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l'apidly, on the othel' hand very slowly in glacial acetic acid or 
chloroform 1) j the reaction may, howeveL' be accelerated under the 
inflt~ence of daylight. 

:.vlaleic acid behaves in qnite an anaIogolls manner j the velocity 
of absorption, howevel', (as might be expected ti'om the constitution) 
is g1'eatest with glutaconic rteid. 

From the materiaI commnnicated in this treatise I belIeve it may 
be safely conclllded th at the symmetrie fOl'mula of THORPE is in deed 
a fi1irly proper intel'pretation of the properties of glutacoJlIc acid. 

In the following communication, I hope to eluCldate this formula 
wIth a model. 

Delft, Febrnary 15, 1916. 

Chemistry. -- "1n-, 11"wno- and dival'iant equilibria." VIII. BJ~ 

Prof. F. A. H. SCHR.I~INI~lIIAKERS. 

(Communicated in the meeting of March 25, 1916). 

12. Furtlwr considemtion of t/ie biOClriant 1'egions; the tuming lines, 
The diffel'ellt properties of the curves and the eegions, w hich we 

have deduced' in the pl'evious commumcations, are onIy trne undel' 
some conditions, which we have up to now assllmed sIlentl,}'. They 
are valid viz. not only in the ümnediate vicinity of tbe invariant 
point, bnt stJiI also at some distance, viz. llnder the conditions : 

1. the points under considel'ation must not be sitnated in the 
P,T-diagmtn too faL' from the inyariant point j consequent]y lhe P 
and T of the equilibl'ia under consideration must not differ too 
much from the Pand T of the invariant point j 

2. the compositiolls of the occllrl'lng phases must not differ too 
much fl'om the compositions, vvhich they have in the invariant pvint. 

~l1rther we shall indicate somewhat. more exactIy what is the 
meaning of "not too ftl.l'" and "not too mnch" in these conditions. 

A 'l long as those condItions are satisfied, the deduced properties 
remain vahd j when thèy are not satisfied, deviations may occur. 
• Wben all phases have a constant composition, the latter condiiion 
is ahvays satisfied j this should be the case in fig. 1 (II) fol' instanee 
when one of the phases l'epl'esents \yatel'vapour and the others 

1) The bromination in chloroform in sun·light is the best way of prcpal'Îng t!Je 
"~·dibl'omoglutarlC aCid. There are always formeu, however, smulltq uantitIes of by 
produets lprobably higher brommated ones). 
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salts or tbeir hydrates. Bowever aIso phases wit11 variabie com­
positioll may occur e.g. a vapollr, which contains two or more of­
the components, soluiions or mixed crystals. 

Let us take in fig. :1 (TI) the simple case th at the phases 1, 2, 
3 and 4 ha\'e a constant composition, e.g. th at they are salts; we 
take a solution for the phase 5. 

Now we take the bivariant equilibrium 235 and we go in fig. 2 (IJ) 
from the invariant point towards a pomt of the region 23;). As the 
Pand T of the eqnilibL'ium 235 have changed now, the solution 5 
will ohtain, therefol'e, also another composition j consequently point 5 
alters its place in fig. 1 (TI). 

Henee it is appnrent that in each point of the region 23!'5 the 
phabe 5 has no more the composition, l'epresented by point 5 in 
fig. 1 (TI), but I t lias al10l hel' eomposition; it appeal'b also that ihis 
compositIOn changes from point to point. Of course tbe same is also 
true for other phases with changeable composition. Hence it is 
apparent, Ihel'efol'e, th at the composition of tbe ('hangeable phases 
in fig. 2 (II) changes fl'om pOlllt to point, genet'all)' so much tbe 
more in PI'Of)ûl'tion as we J'emove further fi'om the invariant point. 
Only Ül Ibe ill\'ariant point ltself, all phases have the same com: 
position as is' expl'essed in fig. 1 (II). 

Tbese changes in the composiüons of the phases Il}ay aJso cause 
radical altel'ations in the partltion of the regions. 

Let us take again tbe case that in fig. 1 (II) only tbe phase 5 
has a changeable composition. Now we ma)' ll11agine th at in fig. 1 (IJ) 

point 5 takes its place on the lille 23, e.g. between 2 and 3; then 
between these phases the reaction 2 + 3 ~ 5 may Occur. 

On fmther change of Pand T point 5 ml:ty come 1I0W within 
the tl'iangle 234. This ill\ ol ves that the reaction hetween the ph ase 
changes in some of tbe monoyariant equilibria. 

Let us take as an example the equilibrium ,(L) = 2 + 3 + 4 + 5; 
ab long as the point 5 is sitnated ontside triangle 234. the phase­
reaction in this equilibrium and tbe partition of the regions are.: 

2+3;::4+5 

234 245 ~l 

235 345 
As sa on as the point 5 comes however within triangle 234:, we find : 

2+3+4;:5 

234 
235 
245 
345 

(2) 
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When i~ fig. 2 (H) the equilibrium (1) = 2 + 3 + 4 + 5 traces CUl'\'e 
(1) starting from the invariant point, then conseql1eiltly tbe pal'tition 
of the I'egions is th'st indicated by reaction (1). Therefore, as is 
also drawn in fig. 2 (lIJ, lowal'ds the one side the l'egions 234 and 235, 
towards the olhel' side Ihe regions 245 anel 345 start from curve (1). 

When 011 curve (1) we remove further ft'om tbe invariant point, 
then instead of reaction (1) now l'eaction (2) may ocrul'. The region 
235 will no more go now from this part of t1le curve (1) tOl'ml'ds 
the right as is drawll 111 fig. 2 (U), but it wiJl go towal'els the 1eft. 
Oonsequentl.)' this l'egion will show a peculial'ity, Lo which we shall 
l'efer later. 

When the eq llilibrium (l) tra ces curve (1) in fig. 2 (U), then 
poillt 5 traces in the concelltmtion-diagram a curve, whiC!h we shall 
caIl curve 5(1); wllen the othel' phases have also a cbangeable com­
position, then each of them also follovvs a curve. The phases 2, 3, 
4: and 5 of the eqnililH'illm Cl) follow in fig. '1 (U), therefore the 
curves 2(1), 3(1), 4(1) and 5(1). By this the quaelrangle 2345 may be 
eleformed hl diffel'ent ways, so that the l'eaction in tbe equilibrium 
(1) can change in many Ivays. 

When the eq uilibl'wm (2) = 1 + 3 + 4 + 5 follows in the P, T­
diagram curve (2), then each of the points 1, 3, 4, anel 5 follows 
a cnrve 1 (2), 3,2), 4(2) anel 5(2) in the cOllcentration-diagram. 

As the same is also true for the other equilibria (3), (4) and (5), 
fom curves start, therefo1'e, from each of the points 1, 2, 3, 4 anel 
5 in the concentration-diagram. Hence it is apparent, therefore, that 
at some distance from lbe in vl1riaut point in the P, T-diagram, several 
changes in form of t he q uaelrangles of tbe conl'en tmtion-diagram 
may OCCUl', by which the parti~lOll of the eegions iu the P, T-diagmm 
is changed. We caJl this the deformation of the regions. 

In order further to elncidate those conc;iderations, we take a 
simpte eXê:tmple viz. a temmy system in the invariant point of whicb 
tbe phases: ' 

watervapoUl' = G, 80~ution = Land the salts ZIl Z2 and Za occur. 
We nssume th111 I hose phases are sitllated with respect to one " 

""\ anothel' as in tig. 1. Nmv 'we have the monovl1riant equilibria: 

(Z)=Zz+Za+L+G; (Z2)=ZI+~+L+G; (Za)=ZI+Z2+L+G 
(L)=ZI+Zz+Za+G; (G)=ZI+ Z2+Z:'+L. 

In fig. 1 only th ree of these ~qnilibria are cll'aWll; Clll'\ e La 
repl'esents (Za) consequently the satnrationcmve of ZI + Z2 11l1der 
its own \'apour-pl'essure; CUl've Lb represents (ZI) anel curve Lc 
l'epl'esenls (.2'2)' Oonscquelltlj' curve Lb is the saturationline of Zz+Za 

99* ' 
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Md curve Lc, the saturatioi1line of ZI + Za under its own VapOlll'­
preSSllre. As Jong a~ those curves do not come too close to the -
triangle ~ Z2 Za, the vapom-pl'essnre of those eqnilibl'ia ·inCl'eases 
with the tempet'utlll'e; we shall assume th is also- here. 

~ '" - - - - - - - -/., Z 
I I , / \ ~ 

"-I "- / \ 
I/... , / , 
I~"" /'- , 
p ~ / 

Ivf<......... x~ 
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...... ~... '" I ~ V' ~ ,na-

IV ,/'0 \ 
I R./',iL ~ ~ 
t?" ~'y ~ 

I rv ~" 

, , , 

\ \ \ Ir 

i I / - "-- \-e. \ ~ '" \ 
M'_ '- \ 'IV 
• C It \ \ f 

Fig. 1. 

p 

T 
Fig. 2. 

The P, T-diagl'am is drawn in fi,g.. 2; we may deduce it easily 
in different ways. Of course it satisfies also the rule of the diagonal 
order of sl1ccession. The phases form viz. in tig. 1 a monoconcave 
quintangle [as in fig. 3 UI)] witIt the sides G.z." z.,~, ~~, ~L 
and La. \Vhen we trace this quintangle in diagonal dil'eetion, then 
we find the same ol'del' of snccession as Ihe Cl1l'ves in fig. 2. 
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It. appears from a comparison of figs. 3 (11) and 4: (lIl [we have 
to bear in mind that the figs. 4 (U) and 6 (IJ) have to be inter­
changedJ that (ZI) and (Za)' and also (~) anel (G) must form a 
bundie. 

Now we draw in the P, T·diagrarn only the regions whieh contain 
liquid and \'apollr. The region ~ L G is situated between Hs 
limiting-cUl'ves (Z2) and (Z3); thè region Z2 L G between (ZJ and 
(~); the l'egion Z3 L G between lZI) and (Z2)' 

Now we draw a vel'tieal lil1e in the P,T-diagram; this is dotted 
in fig. 2. As far as this line is sitnated in tlle regiol1 ZI L G, it 
l'epresents the equilibrium ZI L G at constant temperature, conse­
quentl)' all the solutions which are saturated with solid ZI at th at 
temperatm'e nnder their own vapourpressure. In the concentration­
diagram (fig. 1) these solutions are repl'esented by a curve, "the 
saturationeurve of ZI under its own vapourpressure". [For a 
fullet' examination of these curves 'confer the commnnicatlOns I-­
XVIII over "temary equilibria"]._ 

In fig. 1 curve fa represents the solutions, which are saturated 
at the ternperature Ta, curve dl the solutions which are saturated 
at Td, curve Lp the solutions satnrated at TL with solid ZI under 
their OWI1 vapoul'pl'essul'e etc. All dotted curves, which proceed in .. 
fig. 1 startillg from cL and La towards the left, are, therefol'e, saturation-
curves of ZI under thei1' own vapourpressure. All dotted curvE'S 
betweell Dl and Lb are satlll'ationcnrves of Z2' uncler their own 
vaponrpressure for instance the curves agb and dm. All dotted 
cnrves, going to (he l'ighr starting from cL and Lb are satllration­
CUl'ves of Z3 nnder its own vapour-pressure, In fig. 1 the bivariant 
region ~LG is sitnated, therefol'e, at the 1eft of tlle curves cL and 
La, the bivariant region Z2LG, theref'ore, blVtween the curves 
La and Lb; the bivariant region ZaLG at the I'ight of the curves 
cL _and Lb. 

The l'egions ZI LG and ZaLG exist, lheret'ore, in stable condition, 
as weIl above as below the temperalure TL of the invariant point.; 
lhe region Z2LG, however, only above this tempemtnl'e. This is 
also in accordance with the P, T-diagl'am; hel'ein a !ine pamllel to 
tbe P-axis, intersects at temperatul'es below 1~ only the l'egions 
ZILG and ZsLG; at tempel'atnres above li besides those also the 
l'egion Z2LG. ~ 

Pl'eviously we have dedllced that a satul'ationcurve nncler its own 
vapouI'-pl'essllre shows a point of maximurn- and a point of minimum­
pt'essure; these points al'e situated on the conjllgation-line solid­
vapoUl" On the parts of these curves, drawn in fig. 1 only points 
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of maximum-preAsure oeCllr. [Oom pare tbis figllre with fig. 1 in 
Oommunication XV on "Equilibria in termtl'y systems"]. The satu­
ration-cnrves undel' theil' own vapom-pl'essme of Z3 have, thE'l'efol'e, 
their point of maximnm-pressure on the line GZ3 • COJlseqllently -on 
curve bK the pl'essme bas to jncl'ease in the direction of the Iittle 
arrows and it mnst be a maximnm in h. The same applies to the 
other eurves of the region Z3LG. On enrve cn, ho\\'ever, IlO maximum 
of pl'essure occurs; th is is metastable hel'e. As it must, however, be 
situated on the line GZ3 , it follows that the pl'essnre !la,s to increase 
from 'U towards c. 

In the region ZzLG the curves must have their point of maximum­
pressure on the line GZ2> in the region ZI LG on the line GZ1 ; 

hence it follows thaI the pl'essure increases along the cmves in the 
direction of the arrows. 

Let us consider now the region Z2LG. At a change of '1' aml P 
in fig. 1 the phases Z2 and G remain unehanged in pI ace, tbe 
solution L however traces the region between tlle ellrves Let and Lb. 
Triangle Z2LG may, therefore, Ila\'e Hs angle-plIint L sometimes 
on the one side, sometimes on t he othet' side 01' t he line GZ2 and 
casually on this Jine. 

In the P, T-diagram (fig. 2) this sn,me region is situated_ between 
the curves ia and ib; in fig. 3 tllifl regio)) IS dl'fHvn onee mOI'e wilb 
its limiting curves (ZJ = ib and (Z:~) = itl. We take in this figlll'e 
a point m on ib and on ia a pOlllt cl cOl'l'esponding with tlle poinls 

(111) 

tz,J 

l~ig. 3. 

mand cl of fig. 1. As Td = ~n, in fig. 3 the line dm must be 
p~ral1eI to th~ P-axis. The same applies fo the line ab, when a and 
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bare the same ',points in fig. 3 as in fig .. 1. In general viz. each 
saturation-curve under Hs own vapour-pressure from fig. 1 is represented 
in the P, T-diagl'am (tigs 2 and 3) by a line parallel to the P-axis. 

Now we take a temperatlll'e Ta: between TL and 1"d = Tm. The 
saturation-curve under its own vapour-pressure of Z2 is situated at 
this temperature T" in fig. 1 between point Land curve dm. When 
we follow this curve, starting from a point on Lb, then the pl'essure 
increases, as is apparent fl'om fig. 1. This is in accordance with 
fig. 3, in which CUl've id is situated above curve im. Rence it follows 
that each point of the region Lehn of fig. 1, must be situated in 
fig. 3 within the region idm. Region Ldm of fig. 1 is, the1'efo1'e, 
1'epl'esented iu fig. 3 by region idm. 

Let us now take a temperature Ty, higher than 1:1, for instanee 
Ty = Ta = TIJ = Tb (fig: 1). On curve a[jb the pressure increases 
as ,weU if we start from a as from h, it reaches its maximum in g. 
In fig. 3 the point g must be situated, therefore, not only abo\'e 
point h, but also above point a. The region ~LG co\'ers in fig. 3, 
therefore, not only the line ab, bilt also the Jine a,Cf; consequently 
it extends over the point a. It appears from fig. 1 that a similaJ' 
extension occurs for each temperature 1~1J higher than 1~1. 

Starting. from CUl've mb (fig. 3) the region Z2LG finish es, there­
fore, not ar once in cu ne da; it extends viz. th'st o"e1' this curve 
da. up to a cm've dg, then it hU'ns to curve da, in order to finish 
in this curve. We calI dg the turning-line of tbe region Z2LG. 
We may. imagine, therefol'e, the region Z2LG between the parts pf 
the curves 1nh and dg, as consisting of two lea\'es, the one of which 
stal'ts from mb and the other from da~ they pass into one another 
in the turning-line dg. Between the curves da and dg those leaves 
cover one anothel'. In order to represent this revert::ion of the region 
in fig. 3 some lines h,we been drawn which unite a point of cla 
with a point of mb and which tonch the turning-line. 

The region Z2 LG starts, tbel'efore, from iel towal'ds the right, from 
da 110wever towards the left, aftel' ha ving l'eached the turning-Jine, 
it goes, howevel', again towul'ds the l'igbt. 

The turning-line ((Ij ti'om. tig:. 3 cOl'l'esponds of course with the 
line dg fl'om fig. 1. In the c.ommunicatiOJls on equilibria in tel'l1ary 
systems several of these lines have been discussed in detail under 
tlte general name of Jlf-cul've. I only mentioH here, that it touches 
curve ia in cl and continues further, but th en in metastable condition. 
. When we consider the equilibrium Z2 LG in its whole \ extension, 
viz. without taking into consideration which parts are stabie or 
metastable, then each leat' of this region extends Hself over the 
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curves (~) and (Za). The tlIrning-line of this region has'a form, 
as cune :tyzu in tig .. 5; we imagine tlle C'urves ia and ib entirely 
'YHhin this tuming-line and the point of contact cl from fig. 3 between' -
:t and y in fig. 5. 

In fig. 3 we now have an example of that which we have called 
above' the deformation of a' region; we see th at it is connected here 
with the occurrence of point d, in fig. 1 tbe point of intersection 
of curve ~a with the line GZ2 • 

In the invariant point, and a1so as long as the liqnicl qf the 
equilibrium (Za) = ~ + Z2 + L + G is represented by a point of -
C1l1've Ld, t~e reaction in this equilibrium (Za) is: 

Z+L~Z.+G 1 +- 2 

When, ho wever, the liquid is l'epreRented by the point d, then 
the reaction is: 

L;:Z2 + G 
af!d when 'the liquid is represented by a point of da: 

L~~+~+ G, 
When the equilibrium (Za) therefore follows, the curve La, then 

the phase:reaction gets another form in the point d. As it. appears 
from' fig, 3 in the P, T-diagram the deformation of the region begins 
in the point cl. 

Previously we have deduced: eaC'h l'E'gion, which covers a CUl've 
(F;,), C'ontains the ph ase FI" In fig. 3 the l'egion Z2LO covers,' 
ho wever, the curve (Z3) [viz'. the part daJ and yet this regjon does 
ndt contain the phase Za. '''hen we bear in mind th~ fil'&t condi-; 
tion, viz. that we are aJlowed to consiclel' l'egions onIy, which are 
situated 110t too far from the invariant point, then this l'egion Z~La­
does nöt cover the curve (Za)' 

We may imagine the point cl indeed in the vicin~ty of i, but not 
coinciding with it. Fol', in this case in fig. 1 the point L would 
coincide with point cl; th1'ee of the five phases of the invariant 
equilibrium, viz. G, Land Z2 should then be sit llated on a stt'aight 
line, so that the invariant equilibrium should show a pal'ticnlttri(v 
which we have excludecl up to 110W. Fo!', in the tIlree types of 
concentl'ation-diagl'ams which are l'epresentecl 111 the figs.1 (IIk3 (II) 
and 5 \.II), no rhree poin~R are situated on a straight line. When 
tb is is the case, then we have a transition-type, to which we sha11 
l'efel' later. 

We sha1l also show that a1so the second condition, mentioned 
above, has a meaning in SOIDe cases. 

,Fo.r this \ we consider the bival'iant regioll Z3 LU. In the P, T~ 



- 10 -

I 

1547 

diagram (fig. 2) this I'egion is situated between the curves ie and'ib 
and it extends over the curves (G) and (Za). In tig. 4 this region 
is drawn once more with its limit-curves; the othe1' curves have 
been omitted. 

Now we take a temperature T", higher than Te (fig. 1). When we 
take T.1: = Tb then the saturation-cul've uIlder its own VapOlll'­
pressure of Za is represented in the concentration-diagram (fig. 1) 
by curve Mk and in the P,T-diagram (fig. 4) by the line hM, 
parallel to the P-axis. It is apparent from fig. 1 th at the pl'essUl'e 
in the point lz is higher than in b, in fig. 4 h must, the1'efo1'e, be 
sitnated higher than b. Whsn we take Tx = TL = ~, consequently 
the temperature of the invariant point, then the saturationcul'\'e 
under its own vapollrpressure of Za is represented in fig. 1 by curve 
Lvq, in fig. 4 by the straight lille viq. As it is apparent from fig. 1 

-..... 

'" .$ 
Fig. 4. 

that the pressnre is higher in v ihan in point L, in fig. 4 the 
point v must, therefore, be sitllated higher than i. As this is va1id 
fOl' each temperature Ta-, higher tlntn Tc, the region Z3LG must 
have, tl1e1'efo1'e, a turning-line which is represented in fig. 4 by 
curve el,h. 

Now we take a temperatme Ty, 10wer than Te e.g. '1; = Tc. In 
fig. 1 the saturation curve under its own vapourpressure is I'epre-' 
sented by cu; henee it is apparent tbat the pl'essnre decreases stal'ting 
from e, so that in fig. 4 the point u must be situated below e. 

The bivariant region ZuLG has, therefo1'e, quite another form 
above Te than helow Ta. Below Te it faUs viz. starting fJ'om .its 

/ 
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limit-curve [consequently from the part ee on curve (Zs)l; above 
Te it rises starting from its Iimit-clll'ves fil'st up to its tllrning-line 
evh and afterwul'ds it faUs. This is represented' again in fig. 4 by 
some lines, which touch the turning-line. BeIow Te the region 
consists, therefore in stabIe condition of one single leaf only, above 
,Te, howevel', it consists of two leaves. The oue faIls starting from 
the tnrning-line and it finishes in the cur\'es ei anti ib; the other 
falis aIso starting from tbe turning-line, but it extellds moreover below 
the curves ei and ib. 

When we consider the l'egion ZaLG in its whole ex!ension !hen -
we may again represent the turning-line by curve xyzu fL'om fig. 5; 
we imagine the curves ib and ie in fig. 4 witbin this turning-line 
and tbe point of contact anywhere on branch xy of the turning-line. 

Here we have a deformation of a region, more important than 
in fig. 3. The reg ion covers here, viz. its limit-curves (Zl) and (Z2) 
al ready in the vicinity of the invariant point, which is not the case 
in fig. 3. Also we see that this region does not occupy in fig. 4 
the whole space between the curves (ZI) and (Z2)' but a part only. 
Consequently th is is different to that which we" should mean io be 
allo wed to deduce from fig. 2. Also severaI other properties seem 
to be no more yalid now. When yve take e. g. tbe rule: each region 
which covers a curve (Fp) contains the phase Fp ; the region ZaLG 
covers bere viz. the curves (ZJ and (Z2) and yet it contains neither 
the phase Zl nor Z2' Also the property: a regionangie is al ways 
smaller than 180° seems to- be no more true now; the region 
ZaLG extends itself viz. in fig. 4 over the invariant point i, so 
that the region-angJe is 360°. 

All those contradictions disappear, howevel', when we take into 
consideration' the conditions 1 and 2. 

When we considel' viz. in açcordance with the first condition, 
only pressures and temperatul'es, which diffel' a littie only from 
those of the invariant point or in other words, when we take from 
the curves (~) and (~) only parts in tlre vicinity of the point i, 
then the region ZaLG occupies indeed the space between the curves 
(Zl) and (Z2)' 

The other contl'adictions disappeal' when we take into consider­
ation the second rondition ; this is apparent from the following. 

When we take away from fig. 4 tbe leaf eev1dcqsu, so th at tbe 
leaf evMi remains only then all contl'adictions have disappeared. 
The region-angle is then smaller than 180° and tile region ZaLG 
covers no more its limit-curves (Zl) and (Z,). 

The Iiquids of the remaining l'egion e v h b i in fig. 4 al'e l'epl'e-. 

....---------- ------
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sented in fig. 1 by points of evhbL; hence it is apparent that all 
properties are true again now, as long as the liquid of the equili­
bl'hlm ZaLG is represented by a point of e v ft b L. 

Uonsequently the liquid is allo wed to change its composition only 
starting from L (fig. j) np to the line eZ3 ; correspondingly Oll this 
line the equilibrinm shows something pat,ticnlar; here the triangle 
Za L G passes viz. in to a straight line. 

In our lH'evious considerations we have assumed everywhere that 
<"ach point of a region (F1Fz) l'epl'esenls one single bivariant equi­
librium (F1Fz) only. This is also the case ,vhen we take in fig. 3 
a point of the region Z2LG between the Cllrves ia and ib; no more, 
howevet·, when th is point is sitllated between cia and (Zg. Then it 
represents two equilibria Z2LG, wbich differ from one anothe1' by 
the c~mposition of the liquid L. The liquid of the one equilibrium 
is situated in fig. 1 at the one side, that of the other equilibrium 
at the othel' side of the line dZz ' 

In fig. 4 each point of the region ZaLG, which is situated within 
e v h b i represents two equilibria ZaLG; the liquid of the one equi­
librium is situated in fig. 1 at the one side, that of the other equi­
librium at the othel' side of the line eZ". AIso, however near to 
the point i we take this point within e v h bi, yet it al ways repl'esents 
two different equilibria. The 'point i itself represents still two 
different equilibria; in the one equilibt'ium the liqnid has the com­
position, indicated by point L in fig. 1; in the other equilibrium 
the liquid is situa,ted somewhere on vg. 

Hence it is apparent' that this property is trl1e again when we 
take into consideration- in fig. 3 the first condition and in fig. 4 
the second. 

Aftel' this discl1ssion of some examples, we shall now consider 
the general case. For tltis we take the field 

(F1F2) = J?3 + J?4 + ... F,1+2 
first in Us whole extension, conseqllently without taking into con­
sideration which parts are stabIe or metastable. W hen all phases 
have an unvariable composition, then nothing particulal' can take 
place on change of Pand T; tbis is the case, hov,rever, when one 
01' more ph as es with variab1e composition occur. We take from the 
eqnilibrium (F1F2) a complex X and we change the pressure at 
constant T Ol' the temperature under constant P. Now t11e phases of 
tbis complex change their composition; we may imagine th at at a 
certain moment between them a phase-reaction becOllles possible. 
This is [he case e.g. when in a binary system two points coincide 
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which are first situated separated from one another; wben in a 
ternary system thl'ee points, which first form a tl'Ïangle, take their -
place on a straight line, when in a quaternary system four points, 
which fiJ'st form a tetrahedron, faIl in a plallé; in genel'al when 
bet ween the phases of the equilibrium areaction: 

. (3) 

ean occur. 
[We might icmtgine the phases of (FJ)~) also in sueh a way that 

they satisfy (3) in the in variant point not al ways, bu t casually. In 
both cases the phases have then already 80mething pal'ticuJal' in 
the invariant point. The cOl'responding P,T-diagram forms then a 
transition-type, to which we shall re fel' later]. 

When between the phases of the complex X l'eaction (3) can 
occur, then at constant T the pressure -, and under constant P the 
temperature is for this complex a maximum or minimum. 

When the temperature is a maximum (minimum) under constant 
P, then the complex X no more exists above (below) this tem­
perature; below (above) this tempel'ature then however at each T 
two equilibria X' and X" may ocrur, in which the variabie 
phases have different éompositions. When the pressUl'e is a maximum 
(minimum) at constant T, 1hen the complex .x no more exists 
under higher (lowel') pressures; under lower (higher) pressures how­
ever two different equilibria .Lr' and X" orcur again. 

Rence it is apparent that the bivariant field (FJ)'~) is limited by 
a curve (M) which is defined, because in the equilibrium: 

(M) = (F1F2 ) = F3 + F4 + .. ". Fn + 2 

reaetion (3) oecurs. 
Each point of this region (F1F 2 ) repl'esents, therefo1'e, two different 

eqmlibria (Fj F 2)' and (F1F 2 )" whieh pass' into one anotber at the 
limit of this field. Curve (.Af) is, therefore, the tnrning-line of this 
field. Oonsequently the field consists of two leaves, which cover one 
another anc! whieb we shall calI leaf (FJf2Y and leaf (F]F2 )". 

In fig. S c~q is the tUl'1ling-line of the field Z2LG; each equilibrium 
ZzLG has on this tUl'l1ing-line at constant T a point of maXÎmnm­
pressLll'e and under constant P a point of minimum-temperature. 
The same applies in fig. '* to the equilibrium ZsLG. 

In our pre\ iOlls considerations "Eqnilibria 'in ternary systems 
I-XVIII" we have full)' 'examined different ternal'y tllrning-lines 
undel' the name of Jlf-eurves. They may have different forms, we 
find one of those in fig. 5 which l'epl'esenrs a general form of the 
turning-lines dg (fig. 3) and alt (fig. '*).' .. J 
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As the field (FI F 2 ) consists 
of two leaves, each point of 
this field represents two equi-

Z libria (FIF~)' and (FIF2)"; both 
equilibria consist under the same 
Pand T, but they differ from 
one another by the compositi­
ons of the variabIe phases. 

Fig 5. We imagine in fig. 5 the 
curve (F\) to be dl'awn. As the equilibrium (FJ contains all phases 
of the equilibrium (FI F 2), CUl'\'e (FJ cannot rome ontside the field 
(F'I F2), tberefore, also not outside the tllrning-line. When Clll've (FI ) 

meets therefore the turning'-line &omewhere in a point cl, then cl is 
not a point of intersection. but a point of contact of those curves. In this 
point of contact curve (FI ) passes from the one leaf into the other. 

When we imagine in fig. 5 a CUl'\'e within the turning-line, then 
we see that Ihis curve must have points of maximum- or minimum 
pressure and temperature. 

Fot' the ded nction of the P, T-diagl'am types and of the properties 
of theil' fields we have nsed the following properties [deduced in 
communication IJ:' 

each point of a field (Ft F2 ) represents one single equilibrium 
(FI F2 ) only; 

the stabie part of a field (FI F 2) extends itself bet ween the stabIe' 
parls of Us Iimit-clll'\'es (FI ) and (P2 ) without covering them; 

a field-angle is smaller than 180°. 
Now the question al'isesin how far those properties are still valid now. 

For this we imagine in the field (FI F 2) a point i on the leaf (Ft F 2 )'. 

The curves (FI ) and (F2 ) al'e situated, starting from this point, th'st 
in the leat' (FI F 2)'; in their point of contact with the tUl'ning-line 
they pass into' the othe1' leaf. 

When we deduce the properties mentioned above, ju st as in 
Oomm. I, then it appears that théy are valid, when we leave out 
of consideJ'ation the leaf (Ft F 2 )". 

When the invariant point i is sÎtllated in the leaf (FIFS, then 
we shaH say that the equilibria of tbis leaf are situl1ted within. and 
those of the leaf (PIF 2 )" outside the turning-line. We do not SI1)' 
thM with respect to the Pand T of those equilibria, bnt with. 
respèct to the .compositions of their phases. In order to convert viz. 
an equilibrium (P)12)' continually into I1n equilibrium (FI P2)", the 
first one must pass sinrting f!'Om a point of the lel1f (P1PS tlll'ongh 
the tUl'l1ing-1ine inlo the lel1f (F)?j'. 
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Then we ma)' say: the properties are valid, as long as the equi­
libria (Fl ), (F2 ) antI (Fl F 2 ) are situated within the tUl'ning-line of -
the field (Fl F 2 ) 

A" in a P, T-diagram sevel'al. fields are situated around the in va­
riant point, we have to take into consideration the tUl'l1ing-line of 
each field; th en we may say: the properties are valid as long' as 
we consider those parts of the rurves and the fields, whieh are 
&ituated within the cOl'l'esponding turning-lines. 

We have to bear in mind that "witbin the tllrning-line" means _ 
here "belonging to tbe same leaf on which the inval'Îant point is 
situated" . 

The meaning of "not toa far" and "not toa much" in the con­
ditiollE 1 and 2 is consequently indicated here sornew bat more exactl,)'. 

Above we have already stated that we may' imagine that tbe 
phuses of the equilibrium (Fl F 2 ) satisfy reaetion (3) casllally in 
the invariant point; then the point i is situated in fig. 5 accidentally 
on tbe tllrning-line. Then tlle t\\'o curves (Fl ) and (F2 ) co me in 
contact with one another and with the turning-line in this point i. 
The cOl'l'esponding P,T-diagram forms then, as we have already 
mentioned, a transitiontype, to whieh we shall refer later. 

Leiden. lnorg. Chem. Lab. 
(Ta be contimted). 

Physics. - "On t!te Symmetr.z; oJ the Bö'ntgen-pattems oJ Pi'iclinic 
and same Rlwmbic Crystals, anc! same Remarlcs on the Diff1i(fC­
tion-Images oJ Qual'tz". By Prof. Dl'. H. HA GA and Prof. 
Dr. F. M. JAEGER. 

(Communicated in the meeting of March 25, 1916). 

~ 1. In the following paper we wis1i to communicate in the 
first place tbe results of the experiments, whieh a.s a sequel to 
our previous studies, were made with crystals of tbe triclinic 
system. Tbe crystals of each of the two syrnmetry-classes of this 
system: ~those of the triclinic-pedial and those of the t?'iclinic-pina­
coïdal class, -of w hich rrystals the fil'st mentioned are wholly 'ttn­

syrnmetrical, while the second possess only centn'cal symmetl'Y,­
will of course necessarily beha"e in the same way, as far as the 
diffl'action-phenomenon of Röntgen-rays is concel'ned. But because 
the cenh'e of symmetry cannot manifest itself in the stl'ucture of 
the Röntgen-images in any way, all obtained Röntgenogl'ammes vvill 


