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7
Mathematics. — “Circles cuiting o plane curve perpendicularly.” 1.
By Prof. Hx. b VgiEs.

(Communicaled in the meeting of January 29, 1916).

In the “Proceedings of the Royal Academy of Sciences al Amster-
dam”, section I, volume VIII, N°. 7, 1904, the present writer published
a paper, enfitled: “Anwendung der Cyklographie auf die Lehre von
den ebenen Curven”?), in which the circles are investigated cyclo-
graphically, which. either touch one or more plane curves once or
several times or osculate them.

At the end of that paper the observalion is made that by means
of a slight alteration in the plan, the circles may also be investigated
that cut onme or more plane curves once or several liines perpen-
dicularly; the aim of the following paper is to carry oul that
investigation.

§ 1. As before we start from a plane curve £ of order p, class v,
with ¢ nodes, % cusps, v bitangents, ¢ stationary tangents, and which
moreover passes e-limes through each of the {wo absolute points at
infinity, and ¢ times iouches the straight line at infinity of its plane.
In an arbitrary point P of the curve we think the tangent ¢ to be
drawn, and consider il as the locus of the centra of all the circles
cutting the curve perpendicularly in P; if we then bring through ¢
the vertical plane (lbe plane # of the curve ilself, the base, being
supposed horizontal), and if we draw in it through P the two
straight lines enclosing with ¢ angles of 45°, the cyclographic image
circles of the points of those two straight lines are exactly the above
mentioned circles cutting the curve Z¢ perpendicularly.

If we call the two 45%lines b, and if we repeat the construction
indicated for all the points and tangenis of the curve, all the straight
lines h arve the generairices of a non-developable ruled surface £,
non-developable, because the two systems of circles cutling the curve
perpendicularly in {wo infinitely near points, have no circle in
common. That &£ is symmelrical in regard to the plane of the curve
is io be seen at once, while no more proof need be given that the
cone of direction is a cone of revolution wilh vertical axis, and
whose generatrices with thal axis enclose angles of 45° This cone
culs the plane al infinity of space along a conic 42, which touches
the absolule circle in the two absolute points 7, ., [, of the plane
g; for the poini at infinity Z_ of the axis of the cone of direction
is the pole of the siraight line at infinity 7, of the plane of 4, as

1) Henceforth we shall quote this paper for the sake of brevity as “Anw. Cykl,"
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well with regard to %2 as to the absolute circle, and if both the
cone of direction and the isotropic cone are considered for a point
of this plane as vertex, they have the two isotropic rays in that
plane and passing through that vertex in common, so that [, _, /
lie on 42 as well as on the absolute circle. -

Consequently the surface £ may be imagined to have arisen
more intuitively 1n the following way.

Let the tangent ¢ be drawn in a point P of £¥, and the point at
infinity 7', of it be connected with Z_; the conuecting line cuts
k, in two pomts K,  and K, , and 1f these points are connected
with P, the two generatrices b,, b,, passing through P have been
found.

From this construction the order of &£ ensues at once and that
in two ways, if we suppose for the moment that the above mentioned
numbers d, %, ¢, 7, & 0 are all zero. For, in the first place, the com-
plete intersection of £2 with the plane of &” is easy to indicate, it
consists of £~ itself, counted twice, as %# is evidently a nodal curve
of £1, and further only of such 45°lines with regard to this plane
as may be esteemed to lie at the same time in this plane, i.e.
isotropic straight lines. Through each of the two isotropic points
I, I, of @ pass u(u—1) tangents of this curve, and the plane
passing through such a tangent and Z_ touches £l (as Z, is the
pole of [ with regard to Z7), and consequently contains of £2 two
coinciding gencratrices, or iather only one generatrix, which in this
plane itself, however, counts for 2, in any other plane passing
through that line, as for instance B3, for one ; the order of L2 is therefore

2 o2

m=2u 4+ 2u (u—1) = 2u* or = 2u + 2.

We may, however, also easily determine the intersection of (2
with the plane at infinity of space. If we suppose an arbitrary point
K, of £ connected with Z , u(u-—1) tangent planes of & will
then pass through the connecting line; the lines connecting the
points of contact with K _ are the generatrices of (2 passing through
this point; &% is therefore jfor 2 a w(u—1)- or v-fold curve.

But 4¥ possesses further w points at infinity, whose tangents meet
[, in those points themselves; the lines connecting those points with
Z, are therefore edges of (2 and that nodal edges, because they
cal £ in two points. 2 therefore contains at infinity u nodal edges,
vis. the lines counecting Z_ with the points at infinity of %”, and
from this it ensues that we again find for order m:2 u(u—1) 4
+2u=2pu* At the same time we observe that Z, as intersection

of w nodal edges 1s a 2 p-fold point of L2,

Ay
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§ 2. We will now investigate the influence which bhave the
singularities d, % ¢, v,&,0 provisionally supposed equal to zero in the
preceding §; that it is necessary to consider them follows afnong
others from this that already in the two simplest cases imaginable,
viz. if k¥ is a straight line or a circle, the number 2u® appears to
be incorrect for the order of f2; for the straight line, £ is evidently
the vertical plane passing through that line, so m =1, aud for the
circle £2 is, as is known, the hyperboloid of revolution of one sheet
with that circle as gorge, so m =2, whereas 2 u* would give 2
and respectively 8. The differences aie easy to explain in either
case. The plane is apparently to be counted twice, as through each
of its points two 45°lines pass; for the hyperboloid of revolution
the same holds good, but there the circle passes moreover through
the two points [, /,,, so thate =1, and consequently the influence
of & must be investigated.

Let us now suppose that a tangent ¢ has been drawn out of
I, to k*, we then have to connect the point of contact P with /,
according to § 1; if, however, £* itself passes through [/, , and it
¢t is the tangent in this point, then the line PI,  becomes indefinite
m the plane passing through ¢ and Z_, so that the pencil with
vertex [, lying in this plane branches off, and that twice, as the
tangent ¢ vepresents two coinciding tangents of 1¢; every time
therefore when A* passes through one of the cyclic points, a pencil,
counted twice, branches off from &£. In our example mentioned
above, we found &=1, consequently two planes, each counted
twice, branch off from (2; the order of the complete surface was
8, and is therefore reduced to 4, as the twice to be counted
hyperboloid of revolution requires.

Besides ¢ the number o (the number of times that 4* touches the
straight line /_ of §) is also of influence on the order of the “true”
surface {2, as easily appears from the following consideration.

According to § 1 the base B can contain beside the nodal curve
& only isotropic generatrices of {2; through 7, passonly »—2s¢—o¢
tangents, not having their point of contact on/_, so only 2(v—2e—o0)
isotropic generatices lie in @; if we are therefore able to prove that
[, itself does not belong to the “true” surface, it is proved by this

[==]

that the order of £ is:
m=2(u + » — 2& — 0).

As to [, we may observe the following. We have to intersect
each tangent ¢ of A with /_, to connect the intersection with Z_
and to connect the two intersections of this connecting line and
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k. with the point of contact of ¢; if ¢ now coincides with /_, the
point of contact remains definite, the intersection with [ does not,
and so we can connect the point of contact with any point of £
in order to find always a straight line, which does belong to the
“true” surface !!; this is the reason why [, not belongs to £Z
either. To (2 does belong, however, the line connecting the point
of contact of /, and A* with Z_, as is easily to be seen if the
tangent ¢ is made to approach to /_. At the same time we are
then convinced that at the limit fwo generatrices coincide in this
line, according fo its iwo intersections with £, so that it is a
double generatrix; but we should moreover consider that even as a
double generatrix it is to be taken twice, as £* hasin common with
[, two infimtely near points, and for one point the same obtains
that obtains for the other; we may say that it is a double torsal
line, whereas the tangent-plane coincides both times with &_.

This becomes still more evident if we just consider an ordinary
intersection S, of A* with [ . By causing a point P of £* to
approach to S_ we are at once convinced that S, Z_ is a double
generatrix of {2, and again a double torsal line, with a tangent-
plane, however, that contains the tangent .S_ at 4#; if now two
points S get to lie infinitely near, two double generatrices get tolie
infinitely near.

These considervations enable us moreover to control the order m
of £ arrived at above by means of the plane at infinity of space.
The intersection of this plane with £ consists viz. of the following parts:

a. the 20 double generatrices lying in pairs infinitely near, arising
from the & points of contact of & with I_;

b. the p— 2¢— 26 double generatrices arising from the simple
intersections of £¥ with /_;

c. the conic £, . This is a (» —o)-fold curve of the surface, for
if an arbitrary point K of % is connected with Z _, and the con-
necting line is made to intersect /, there pass through the inter-
section » — o tangents at %7, whose point of contact does not lie
at infinity, consequently pass through K v—o generatrices of £.

By means of the plane at infinity of space we find therefore for

the order of £:
m—46+2u—28—20)4+2@—06=2(@u-+r—=2— o)
As the points [, , £, lie on k¥, even as &fold points, it might
be expected that the two straight lines Z 1, , Z, 1, lay also on &;
this, however, is not so, and that because these lines touch A2’ instead

of cutting it. If along one of the & branches of % passing through
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1o @& point P with tangent ¢ is made to approach to /1. direct
contemplation teaches that as the intersections with £2 of the
line connecting Z_ with the point at infinity of ¢, simultaneously
with P approach to [/, , the two generatrices passing through
P approach to limit positions not coinciding with 7, Z . Through
1., 1, pass therefore every time »—32s—o generatrices lying in 8,
and 2e others not lying in 8 but neither passing through Z_; together
therefore v—o, as well as through any other point of £, .

Of the u—2¢ nodal edges passing through Z_ u—2e—2¢ lie iso-
lated, while the 26 remaining ones coincide in pairs; this influences
the multiplicity of the point Z_, considered as a point of the surface.
As namely in general through a point where two nodal edges, or
more generally two nodal lines meet, four sheets of the surface pass,
and this point consequently becomes a quadruple point for the surface,’
there pass through the intersection of two infinitely near nodal
edges only two sheets, viz. simply those two that touch along those
edges ; the consegence of this is that an arbitrary straight line passing
through Z_ does not cut the surface there in 2 (u—2¢), but only
in 2 (u— 26 — 20) -+ 206 = 2 (u — 2e — o) points, so that Z_ 1s for
our surface a 2 (u—2e—oa)-fold point. The o pairs of comciding
nodal edges are torsal lines of L2, and they are to be counted twice,
because two sheets of §2 touch each other along each of them.

As the order of £2 is equal to 2u + 2v — 48 — 20, and a straight
line passing through Z, has, in this point only, already 2u—de—24
points in common with (2, only a number 2v remains for the inter-
sections not lying in this point; they lie in pairs symmetrically in
regard to the plane of £, and are represented by the »-circles, which
may evidently be described round the foot point of the straightline
as centre in such a way that they intersect £ perpendicularly.

At first sight it is somewhat striking that the order of the non-
developable surface which is under present observation, corresponds
exactly with that of the developable surface in the treatise quoted
in the Introduction, which surface we defined at the time as the
common circumscribed developable surface of £ and 4% ; the peculiarity
of this phenomenon disappears, however, if we observe that we
might have constructed this developable surface as well by applying
the construction which we now apply to the tangents of i#, to the
normals of £#, which we have not done, however, as in that way
its character as a developable surface becomes less prominent.

[

§ 3. In § 1 we found that £~ is a nodal curve for £2, and we
will now investigate how the two sheets of the surface passing
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through this nodal curve cut each other. Through a point P of 1»
pass two edges 0,, b,, one lying on one sheet, the other on the other;
the tangent plane in I’ at one sheet contains therefore b,, and the
tangent ¢ in P at A#; and the tangent plane of the other the lines
b, and t. Now, however, b,,0, and ¢ lie in one plane; in each point
of kv the two sheets have consequently the same tangent plane. More
may be said, however, viz. that the two sheets osculate each other
alomg the whole curve k*. Let us namely suppose the normal plane
of %* brought in P, and this plane intersected with 2, we shall
then see (wo curves having the same vertical tangent in P and being
each other’s reflected image with regard to the normal n of £ lying
in the base 8. The circle of curvature in P of one curve has its.
centre on n, but as this circle is its own reflected image, it is at
the same time circle of curvature of the other curve, from which
it ensues that both curves osculate in P. And it may be further
observed, as to the situation of the two sheets osculating along %~
that, at least in the neighbourhood of £¥, both must lie on the con-
vex side of the cylinder which projects £~ out of point Z_.

In a node D of %£* meet 4 sheets of {2, intersecting each other
in pairs in 6 branches of the complete nodal curve of 2; two of
them belong, however, to k*, so that 4 remain belonging to the rest
nodal curve, which are in pairs each other’s reflected image with
regard 1o B and have all in D the same (vertical) tangent. As a
twisted corve that has a vertical tangent in D projects itself on 8
as a plane curve with a cusp in D, and the 4 branches of the
nodal curve lie in pairs symmetrically with regard to B, the pro-
jection of the rest nodal curve on B in D will show 2 cusps, both
lying in that part of the plane from which the convex side of the
two branches of k* is lo be seen. Bach of the 4 branches of the
projection of the rest-nodal curve, meeting in D, is locus of points
from where two equally long tangents may be drawn at 4+, and
these tangents always touch at both branches, not at on¢ and the
same branch (from which the number 4 of the branches may be
easily deduced); if namely two equally long tangents are to touch
at the same branch, the two sheets of (2, which pass through that
branch, and which as we saw above osculate each other along that
branch, must have another intersection in common, and this is only
the case, as we shall see, in the neighbourhood of the so-called
vertices of k¥, and these vertices are generally not situated in the
immediate neighbourhood of the nodes.

Let us now investigate the influence of the cusps of &». A cusp
K~ causes in £2 2 cuspidal edges, one for each sheet, and lying in
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the vertical plane passing through the cuspidal tangent, and of
course at angles of 453° with regard fo $8; the acute edges point
both to the same side as the acute point of A. In order to discover
now the conduct of the rest nodal curve of £ in the neighbourhood
of K, we just replace the cusp by a node D with a little loop and
then intersect {2 with a plane lying in the neighbourhood of D
(but not on thé side of the loop), and for convenience, sake thought
vertical. Let us suppose £ in the environment of D exactly drawn,
the intersection of (2 with the plane is also easily and sufficiently
exactly to be constructed; two branches 1 and 1* are found lying
symmetrically with regard to 3, and also two others, 2 and 2*.
The branches 1 and 2 intersect each other in 2 points, 1* and 2%
in those symmetrical with regard to B, and when the plane of
intersection is moved these four points describe two with regard to
B symmetrical branches of the nodal curve, which project themselves
on B in one curve with a cusp in D, as has been explained above.
And the same holds good with regard to the branches 1 and 2%,
and 1* and 2 respectively.

If, however, the node passes into a cusp, the branches 1 and 2
join (and 1* and 2* symmetrically) into a cusp, lying on one of
the two 45° lines passing through X, mentioned above, whereas the
second intersection remains arbitrary; by removal of the plane of
intersection in the direction of K, one intersection describes the
45°line, however, no farther than K, the other a curve ending in
K, and that, as a simple investigation will teach, with an arbitrary
inclination with regard to 3; the continuous curve passing through
D, which had a vertical tangent in D, has therefore passed into a
curve showing a break in X, and composed of a true curve and a
piece of a 45-line. And the branches 1%, 2*, produce, it is true, of
that curve the image, but as the tangent in K, as we shall see, is
generally speaking not vertical, a break remains in existence here
as well.

As, however, (2 is algebraic, every discontinuity is seemingly
done away_with again, and this happens here whereas the curve
with vertical tangent in the node passes, in the case of the cusp
into a curve with a node in K, and of which two branches, which
are each other’s image with regard to §, are active, the two others
parasitic. .

Let us take as a simple example the curve y* = a®, which has
the advantage of possessing an axis of symmetry, so that one of
the branches of the nodal curve passing through X (or more exactly
two) gets to be situated in the plane of symmetry of (2. By means
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of differentiation we find 2 yp:&fu”, so that the tangent becomes:

F—y ——-——(X )3

the latter cuts the a-axis in the point X :g The length of the

tangent between the point of contact and the intersection with the

z-ax1s becomes therefore V(—x 42, or Via* 12°, and if we now
take this length as z-coordinate, and call 1t §, and put thos:

z 4
—_——; , Q:I/—gw’—l—ﬁ, .

the point (§, &) is a point of the nodal curve. The equation of this
curve becomes therefore:

=4 & 278
and this curve has apparently a node in O, while the nodal tangents
enclose with B an angle whose tangent is determined by

U133

Mé:i&
=0 §

i

Besides in O it culs the z-axis moreover in the point &= — o7

it consists therefore of two infinite branches and a knot, and now
the knot is parasitic; the circles representing the points of this knot
cyclographically are of course real indeed, but they do not cut the
curve y* = a° really, at least not really orthogonally.

4
§ 4. The point § = — o has its meaning too, for this simple

example as well as in the general case; we will just illustrate 1t
therefore. If the tangent

3a . ‘ ' .
will become isotropic, o must be = i, consequently 32° = 2yi. From
J .
4

) 8
this equation and y* =4a° we find 2 = — o Y=g and if the

tangent in this point is intersected with the z-axis, we find 2 = —

4
—; the point ”‘":-ﬁ is therefore a focus of y®=+«", and the

parasitic knot of the nodal curve extends between the cusp and the
focus.
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From this simple example we may now draw important conclu-
sions for the general case. Even then the sheets 1 and 2 cut each
other on one side of 3 in a 45°line, on the other in a curve, and
the latter is completed by its image and a parasitic part into a
curve with a node in K. With the sheets 1 and 2* it is in so far
different that they cut each other both above and below 8in branches
of curves, both completed again by parasitic parts into a curve
with a node in- X, and fihally the sheets 1* and 2 of this last curve
produce moveover the image. Apart from the two cuspidal edges
(45°-lines) therefore, the resinodal curve of L2 possesses 3 nodes in
each cusp of k,; and as of the three curves in question here one
is ils own image, whereas the two others are each other’s image,
the projection of the restnodal curve in the neighbourkood of K will
consist of 3 branches wlhich all touch at the cuspidal tangent. This
may agamn be easily perceived planimetrically. The projection
of the two cuspidal edges is the cuspidal tangent of K, and the
latter is the locus of the centres of all the circles which cut the
two branches of £# meeting in K perpendicularly in this point. The
two branches of the rest-nodal curve, which stereometrically belong
according to the considerations put down in the preceding §, to the
cuspidal edges, and complete them into curves with a break in
them, project themselves mto a branch containing all the points out
of ' which two equally long tangents at %” pass which are both
turned away from U; the two other branches contain the points
out of which one tangent of X is turned away from, the other
tarned towards K.

Of the two 45°lines passing through X we found in the preceding
§ so to sa) every time only one half, but the other halves have
their signification too. Let us viz. to that purpose consider a node
D with a small knot while the nodal tangents almost coincide
already. If we follow this small knot jfrom the node fo the node,
we see the circle of curvature decrease at first, but afterwards
increase; it has been a minimum in one point, and this point is
for 4# a vertex, that is to say a point where the circle of curvature
touches in 4 points; and it is easy to see now that from this point
a branch of the projection of the rest-nodal curve must start; for,
if we suppose the 4 poinls which the ecircle of curvature has in
common with £¢, infinitely near, and then call them 1, 2, 3, 4,
there pass through the intersection of the lines 12 and 34 two
tangents at A, which at the same time touch the circle of curvature,
and ave therefore equally long. The two sheets of £ near a
verten of & cut each other consequently along a with regard to 8

-10 -
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symmetrical curve, which in the vertex Tiself has a vertical tangent.

And it will be clear now without further demonstration that if
the node D passes into a cusp K, the vertex of the small knot gets
to lie in K, and the new branch of the rest-nodal curve just found
passes into the two halves not yet accounted for of the 45°lines
passing through K.

§ 5. The points of inflexion of A”, as is easy fto understand, are
not directly connected with the rest-nodal curve. The vertical plane
passing through an inflexional tangent contains two systems of
generatrices, mutually parallel and with regard to g8 symmeirical,
lying infinitely near and they are evidently torsal-lines of £, but they are
in no way connected with the nodal curve; on the other hand there
are in 8 two groups of points that do belong to the rest-nodal curve,
and which we have not yet discussed in the preceding §. According
to § 2 there pass through each of the two absolute points at infinity
v—32s—0 tangents at 4”7 and each of them meets 4* except in the
point of contact and the cyclic point in question, moreover in
pu—se—32 other points; through the point of contact passes no other
generatrix but {he isotropic tangent itself, counted twice, so that
this point does not belong to the rest-nodal curve (it is a pinch-
point of £, of course an imaginary one, and along the isotropic
tangent two sheets of the surface pass into each other); in each of
the u—e—2 other points, however, the sheet, to which that isotropic
tangent belongs, cuts the {wo sheets which pass already through
those other points, so that two branches of the rest-nodal curve
appear, which in such a point pass through g with a vertical tangent;
so we find the following result. In each of the 2(u—e—2)(r—2e—o0)
points which the tangents out of the two isotropic points of 8 hawve,
besides these points and the points of contact, moreover tn common
with ke, passes the restnodal curve with two branches through 8,
which branches osculate each other along a vertical tangent. These
points are of course all imaginary.

Bul we have further to consider the points in which the v—2s—o0
tangents out of the isotropic point [, cut the tangents out of /, ;
these powmts amount (o (»—2&—0)’, and among them are»—2s—¢
real ones; they are the so-called foci of 7). Through each of these
points pass two single sheets of the surface, and consequently passes
one single branch of the rest-nodal curve;so we find: the (v—2e—0)*
Joci of ke are single intersections of the rest-nodal curve with .

1) Cf. Ann. Cykl p. 25.

-11 -
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As to the »—2e—0 real foci a peculiar phenomenon is to be
observed here; through these points passes, as we have seen, one
branch of the rest-nodal curve, and the tangents at those points are
vertical, ~consequently real, so that not only the foci themselves, but
also the points infinitely near to them, therefore whole branches
passing through those points, must be real, and consequently must
have real projections on 3. Now it is a matter of course (think for
instance of the comes) that neither the foci themselves, nor neigh-
bouring points may be centres of circles cutting £ twice really,
so that the branches of the nodal curve passing through the real
foci are parasitic branches of the nodal curve, and there is nothing
particular in this after all, for parasitic branches of the nodal curve
separated from the ¢active” parts by pinch-points, are met with
already in the simplest ruled surfaces, as the wedge of WaLris, the
cubic ruled surfaces, the surface of normals, ete.; the peculiarity
in our case is that the pinch-points are lying at infinity, and so the
branches of the nodal curve passing through the foci nowhere reach
the surface in fact.

That this is_correct indeed is easy to control on the parabola and
the ellipse. For the parabola ¢* =2 pa the tangentis y'y = p (2’ -+ ),
and- consequently the abscissa of the intersection witn the z-axis:
&= —u’, while the distance from this pownt to the point of contact
amounts to: V'da* 4 ', or Vi 2pa’; if this distance is extended
vertically upwards and downwards in the intersection of the tangent
with the z-axis, 2 points of the nodal curve are evidently found, so
that the- equation of that curve becomes:

2 =4 a*—2pa.

If the origin is removed along the axis of the parabola over a
distance of § p, so that it gets to lie half way between the vertex
and the focus, and &' becomes =z — % p, the equation becomes :

[y 4‘2}12_22:%2,)9’

and this is an hyperbola cutting the plane @ in the points ' = =+ £ p,
i.e. in the vertex and the focus of the parabola. But it is evident
that only the branch passing through the vertex is really lying on
the surface, whereas the one passing through the focus is parasitic

as far as it extends.
Of further importance is the observation that the directions of the

asymptotes of the hyperbola are determined by the relation —z—,=—|_— 2,
&

so that half the asymptotic angle is greater than 45°; if therefore a

point moves along the curve towards infinity, the associated circle
94

u
Proceedings Royal Acad. Amsterdam. Vol. XVIII

-12 -
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cutting the parabola twice perpendicularly does not only become
greater and greater, but it removes farther and farther from view
and disappears at infinity, which proves that the parabola does not
possess double normals. -

It is different with the ellipse. Here a calculation, as simple as
the one just performed produces as equation of the nodal curve in the
zz-plane :

2*2" = (@* — a®) (2* — ¢?),
a curve of order 1 consequently, cutting the plane g in the vertices
#= =+ a, and in the foci # = == ¢, and being real for |z| <¢, and
|| > a, while the points at infinity must be determined out of the
relation 2%z° = a*, so # = 0 twice. and 2* = 2°.

The two branches passing through the vertices of the ellipse are
much like an equilateral hyperbola and form the active part, whereas
the points at infinity are represented by the minor axis, in fact
therefore by .a double normal; the branches passing through the
foci on the contrary, which in the finite are in no way connected
with the surface and are parasitic as far as they extend, approach
the z-axis on both sides asymptotically, and have both a point of
inflection in Z,, as follows immediately from the symmetry with
regard to 3. In the vertical plane passing through the minor axis of
the ellipse lies of course as well a nodal curve of order 4 of which,
however, only the hyperbolical branches are real.

§ 6. According to the two preceding sections the intersections of
the rest-nodal curve with 3 consist of the following groups;

a. the d nodes of %»; through each of them pass 4 branches;

b. the » cusps of k¢, through each of them pass 6 branches,

¢. the Sy — 3v 4 3¢ — 8s — 30 vertices of £#*); through each of
them passes ome branch;

d. the 2(u—e—2) (v— 2e—o0) points, in which the »—2¢—a tangents
at k» out of each of the two isotropic points cut the curve; through
each of them pass 2 branches;

e. the (v—2¢e&—a)* foci of k»; through each of them passes ome
branch.

The order of the restnodal curve of & is therefore:

d = 4d + 6x 4 (bu-3v+3¢-8¢-30) 4 4 (u-&-2) (v-2¢-0) + (v-2&-0)".

For the parabola we find from this 5 u—3v—3 6+ (v—0)’ =
=10—6—3-}1=2, for the other conics 5y—3v-}+v*=10—64-4=8
(which is evidently correct according to what precedes), and for the

1) Anw. Cykl. p. 19.
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circle 5u—3 »—8 & =10—6—8 == — 4, which bears out that the
formula may not be applied to the circle. In fact {2 consistsin this
case of a twice to be counted equilateral hyperboloid of revolution
(ef. § 2), and the nodal curve is consequently indetinite. A certain
control on the general case we find in the circumstance that the
order of the rest-nodal curve must be even, as it is, just as the
surface on which it hes, symmetrical with regard to 8, and must
therefore be cut by a vertical plane in an even number of points.
It is true, such a plane contains the point Z_, which is its own
image with regard to 8; it will, however, appear that the multi-
plicity of Z_ 1is indicated by an even number, and as the finite
intersections on account of their symmetry are also present in an
even number, the complete ordernumber must be even. This now
may be proved mdeed.
According to the formulae of PrLucker we have:
x ==t 3 (u—v)
t = 3u (u—2)—60—06¢& (e—1)—8= 1), »o0
t = 3u’*—-6y-—60—6¢ (6—1)—8t—24u -+ 24v, or
6d — 3u’—30u—6¢* 4 66—9¢ -} 24w, and consequently
44 — 2u*—20u—4¢* -} 4e—6¢ -} 16»;
if these values are substituted, we find for the order of the rest-
nodal curve:
2u® 4 4puvy—8us—4uc— 8ve 4 8¢® - 8s6—13v | 12¢ 4 56 + 3 +
—+ v* 4 6"—2v6 - 3¢; even must therefore be:
3u -4 3¢+ v»—13v + 6* + 50, 0r
S+9+r@—13)+6(0+5).
It stands to reason that » (»v—13) and o(6+5) are even, and
further is
¢t -} p—=3u* — bp — 6d — 6¢ (s—1) — 8x;
3u* — by, or- u (3u—>5) is, however, always even again, so d is after
all always even.
The multiplicity of Z_ as point of the rest-nodal curve we find
as follows. According to § 2 there pass through Z_:
1. w-—-2¢ — 206 nodal edges (torsal lines) of £, arising from the
single intersections of A» with /_;
2. 20 nodal edges, lying in pairs infinitely near (also torsal lines)
arising from the ¢ points of contact of i+ with .
Through the edges of the first group pass 2 sheets of £2, touching
each other along the whole of that edge, while the common

1) Anw. Cykl. p. 10.
94+
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tangent. plane contains’the associated asymptote of £*; and two of
those edges_give therefore mse to 4 branches of the nodal curve,
which cut e in Z_ singly; the total number of these branches

-

amounts therefore to: . VL
3 (u—2e —26) (u—2e—26—1). 4.

/Through the edges of the second group coinciding n pairs pass
2 sheets, which we can approximately realze 1f we suppose thaf
two cylinders of revolntion of which one lies inside the other rest
on a table vith the same edge. Let us suppose two pairs of such
cylinders; each cylinder of one group cuts each of the other group
along “a curve with a node, because they have the same tangent
plane; both the cylinders of one group and both of the other give
rise to 4 curves of miersection, each with a node, i.e. the sheets
of {2 passing through the edges of the second group,.give rise, for
each pair of these edges, to 8 branches of the nodal curve that
each touch &, in Z_ . The total number of these branches amounts
therefore to - :

s 1 6(o—1). 8. z

Finally each sheet passing through an edge of the first group
cuts the two sheets passing through an edge of the second according
to 2 branches which both touch ¢, in Z_, as, however, 2 sheets
pass through an edge of the first group, each edge of the first group
gives with each pair’ of coinciding edges$ of the second rise'to 4

i 1

branches, which each tduch ¢  in Z_; in total therefore- -

(u— 26 —2a) . 6L

; If the three amounts found here are added up, we find that Z,
is for the restnodal curve of 2 a (2’ ——~8ue~—4u0-—2y—[—882+
~8so-de40?)-fold point.

And from this it is 1n fact to be seen at once that the mu]ti-
plicity of Z_ for the nodal curve is indicated by an even' number,
of which we have already made use higher up. -

* For the general conic we tind from-this 2.2° — 2.2 =4, for the
parabola 2.2 — 4.2 — 2.2 4 1 — 0, which agrees with the resultsof§ 5.

If the ordér of the rest-nodal curve is diminished ‘with the multi-
plicity of Z_, we find the number of points that an arbitrary
vertical plane outside Z_ has moreover in common with thatcurve;
these pomnts are symmetrical in pairs with vegard to 8, so that alf
of the number in question indicates the order of the projection of
the rest-nodal c¢urve out of Z, as centre on @, and this projeciion
is evidently the locus of the points that are centres of circles guiting

IR
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kv twice perpendicularly, the ‘locus theréfore of the points out-of
which two equally long tangents may be drawn at AL¢. If the
calculation is carried out, we find:

The locus of the points out of which two equally long tangents
may be drawn at k¥ is a curve of order:

@k =1 (dwy + v* + Bp — 13v + 31 — 8ve — 2w — 36° + 8¢ + 5a).

And according to the preceding observations this curve has in
each node of L” 2 cusps, while through each cusp of 4” pass 3
branches, which all three touch at the cuspidal tangent. Through
each vertex of 4 and through each focus the eurve passes once.

For the hyperbola and the ellipse we find; .

d=1(4.22 42"+ 52 —13.2)"= 2, viz. the two axes, for the
parabola: 4 (4.2.2 +2* +5.2—132—221 —3.1°+5.1)=1, viz.
the axis. C

We may observe moreover that the curve found here is of course
only partly active, and for the rest parasitic, the parasitic parts are,
however, of two kinds: some parts of the curve are centres of
circles with 1maginary radius, others on the other hand of real
circles, which, however, do nol cut Z* perpendicularly in a real
way, ie. where exactly those points, -where the intersection takes
place perpendicularly, are imagifary. So as to the ellipse the parts
of the major axis lying outside the ellipse, are active (cf. § 5), the,
parts between the vertices and the foci are centres of imaginary
circles, whereas the part between the two foct contains the centres
of real circles, which, however, do not cut A” perpendicularly in a
real way. As the branches of the nodal curve which pass through
the foci extend to either side of B as far as point Z_, radii of any
greatness must be found in the cyclographic representation of those
branches, from the zero circle, which corresponds with the focus,
to the siraight line at infinity, which represents Z, cyclographically.
The circles representing the points of the nodal curve in the close
neighbourhood of the focus are very small and Le therefore entirely
within the ellipse; but there are also very great circles, and so there
must be a circle that meets the ellipse really for the first time. This
meeting must of course be contaci, and this contact will take place in
the vertex neavest to the focus; the circle then touches at the ellipse in
its vertex and cuts it perpendicularly "in {wo imagmary points. The
{wo 1ntersections coinciding in the vertex diverge now, describe the
ellipse, meet again in the olher vertex, and afier that the circle
will enclose the ellipse entirely.
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