further observed that C presents two different values. In the anorganic compounds and in the aliphatic organic compounds C is always $=100$, but in the aromatic compounds, i.e. in the cyclically built compounds, the smaller value 75 should be taken for 75 . (75 is somewhat greater than $100 \times 1 / 2 V^{2}=71$).

The same thing is found for N . Only for N_{2} itself do we find the fundamental value 85 ; for all other compounds of N on the other hand-the condensed value $69(=85 \times 1 / 2 / 2)$.

As for 0 , here the fundamental value 70 holds everywhere; only for CO_{2} and for one of the two oxygen atoms of the organic acid group CO .0 H (or of the group CO.OX of the compound esters), viz. that which just as both atoms in CO_{2} is bound to ${ }^{\mathrm{C}}$ through a clouble -binding, the diminished value $50(=70 \times 1 / 2 / 2)$ is found.

Fur H three values are found. The fundamental value 48,5 only for H_{2} and HCl . In the anorgraic compounds NH_{3} (and also in the radicals NH_{2} and NH), $\mathrm{PH}_{5}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se} \mathrm{H}$ is everywhere $=3 \pm$ ($=48,5 \times 1 / 2 / 2$), whereas in the organic compounds, where H is directly bound to C - both in the aliphatic and in the aromatic series - the doubly condensed value $H=14\left[=48,5 \times\left(1-{ }^{2} / 2 / 2\right)\right]$ is found.

Now the different tables for the reconstruction of the b-values may follow.
a. Elements.

	Found		T_{k}	p_{k}		T_{k}	p_{k}
$\mathrm{H}_{2}=2 \times 48,5=97$	$97(\times 10-5)$	31,95	15,0	He	5,20	$>2,26$	0,9999
$\mathrm{~N}_{2}=2 \times 85=170$	172	\cdot	126,0	33,5	Ne	± 45	29
$\mathrm{O}_{2}=2 \times 70=140$	142		0,9976				
$\mathrm{P}_{4}=4 \times 140=560$	535	154,25	49,7	Ar	150,65	48,0	0,992
$\mathrm{Cl}_{2}=2 \times 115=230$	226	968	82,8	Kr	210,5	54,3	0,989
		414,1	83,9	X	289,7	$58,2 ?$	0,988

b. Anorganic Compounds.

	Found	T_{k}	p_{k}	
$(\mathrm{CN})_{2}=2 \times(100+60)=320$	$307(\times 10-5)$	401,4	59,75	
$\mathrm{CO}=100+70$	$=170$	172	133,4	35,5
$\mathrm{CO}_{2}=100+2 \times 50=200$	191	304,1	72,9	
$\mathrm{CS}_{2}=100+2 \times 125=350$	343	546,1	72,9	
$\mathrm{GeCl}_{4}=210+4 \times 115=670$	663	550,0	38,0	
$\mathrm{SnCl}_{4}=265+4 \times 115=725$	733	591,8	36,95	
$\mathrm{NH}_{3}=60+3 \times 34=162$	165	406,0	112,3	
$\mathrm{~N}_{2} \mathrm{O}=2 \times 60+70=190$	198	309,6	71,65	
$\mathrm{NO}_{2}=60+70$	$=130$	$114(127)$	177,1	$71,2(64)$
${ }^{*} \mathrm{NO}_{2}=60+2 \times 70=200$	$\overline{<} 197$	431,3	100	
$\mathrm{PH}_{3}=140+3 \times 34$	$=242$	233	325,9	64,0
${ }^{2} \mathrm{H}_{2} \mathrm{O}=2 \times 34+70$	$=138$	$\overline{<} 141$	638,1	200,5
$\mathrm{H}_{2} \mathrm{~S}=2 \times 34+125$	$=193$	192	373,5	89,05
$\mathrm{SO}=125+2 \times 70$	$=265$	254	430,2	77,65
$\mathrm{H}_{2} \mathrm{Se}=2 \times 34+180$	$=248$	$206 ?$	410,1	91,0
$\mathrm{HCl}=48,5+115$	$=163,5$	173	324,5	86,0

Only $\mathrm{H}_{2} \mathrm{Se}$ deviates considerably, but it is very well possible that the critical pressure (91 atm) has been found too high. With regard to NO it is known that the critical data of this substance necessarily
require revision. Indeed, with Olszewski's second value, viz. $p_{k}=64$ instead of the first value used by us (which gives better agreement' in other respects), we should have found $b_{k}=127$, in good agreement with the calculated value ${ }^{1}$).
The abnormal $\mathrm{H}_{2} \mathrm{O}$ does not seem to be considerably associated at the critical temperature. (Abnormal substances are indicated in the tables by an asterisk). From Schefres's researches we know already that NO_{2} at T_{k} is hardly associated to $\mathrm{N}_{2} \mathrm{O}_{4}$.
c. Carbon-hydrogens.

		Found	T_{k}	p_{k}
CH_{4}	$=100+4 \times 14=156$	$191(156)(\times 10-5)$	190,2	45,6 (53)
$\mathrm{C}_{2} \mathrm{H}_{6}$	$=200+6 \times 14=284$	286	305,2	48,9
$\mathrm{C}_{3} \mathrm{H}_{8}$	$=300+8 \times 14=412$	377	370,6	45,0
$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$	$=400+10 \times 14=540$	525	± 424	± 37
(n-C55 ${ }^{\text {H }}$	$=500+12 \times 14=668$	652	470,3	33,0
${ }_{1-\mathrm{C}_{5} \mathrm{H}_{12}}$	$=500+12 \times 14=668$	641	460,9	32,9
$\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{14}$	$=600+14 \times 14=796$	785	507,9	29,6
n- $\mathrm{C}_{7} \mathrm{H}_{16}$	$=700+16 \times 14=924$	919	539,9	26,9
n- $\mathrm{C}_{8} \mathrm{H}_{18}$	$=800+18 \times 14=1052$	1059	569,3	24,6
$\mathrm{C}_{2} \mathrm{H}_{2}$	$=200+2 \times 14=228$	229	308,6	61,65
$\mathrm{C}_{2} \mathrm{H}_{4}$	$=200+4 \times 14=256$	255	282,6	50,65
${ }_{1-} \mathrm{C}_{5} \mathrm{H}_{10}$	$=500+10 \times 14=640$	627	464,7	33,9
$\mathrm{C}_{6} \mathrm{H}_{6}$	$=6 \times(75+14)=534$	537	561,6	47,9
$\mathrm{C}_{7} \mathrm{H}_{8}$	$=534+(100+2 \times 14)=662$	653	593,7	41,6
o- $\mathrm{C}_{8} \mathrm{H}_{10}$	$=662+128=790$	789	636,1	36,9
Cyclohexa	$=6 \times(75+2 \times 14)=618$	636	553,1	39,8
$\mathrm{C}_{10} \mathrm{H}_{8}$	$=10 \mathrm{CH}-28=862$	866	741,3	39,2

The value 191 found for methane is probably too high in consequence of the too low value of p_{k}. For this we have, namely,

[^3]assumed Cardoso's value, which is 45,6 atm., whereas Dewar found 50 , and Olszewsky and v . Wrobiemski on an average 56 atm . With $p_{k}=53156$ would have been found for b_{k} instead of 191, in perfect harmony with the calculated value.

In all cyclical compounds $\mathrm{C}=75$, i.e. in the core. But of course C again $=100$ in the substitution groups CH_{3} (in toluene and xylene e.g.). For H we find everywhere 14.

The fact that the values which have been found for b_{k} for n-pentane and iso-pentane from Young's data differ as mach as 11 units, suggests that the constitutive influences should not be entirely neglected, even though they do not make their influence felt much, compared with the so much stronger additive influences.
d. Other organic compounds.

			Found	T_{c}	p_{c}
$\mathrm{CH}_{3} \mathrm{~F}$	$=100+42+55$	$=197$	$235 ?(\times 10-5)$	318,0	62,0
$\mathrm{CH}_{3} \mathrm{Cl}$	$=100+42+115$	$=257$	260	414,6	73,0
CHCl_{3}	$=100+14+345$	$=459$	456	536,0.	53,8
CCl_{4}	$=100+0+460$	$=560$	566	556,2	45,0
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	$=200+70+115$	$=385$	386	455,6	54
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$	$=200+56+230$	$=486$	484	562,4	53
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$	$=300+98+115$	$=513$	462?	494,1	49,0
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$	$=400+140+70$	$=610$	600	466,9	35,6
$\left(\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{O}$	$=300+112+70$	$=482$	436 ?	441,5	46,3
${ }^{*} \mathrm{CO}\left(\mathrm{CH}_{3}\right)_{2}$	$=300+84+70$	$=454$	< 444	505,9	52,5
H. COOCH_{3}	$=200+56+(70$	$=376$	376	487,1	59,25
$\mathrm{CH}_{3} . \mathrm{COOCH}_{3}$	$=300+84+120$	$=504$	501	506,8	46,3
$\mathrm{CH}_{3} . \mathrm{COOC}_{2} \mathrm{H}_{5}$	$=400+112+120$	$=632$	630	523,2	38,0
$\mathrm{CH}_{3} . \mathrm{COOC}_{3} \mathrm{H}_{7}$	$=500+140+120$	$=760$	758	549,3	33,2
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$	$=520+55$	$=575$	574	559,6	44,6
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	$=520+115$	$=648$	648	632,3	44,6
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$	$=520+165$	$=685$	687	$(670,1)$	$(44,6)$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}$	$=520+220$	$=740$	740	$(721,1)$	$(44,6)$
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}$	$=400+56+125$	$=581$	567	590,4	47,7

The abnormal acetone seems already to be normal at T_{k}.
For $\mathrm{CH}_{3} \mathrm{~F}, \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{Cl}$ and $\left(\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{O}$ we have had to be satisfied
with old determinations of T_{k} and p_{k}; hence the critical pressures may be inaccurate. As we have already observed above, for the compound esters one 0 in COOX (of 0 X) $=70$, the other (of CO) $=50$. In the group $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}=75$ as in benzene, whereas we find $\mathrm{C}=100$ in thiophene. This is rather strange, as in cyclohexane (Hexamethylene), also a cyclical compound, C is very decidedly $=75$, just as in $\mathrm{C}_{6} \mathrm{H}_{6}$. But it is very well possible that the reduction of the value from 100 to 75 only takes place in the cyclical binding of six C -atoms and not of four.
e. Some alcohols and amines.

Ethyl- and propylalcohol seem to be about normal for T_{k}, but methylalcohol and acetir acid are still considerably associated. In the group $\mathrm{OH} \mathrm{O}=70, \mathrm{H}=34$, the first O -atom in COOH being $=50$.

With amines we are struck with the remarkable phenomenon that always only the lower members agree, the higher ones on the contrary deviate greatly. Thus e.g. $\mathrm{NH}_{2} \mathrm{CH}_{3}$ is in good harmony, but $\mathrm{NH}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$ deviates 20% and $\mathrm{NH}_{3} \mathrm{C}_{3} \mathrm{H}_{7}$ deviates $\mathbf{1 5} \%$. It is possible that the determinations of Vincent and Chappios, (who have also investigated the divergent $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{Cl}$) are inaccurate, and the critical pressures too high. If e.g. for $\mathrm{NH}\left(\mathrm{C}_{2} \mathrm{H}_{\bar{\sigma}}\right)_{2}$ we substitute $p_{k}=35$ atm. for 40 atm ., for $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} p_{k}=28 \mathrm{~atm}$. for 30 atm ., and for
$\mathrm{NH}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2} p_{k}=28 \mathrm{~atm}$. for 31 atm ., all deviations vanish. And sucn diminutions of the critical pressures in later, more accurate experiments with purer substances are by no means rare. History even knows more considerable diminutions. Thus e.g. for $\mathrm{CH}_{3} \mathrm{Cl}$ the old and the new values are resp. $=73.0$ and 65.9 atm .; a difference of almost 11%. In view of such facts it would be rash to attach too much weight to the deviations found for some amines. The more so as the agreement for the many other substances in the foregoing tables is almost perfect, or the deviations do not amount to more than 1 or 2% in the extreme cases.

§4. The additive properties of the values of V a.

As we have seen, the values of b can be built up additively from a small number of fundamental values - those of the elements -; such an additivity is not found, however, with regard to a, though it is with regard to $V a$.

This is quite natural. For a is always composed of the product (or the sum of some products) of two values, one of which always refers to the first of two molecules that attract each other, the other to the second molecule.

Thus e.g. when the "attracting mass" of a helium molecule is μ, the total cobesion will be $a=C \mu^{n}$, when C is a certain factor of proportionality, in which also the summation with respect to all the molecules is included. (This summation is the same for all substances, because a refers to the same volume v_{0}, and the molecules lie equally far apart therefore). If the attracting mass of a Cl-atom $=\mu$, the cohesion of $\mathrm{Cl}_{2}{ }^{\text {' }}$ will be represented by $a=C .4 \mu^{2}$. Lastly, if μ_{1} is the attracting mass of H, μ_{2} of Cl , the quantity a for HCl will be represented by $a=C\left(\mu_{1}{ }^{2}+2 \mu_{1} \mu_{2}+\mu_{2}{ }^{2}\right)=C\left(\mu_{1}+\mu_{2}\right)^{2}$.

Accordingly, the cohesion is not supposed "specific" (chemical) - so that e.g. the attraction of an atom H in another molecule being given by $\mu_{1} \times \mu_{1}=\mu_{1}{ }^{2}$, the attraction between H and an atom Cl (likewise in another molecule) is determined by $\mu_{1} \times \mu_{2}$; i.e. the attracting mass of H will remain the same, viz. u_{1}, independent of the fact whether H attracts a second H in another molecule, or whether it attracts an atom Cl .

Hence we assume - and this assumption is perfectly confirmed and justified by the found additivity of $V a-$ that the cohesion is of entirely physical nature, only depending on certain not yet sufficiently known circumstances concerning the number, mass, velocity, path of the different electrons, of which the atoms are built up.

We may add that the above considerations come to this, that the
quantity a_{12} in $a=a_{1}+2 a_{12}+a_{2}$, in which a_{1} and a_{2} now refer to the attractions between the homonymous atoms of e.g. two molecules HCl , is always $=\sqrt{a_{1} a_{2}}$, so that a becomes $\left.=V a_{1}+V a_{2}\right)^{2}$, and therefore $V a=\vee\left(a_{1}+V a_{2}{ }^{1}\right)$.

It is now clear that not the values of a, but those of $V a$ must be found to be additive ${ }^{2}$).

Well, we shall prove in the following tables that the values of $V a$ can be built up additively from the following fundamental values for $V a_{k} \times 10^{2}$.

As has already appeared from the table for the fundamental values of b and is now again confirmed, H belongs genetically to the series C. N, 0 etc., and does not stand separately somewhere above Li in the periodic system The monatomic noble gases again form the continuation of the different series. The value of Ne seems a little too great that of H too small to us.

a. Elements.		
	Found	,
$\mathrm{H}_{2}=2 \times 1,6=3,2$	1,95	0,999
$\mathrm{~N}_{2}=2 \times 2.9=5,8$	5,2	0,992
$\mathrm{O}_{2}=2 \times 2,7=5,4$	5,2	0,992
$\mathrm{P}_{4}=4 \times 6,4=25,6$	25,7	0,97
$\mathrm{Cl}_{2}=2 \times 5,4=10,8$	10,9	0,977

${ }^{1}$) The relation $\alpha_{12}=V a_{1} a_{2}$ will evidently have to hold for homogeneous mixtures of two substances 1 have always held to this relation of Berthelot's in different earlier papers. I am more than ever convinced, that everywhere where $a_{12} \geq V a_{1} a_{2}$ has been found, association or molecular compounds occur. Whenever it is possible to elimunate these disturbing influences by calculation, $a_{12}=V a_{1} a_{2}$ will always be found back.
${ }^{\circ}$) Walden and Swinne (Zeitschr. für physik. Ch. 82, 289 (1913)) cursorily mention the partial additivity of the "specific moleculat cohesion", i.e. of a or a / v^{2}. They too - like Mathews - seek connection between the values of a and the sum of the effective valencies. On Mathews compare the paper following this.

The values found for H_{2} and N_{2} are too low [2 in the last column of the table is the factor in $\left.\alpha_{k}=\frac{-7}{64 \lambda} \frac{\left(R T_{k}\right)^{2}}{p_{k}}\right]$.
b. Anorganec Compounds.

	Found	',
$(\mathrm{CN})_{2}=2 \times(3,1+2,9)=12$	$12,5 \times 10-2$	0,977
$\mathrm{CO}=3,1+2,7=5,8$	5,35	0,992
$\mathrm{CO}_{2}=3,1+5,4=8,5$	8,5	0,988
$\mathrm{CS}_{2}=3,1+12,6 \quad-=15,7$	15,4	0,975
$\mathrm{GeCl}_{4}=0+4 \times 5,4=21,6$	21,5	0,975
$\mathrm{SnCl}_{4}=0+4 \times 5,4=21,6$	23,5	0,975
$\mathrm{NH}_{3}=0+9,6=9,6$	9,2	0,977
$\mathrm{N}_{2} \mathrm{O}=5,8+2,7=8,5$	8,75	0,988
NO $=2,9+2,7=5,6$	5,0	0,992
${ }^{*} \mathrm{NO}_{2}=2,9+5,4=8,3$	$\overline{\text { < }} 10,4$	0,977
$\mathrm{PH}_{3}=0+9,6=9,6$	9,8	0985
${ }^{+} \mathrm{H}_{2} \mathrm{O}=6,4+2,7=9,1$	$\overline{<} 10,7$	0,97
$\mathrm{H}_{2} \mathrm{~S}=3,2+6,3=9,5$	9,5	0,98
$\mathrm{SO}_{2}=6,3+5,4=11,7$	11,7	0,977
$\mathrm{H}_{2} \mathrm{Se}=3,2+7,1=10,3$	10,3	0,977
$\mathrm{HCl}=3,2+5,4=8,6$	8,4	0,985

NO_{2} and $\mathrm{H}_{2} \mathrm{O}$ seem to be still a little associated at T_{k}. It is further seen that H is every where $=3,2$, except for $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{H}_{2} \mathrm{Se}$, where half the value $1 s$ found, as for all organic compounds.

For GeCl_{4} and SnCl_{4}, and also for NH_{3} and PH_{3} the attractive action of the elements $\mathrm{Ge}, \mathrm{Sn}, \mathrm{N}$ and P is entirely efiminated. In these compounds -- and we shall find back the same phenomenon for C in organc compounds - the central atom is quite inactive, becanse it is symmetrically surrounded on 'all sides by atoms H , Cl , etc. (or atom groups), which wholly absorb its attractive action. (shadowing-action):

This is in perlect harmony with what Einstein found already in 1911. Only with us the absorpton of the lines of force takes place already in the molecule through the surrounding atoms, whereas

Einstern considered the attractive artion of the molecules as a whole, which was absorbed by the surrounding molecules.

A glance at the values of $V a_{k}$ for $\mathrm{CCl}_{4}, \mathrm{GeCl}_{4}$, and SnCl_{4} is already sufficient to convince us of the truth of what has heen said. They are namely alnost equal, resp. $=20,0,21,5$, and 23,5 , yielding for Cl the mean value 5,4 , the same value as $1 s$ also found from other compounds (e $\mathrm{g} . \mathrm{Cl}_{2}$ itself).

And the same thing is found for NH_{3} and PH_{3}, where $V a_{k}$ is found resp. $=9,2$ and 9,8 , corresponding with $\mathrm{H}=3,2$ as mean value, also again the same value as is found for H in $\mathrm{H}_{2} \mathrm{O}$ and HCl .
c. Carbon hydrogens.

		Found	,
CH_{4}	$=0+4 \times 1,6 \quad=6,4$	6,7	0,992
$\mathrm{C}_{2} \mathrm{H}_{6}$	$=0+6 \times 1,6 \quad=9,6$	10,4	0,988
$\mathrm{C}_{3} \mathrm{H}_{8}$	$=0+8 \times 1,6 \quad=12,8$	13,3	0,977
$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$	$=0+10 \times 1,6 \quad=16,0$	16,8	0,977
$\left.\right\|^{\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{12}}$	$=0+12 \times 1,6 \quad=19,2$	19,7	0,977
($1^{-} \mathrm{C}_{5} \mathrm{H}_{12}$	$=0+12 \times 1,6=19,2$	19,3	0,977
$\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{14}$	$=0+14 \times 1,6=22,4$	22,5	0,977
$n-\mathrm{C}_{7} \mathrm{H}_{16}$	$=0+16 \times 1,6 \quad=25,6$	25,1	0,975
$n-\mathrm{C}_{8} \mathrm{H}_{18}$	$=0+18 \times 1,6=28,8$	27,6	0,975
$\mathrm{C}_{2} \mathrm{H}_{3}$	$=2 \times 3,1+2 \times 1,6 \quad=9,4$	9,4	0,988
$\mathrm{C}_{2} \mathrm{H}_{4}$	$=2 \times 1,55+4 \times 1,6=9,5$	9,5	0,988
i- $\mathrm{C}_{5} \mathrm{H}_{10}$	$=2 \times 1,55+3 \times 0+10 \times 1,6=19,1$	19,2	0,977
$\mathrm{C}_{6} \mathrm{H}_{6}$	$=6 \times 1,55 \times 6 \times 1,6=18,9$	19,5	0,975
$\mathrm{C}_{7} \mathrm{H}_{8}$	$=6 \times 1,55+1 \times 0+8 \times 1,6=22,1$	22,2	0,97
${ }_{0}-\mathrm{C}_{8} \mathrm{H}_{10}$	$=6 \times 1,55+2 \times 0+10 \times 1,6=25,3$	25,3	0,97
Cyclohex	$=0+12 \times 1,6=19,2$	21,1	0,975
$\mathrm{C}_{10} \mathrm{H}_{8}$	$=10 \times 1,55+8 \times 1,6=28,3$	28,6	0,97

We see agan at first sight that the values of $V a_{k}$ for carbon hydrogens $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$ are simply proportional to the number of H -atoms from CH_{4} to $\mathrm{C}_{8} \mathrm{H}_{18}$, and that again $\mathrm{C}=0$, just as Ge and Sn in $\mathrm{Ge}_{\mathrm{Cl}}^{4}$ and SnCl_{4}. For in these carbon hydrogens all the

C-atoms are again entirely surrounded by other atoms or atom groups.
But for ethylene and iso-amylene, where double bonds are found - so that two carbon tetrahedra adjoin along a side instead of by the angular points - half the fundamental value is found for C, i.e. 1,55. In each of the compounds $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$ and $\mathrm{CH}_{5} \mathrm{H}_{5}>\mathrm{C}=\mathrm{CH}_{2}$ there are two such tetrahedra, which therefore fieely expose part of their surfaces - without shadowing atoms or atom groups - to the attractive (cohesive) action to the outside. For the other atoms of iso-amylene C remans therefore $=0$, because these remain surrounded on all sides. (single bindings in the angular points of the tetrahedra).

For acetylene there is triple binding, i.e. the tetrahedra adjoin each other by an entire side plane, so that now the whole central body is exposed to the attractive action to the outside. Accordingly we duly find $\mathrm{C}=3,1$ as for the above consider anorganc substances.

For $\mathrm{C}_{6} \mathrm{H}_{6}$ and its homologues we have 6 atoms with a double binding, so that here we have $6 \times 1,55$. But in the aliphatic substitution groups CH_{3} with single bindings we find again duly $\mathrm{C}=0$. For naphthaline with 10 double bindings we have also $10 \times 1,55$, and for cyclohexane with only single bindings C 1s again $=0$.

From the above table it appears how close the agreement is between the calculated and the found values (for $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{U}_{2} \mathrm{H}_{4}$, $\mathrm{i}-\mathrm{C}_{6} \mathrm{H}_{10}$ among other compounds this agreement is even perfect), only for $\mathrm{C}_{3} \mathrm{H}_{6}$ and cyclohexane a discrepancy exists of 8 à 9%, probably to be attributed to inaccurately known critical data ${ }^{1}$).

Table d, see following page.
The agreement is again satisfactory. Only $\mathrm{CH}_{3} \mathrm{~F}$ deviates in a similar way as for b_{c}, which may be ascribed to inaccuracs in the critical data.

In acetone the C -atom bound directly to 0 , just as that of the group COOX for the compound esters. is $=3,1-$ in accordance with $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{CS}_{2}$ etc.

[^4]d. Other organic compounds.

		Found	,
$\mathrm{CH}_{3}{ }^{\text {- }}$	$=0+3 \times 1,6+2,9=7,7$	9,7?	0,988
$\mathrm{CH}_{3} \mathrm{Cl}$	$=0+3 \times 1,6+5,4 \quad=10,2$	11,7	0,977
CHCl_{3}	$=0+1 \times 1,6+3 \times 5,4=17,8$	17,6	0,975
CCl_{4}	$=0+-+4 \times 5,4 \quad=\dot{21.6}$	20,0	0,975
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	$=0+5 \times 1,6+5,4 \quad=13,4$	14,9	0,977
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{5}$	$=0+4 \times 1,6+2 \times 5,4=17,2$	18,5	0,975
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$	$=0+7 \times 1,6+5,4 \quad=16.6$	17,0	0977
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$	$=0+10 \times 1,6+2,7 \quad=18,7$	18,8	0,977
$\left(\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{O}$	$=0+8 \times 1,6+2,7 \quad=15,5$	16,0	0,977
${ }^{*} \mathrm{CO}\left(\mathrm{CH}_{3}\right)_{2}$	$=3,1+6 \times 1,6+2,7=15,4$	$\overline{\overline{<}} 16,8$	0,977
H. COOCH_{3}	$=0+4 \times 1,6+(3,1+2 \times 2,7)=14.9$	15,2	0,977
$\mathrm{CH}_{3} . \mathrm{COOCH}_{3}$	$=0+6 \times 1,6+8,5 \quad=18,1$	17,9	0,977
$\mathrm{CH}_{3} . \mathrm{COOC}_{2} \mathrm{H}$	$=0+8 \times 1.6+8,5 \quad=21,3$	20,4	0,977
$\mathrm{CH}_{3} . \mathrm{COOC}_{3} \mathrm{H}$	$=0+10 \times 1,6+8,5 \quad=24,5$	23,0	0,975
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$	$=17,3+2,9 \quad=20,2$	20,2	0,975
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	$=17,3+5,4 \quad=22,7$	22,8	0,97
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$	$=17,3+6,9 \quad=24,2$	24,2	0,97
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}$	$=17,3+8,8 \quad=26,1$	26,1	0,97
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}$	$=4 \times 1,55+4 \times 1,6+6,3=18,9$	20,6	0,97

$\mathrm{C}_{6} \mathrm{H}_{6}$ being $=18,9$ (see table c)), we have $\mathrm{C}_{6} \mathrm{H}_{5}=17,3$.

as in Benzene; therefore here again $\mathrm{C}=1,55$.
The abnormal substance acetone has evidently become about normal for T_{h}.

Table e., see following page.
Methylalcohol and acetic acid are still pretty much associated at the critical temperature, whereas ethyl- and propy lalcohol are almost normal.

In the alcohols is the group $\mathrm{OH}=2,7+3,2=5,9$; hence 3,2
holds for H just as in $\mathrm{H}_{2} \mathrm{O}=\mathrm{H} . \mathrm{OH}$, and some other organic compounds (see under c). The same applies to group OH in COOH , C again being $=3,1$ there.
e Some alcohols and amines.

For the amines the agreement is better than with respect to the values of b_{k}; we should bear in mind that in consequence of $V p_{k}$ in the expression $\downarrow a_{k}$ errors of p_{k} are transferred to $V a_{k}$ for half the amount, passing to the full amount to b_{k}.

S U M M A R Y.

If we summarize what has been discussed above, it may therefore be said that also the values of V akc can be built up perfectly additwely from a few fundamental values. These fundamental values have been given at the head of this paragraph, and roughly it may be said that in the first series of the periodic system (H included) $V a_{k}$ is about $=3\left(\times 10^{-2}\right)$; in the second series about 5 ; in the thiry series 7 , and in the fourth series 9 .

After this paper had been written we have seen that in the fourtu series $\mathrm{Sb}=8,9$ quite in agreement with $\mathrm{I}=8,8$, and $\mathrm{X}=9, \mathrm{I}$.

Further that in the fifth series $\mathrm{Hg}=11,0$. Hence we have for the six horizontal principal series of the periodic system. resp. the fundamental values (with $\mathrm{He}=1$ in the series zero)
$1,3,5,7,9$, and $11\left(\times 10^{-2}\right)$,
so that $V a$ is exactly 2 units greater in every successive horizonial series.

We may still remark that the proportion of the fundamental values of b_{h} of the last members in the first four horizontal series (of the halogen group) is exactly as:

$$
1: 2 \cdot 3: 4
$$

a) For the application of the fundamental table for $V a_{k}$ we should further bear in mind that the atoms $\mathrm{C}, \mathrm{Ge}, \mathrm{Sn}, \mathrm{N}$, and P have no part in the attraction, when (as in $\mathrm{CH}_{4}, \mathrm{CHCl}_{3}, \mathrm{CCl}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$ etc., $\mathrm{GeCl}_{4}, \mathrm{SnCl}_{4}, \mathrm{NH}_{3}, \mathrm{PH}_{3}$) they are surrounded symmetrically on all sides by other atoms (or atom groups) which absorb the lines of force.
b) Wherever a carbon atom exhibits double bindings $\left(\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{i}-\mathrm{C}_{5} \mathrm{H}_{10}\right.$, $\left.\mathrm{C}_{6} \mathrm{H}_{0}, \quad \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}\right)$ C must be taken $=1,55$, and for triple binding $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right) \mathrm{C}=3,1$. The same full value 3.1 also occurs in $\mathrm{CO}, \mathrm{CO}_{2}$, CS_{2} etc., just as in the group CO of the ketones, organic acids and 'compound esters.
c) Finally with regard to hydrogen, the full value 3,2 is found for all anorganic compounds (except $\mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{H}_{2} \mathrm{Se}$) and in the group OH of the alcohols and. organic acids; whereas half the value 1,6 is found for $\mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}$ and for all organic compounds, where H is directly bound to C .

Physics. - "On the Validity of Mathews' so-called Valency Law."
By Dr. J. J. van Laar. (Communicated by Prof. H. A. Lorentz).
(Communicated in the meeting of January 29, 1916).
It now remains to say something about the so-called rule of Materws ${ }^{1}$) that namely a would \cdot be $=C(M \times v)^{2 / 3}$, hence $V a=$ $=V C^{\prime}(M \times v)^{1 / 3}$, when M represents the molecular weight, and v the total number of effective valencies. Thus e.g. for $\mathrm{n}^{2} \mathrm{C}_{5} \mathrm{H}_{12} M=72$, $v=5 \times 4+12 \times 1=32$, hence $v^{\mathfrak{V}}(72 \times 32)=13,2$, and ${ }^{-} \mathrm{C}=$ $=19,7 \times 10^{-2}: 13,2=1,49 \times 10^{-2}$. And for $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{Cl} M=112,5$, $v=6 \times 4+5 \times 1+1 \times 1=30$, hence $v(112,5 \times 30)=15,0$, and $V \mathrm{C}=22,8 \times 10^{-2}: 15,0=1,52 \times 10^{-2}$, which is almost equal io $1,49 \times 10^{-2}$.
${ }^{1}$) Journal of Physical Chemistiy, 1913 (nine auticles).
Proceedings Royal Acad. Amsterdam Vol XVIII.

Unfortunately, however, in about 50 out of 100 substances examined by Mathelvs the rule does not hold good at all; while at least 37 of the 74 substances investigated by us, hence also about half of them, deviate considerably.

Mathets determined the valnes of a chiefly in two ways, first from the surface tension, reduced to the absolute zero-point, and secondly from the critical data. The two series of values of a did not differ much, from which M (loc. cit. $p .160$) drew the conclusion that a is almost independent of the temperature. Tyrer ${ }^{1}$) came to the same conclusion.

We found, however, by means of an accurate calculation that the two series of ralues do differ, indeed, and that the values of a_{0} are about 16% higher than a_{k} (at least when the critical temperature is not too low).

We will not enter here into the details of the calculations (loc. cit. p. 154 et seq.), nor into some theoretical considerations which seem very questionable to us (particularly those in the last Paper, loc. cit. p. 603 et seq. ${ }^{2}$), but only mention that M has found $1,50 \times 10^{-2}$ (loc. cit. p. 183) for $V C$ as middle value, whereas we find $1,47 \times 10^{-2}$ as mean value for those substances in our tables for which the rule is more or less valid.

In the numerous cases in which the rule does not hold, M always succeeds in finding means to make his rule hold good. He either pronounces the most normal substances to be associated (even still at the critical temperature, where water, ethylalcohol etc. are already almost normal!), or he applies strange corrections to the valencies, and e.g. declares chlorine to be trivalent in all the cases in which his rule does not hold good, while this element again falls back to its monovalent role in the cases in which his rule does apply. ${ }^{3}$).

[^5]We shall now shortly pass in review the different groups of substances, in which the little scrupulous manipulations will be manifest with which M. gets rid of exceedingly troublesome deviations of up to 300%.

- a. For the valenceless noble gases Mateews' rule is, of course, not valid at all. For if $v=0$, then $V a=0$ would also be $=0$. But this dufficulty the author entirely ignores. He simply assumes the formula to be valid, and now simply calculates the valencies of He from it etc. Thus he finds for He $v=0,04$ à 0,07 , for Neon $v=0,32$, for Argon $v=1,12$ à 1,35 , for $v=1,23$, and finally for Xenon $v=1,80$ à 1,95 (loc. cit p. 339).

Hence $\mathrm{He}^{1 / 20}$-valent, $\mathrm{Ne}^{1} /{ }^{1}$-valent, Ar. and Kr. $1^{1} / 4$-valent and X very nearly bivalent!

And in order to justify these singular broken valencies (among which <1), M assumes that these inactive gases are, indeed, ralenceless, but that they yet possess two "extra"-valencies, which are, however only partially acive. One of these two valencies in extraordinary service would be positive, the other negative, but only for a part of the molecnles present those valencies - which are neutralized in ordinary circumstances, .-. would be "closed", as M expresses himself free and "open". And only these "open" valencies are revealed by M's rule. Thus 90% of the valencies are open for X, about 65% for Kr., 60% for Argon, 16% for Ne , and at last about 5%, for He (loc. cit. p. 341).

After this ingenious explanation - we see our way to explain away all discrepancies in the whole of Nature in this way - there is no need of anything further.
β The other elements. Where with us only hydrogen departs from the rule with regard to $V a$, not a single element is found to conform to his "rule" in Mathews. In order to make this rule valid also now, however, he declares the faclon ${ }^{27} / 4$, inaccurale by 60% for e.g. H_{3} (though it happens to be almost perfectly accurate for H_{2}, being $\lambda=0,999$) ; further N and 0 to be monovalent in N_{2} and O_{2}, and chlorine trivalent in Cl_{2}.
γ. The anorganic compounds. In our table all the normal compounds (also CO and NO after correction of. p_{k} - see b_{k} in $\S 3$) are in good agreement. With Matherts, however, 12 of the 14 substances of our table do not agree at all. Only $\mathrm{H}_{2} \mathrm{Se}$ and SO_{2}

[^6](Se considered as bivalent, S as tetravalent) concord well. The other substances are "hopelessly aberrant", as M himself remarks with respect to CO. (loc. cit, p. 195). ${ }^{1}$)

To redress this he assumes C and O to be monovalent in CO ; C and O bivalent (mark C oivalent) in CO_{2}; S hexravalent in CS_{2} and $\mathrm{H}_{2} \mathrm{~S}$; N monovalent and 0 bivalent in $\mathrm{N}_{2} \mathrm{O} ; \mathrm{N}$ and O both monovalent in $\mathrm{NO} ; \mathrm{N}$ and P pentavalent in NH_{3} and $\mathrm{PH}_{3} ; \mathrm{Cl}$ trivalent in $\mathrm{SnCl}_{4}(!)$, but again monovalent in HCl . In GeCl_{4} three atoms Cl would be trivalent, but the fourth monovalent! ! (loc. cit. p. 259), though M also pleads for the inaccuracy of the critical data for GeCl_{4}.

And to further the good cause $\mathrm{CS}_{2}, \mathrm{NH}_{3}, \mathrm{PH}_{3}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{HCl}$ are declared to be associated at T_{k} (loc.cit. p. 190 et seq.). ${ }^{2}$) Thien Cl can also be taken trivalent in HCl .

I should not have discussed all these things at such length, if van der Waals had not stated in his paper on the addutivity of the b-values (cited by us in $\S 1$), that M had found "very remarkable relations" with regard to a. I thought it therefore necessary to criticize these papers of M.
d. The curbon hydrogen. Here we find 13 of the 17 substances of our table in accordance with M's rule. But $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{5}, \mathrm{O}_{2} \mathrm{H}_{4}$ (important members, indeed, of the series) deviate greatly. For CH_{4}
 to be faulty (comp. Footnote 3 on p. 1236) ${ }^{3}$), and as for $\mathrm{C}_{2} \mathrm{H}_{4}$: one C-atom would be bivalent, the other tetravalent ${ }^{\text {| }}$

The cause why M's rule happens to hold good for the bigher members of the series, is this that the values of $V a$ are simply proportional to the number of H -atoms, and that for compounds, in which also C, N, and O occur by the side of H , the fundamental values of these elements differ little (resp. 3,1, 2,9, 2,7). But whenever Cl occurs, the fundamental value of which is about double the value, or S etc., the rule does not hold good at all.
ع. Other orqanic compouncls. As may therefore be expected $\mathrm{CH}_{3}{\mathrm{Cl}, \mathrm{CHCl}_{3}, \mathrm{CCl}_{4}, \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}, \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S} \text { deviate more or less considerably. }}_{\text {. }}$

[^7]For this reason Cl is pronounced to be trivalent. But in $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$, where the rule does hold good, Cl is suddenly again monovalent. In $\mathrm{C}_{4} \mathrm{II}_{4} \mathrm{~S}$ S would be hearavalent. Besides: several substances which more or less deviate, are declared to be associated or slightly associated (ai T_{k}).
For the compound esters one of the 0 -atoms in COOX is declared tetravalent (except for methyl-isobutyrate and methyl propionate, where it is unnecessary), the other O atom bivalent.
ip. For the alcohols and the acetic acid M finds the oxygen in OH tetravalent, the other atom 0 m COOH is bivalent. Compare these, assertions with ours in $\S \pm$ under e). We saw viz. that the cause must not be found in the O-atoms, bat that the C in COOH has the normal fundamental value against 0 in other compounds and that also H and OH have the full value, viz. 3,2, against 1,6 for the other H -atoms (bound to O).

For the amines $\mathrm{NH}_{2} \mathrm{CH}_{3}$ and $\mathrm{NH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$ deviate, which accordingly are declared to be associated with N pentavalent, but for the other amines, which do agree, association is umecessary, and therefore N may remain trivalent.

After these remarks, to which we shall not add anything (in my book to be published later I subject also some very singular theoretical considerations from his latest paper to criticism) the reader himself can form an idea of the valne which he will have to attach to this remarkable "rule" of Mathews.

In $\$ 4$ we have sufficiently shown, that not only the values of b_{k}, but also those of $V a_{h}$ can be built up perfectly additively from a few funclanental values. With regard to these fundamental values themselves, we found with respect to b_{k} exceedingly remarkable regularilies in connection with the periodic system, and also the fundamental values of $V a_{k}$ - which are almost equal for every horizontal series - certainly open up important perspectives in connection with Thomson's and Nichotson's theory about the atomis, structure.

But to this we shall revert later on.
Clarens, November 1915.

[^0]: ${ }^{1)}$ These Proc. of Febr. 28 1914, p. 880. See also ibid. March 28 1914, p. 1076 and my treatise These Proc. XVIl p. 598. This additivity itself was already long known, bowever. Gf. among other things Guye Dissertation, Paris 1892). Afterwards Batschinsis (Zeltschrift für physik. Chemie 82, p 87 (1913)) found at T_{c}, reduced to our unities, $\mathrm{H}=67,0=139, \mathrm{G}=114$, all $\times 10-5$. These values are, however - particularly those for H and O - quite erroneous (see our table in §3).
 ${ }^{2}$) Journ. of Phys. Chem. 1913.

[^1]: ${ }^{1}$) Bemerkung zur dem Gesetz von Eótvöz. Ann. d. Ph. (4) 34, 165 (1911).
 ${ }^{2}$) In the Journ. de Chimie physique of Prof. Guye at Genève.
 ${ }^{8}$) These Proc. of March 26, April 23, May 29 and Sept. 26, 1914, resp. p. 808, 924, 1047 and 451.

[^2]: ${ }^{1}$) Cf. Arclı. Teyler 1908 and also These Proc. of Nov. 7, 1914, 'p. 598.

[^3]: ${ }^{1}$) Prof. Guyn is so kind as to mform me that in 1910 Adwentowski found $T_{k}=180,2$, almost idenlical with 177,1 assumed by us, but $p_{k}=64,6 \mathrm{~atm}$ This is really the value, which gives the expected value for b_{k}.

 For ($: l_{2}$ Pellaton (Dissertation, Neuchatel 1915) found $T_{k}=417,1, p_{k}=76,1$ These values would yield $b_{k}=251 \times 10-5, V a_{k}=11,5 \times 10^{-2}$.

[^4]: ${ }^{1}$) We should be careful not to transfer in out thoughts the deviations in $V a$ (calculated and found) doubled to a itself as a standaid An error of 3% in $V a$ would of course give rise to an erior of 6% in a; but then we should overlook that $\left(R T_{k}\right)^{2}$ occurs in the formula for a, on the other hand $R T_{k}$ in that for $V a$, so that an elror in T_{k} is transferred to V a unenlarged, but doubled to a. Not the deviations between the values of a but between those of $V a$ are therefore to be considered as standard of accuracy. Indeed, a is always a product of two separate factors. And these separate factors must only be taken into account and are comparable with the quantity b

[^5]: ${ }^{1}$) Z. f. ph. Chem. $8^{7 \%}$. p. 195 (1914).
 ${ }^{2}$) This will be more fully treated in my book on the Equation of state, which I hope, will be able to be published after the war.
 ${ }^{3}$) In the same way M manipulates some numerical factors, e.g. the constant of the formula of Eötvos (resp. Ramsay and Shelds) in order to establish a nonexisting identity of the two series of values a_{0} and a_{k}. For the same purpose also v. D. WaAls' factor $27 / 0 \dot{0}$ (or corrected by us to $2 \% / 61 \lambda$, in which λ is $=1$ for ideal substances, and for ordinary substances about $=0,977$) was replaced by $\left[s^{2}-(s-2)\right]: s^{2}(s-2)=\frac{1}{s-2}-\frac{1}{s^{2}}$, which is only correct in the limiting case $s=4$ (for substances with very high critical temperature), and NB. does not converge to ${ }^{27 / 64}$ (or ideal substances ($s=8 / 3$), but actually to ${ }^{87 / 64}$! In the correct expression for ${ }^{27} / 01 \lambda$, viz. $\left(f^{\prime}-1\right): s^{2}$ he namely substitutes for $f^{\prime}-1$ the entirely faulty expression $\left[s^{2}-(s-2)\right]:(s-2)$, which for $s=8 / 3$ would not converge to 3 , but

[^6]: to 9% ! For ordinary substances this singular formula gives already errors of 15% for the factor $87 / 6$, and the errors can rise to more than 200% when we approach ideal substances. But bis purpose is allamed: the values of a_{k} now coincile with those of u, (Cll. the last of the ciled papers).

[^7]: ${ }^{1}$) Instead of $V^{\prime} C=1,5 \times 10-^{2}$ we find for $V \mathrm{C} \times 10^{2}$ resp, $1,4,0,97,1,2$, $1,8,1,8,5,8,4,1,24,0 ; 94,1,7,1,85$, and 2. Deviations therefore of on an average 45% (for SnCl_{4} even 290%).
 ${ }^{2}$) M. also asserts that $\mathrm{H}_{2} \mathrm{O}$ - because it departs more than 70% from his rule - is the most associated (at T_{6}) of all substances known. We found $\mathrm{H}_{2} \mathrm{O}$ at T_{k} only slighlly associated, just as $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ elc. Much less than $\mathrm{CH}_{3} \mathrm{OH}$ and acetic acid e.g.
 ${ }^{\text {s) }} \mathrm{M}$ even pronounces the conviction that if only the factor $27 / 0$ were duly cortecled for every substance, all the discrepancies would vanish. Indeed.

