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rapidly, on the other hand very slowly in glacial acetic acid or
chloroform *); the reaction may, however be accelerated under the
influence of daylight. :

Maleic acid behaves in quite an analogous manner; the velocity
of absorption, however, (as might be expected from the constitution)
is greatest with glutaconic acid.

From the material communicated in this treatise I believe it may
be safely concluded that the symmetric formula of TrorPE isindeed
a fairly proper interpretation of the properties of glutacome acid.

In the following communication, I hope to elucidate this formula
with a model.

Delft, February 15, 1916.

Chemistry. — “In-, mono- and dvariant equilibria.” VIII. By
Prof. F. A. H. SCHREINEMAKERS.

(Communicated in the meeting of March 25, 1916).

12.  Further consideration of the bivariant regions; the turning lines.
The different properties of the curves and the regions, which we
have deduced in the previons commumeations, are only true under
some conditions, which we have up to now assumed silently. They
are valid viz. not only in the immediate vicinity of the invariant
point, butl still also at some distance, viz. under the conditions:
1. the points under consideration must not be situated in the
P, I diagram too far from the invariant point; consequently the P
and 7' of the equilibria under consideration must not d1ffe1 too
much from the P and 7" of the invariant point; ,
2. the compositions of the occurring phases must not differ too
much from the compositions, which they have in the invariant point.
Further we shall indicate somewhat. more exactly what is the
meaning of “not too far’” and “not too much” in these conditions.
As long as those conditions are satisfied, the deduced properties
remain valid; when theéy are not satisfied, deviations may occur.
When all phases have a constant composition, the latter condition
is always satisfied ; this should be the case in fig. 1 (II) for instance
when one of the phases represents watervapour and the others

1) The bromination in chloroform in sun-light is the best way of preparing the
ep-dibromoglutaric acid. There are always formed, however, smalliquantities of by
products (probably ligher brominated ones).
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salts or their hydrates. However also phases with variable com-
position may occur e.g. a vapour, which contains two or more of
the components, solulions or mixed crystals.

Let us take in fig. 1 (II) the simple case that the phases 1, 2,
3 and 4 have a constant composition, e.g. that they are salts; we
take a solution for the phase 5. .

Now we take the bivariant equilibrium 235 and we go in fig. 2 (I)
from the invariant point towards a pomnt of the region 235. As the
P and T of the equilibrium 235 have changed now, the solution 5
will obtain, therefore, also another composition; consequentl_; point 5
alters its place in fig. 1 (II).

Hence it is apparent that in each point of the region 235 the
pbase 5 has no more the composition, represented by point 5 in
fig. 1 (II), but 1t bas another composition; it appears also that this
composition changes from point to point. Of course the same is also
true for other phases with changeable composition. Hence il is
apparent, iherefore, that the composition of the changeable phases
in fig. 2 (II) changes from pomt to point, generally so much the
more in proportion as we remove further from the invariant point.
Only in the invariant point 1self, all phases have the same com-
position as is’ expressed in fig. 1 (Il).

These changes in the compositions of the phases may also cause
radical alterations in the partition of the regions.

Let us take again the case that in fig. 1 (II) only the phase 5
has a changeable composition. Now we may magine that in fig. 1 (Il)
point 5 takes its place on the line 23 e.g. between 2 and 3; then
between these phases the reaction 2 -+ 3 25 may occur.

On further change of P and 7' point 5 may come now within
the triangle 234. This involves that the reaction between the phase
changes in some of the monovariant equilibria.

Let us take as an example the equilibrium (1) =2 -+3+4-5;
as long as the point 5 is sitnated outside triangle 234, the phase-
xeactlon in this equilibrium and the partition of the regions are:

2432445 )
' 234 | 245 . . . ... . .
235 345
As soon as the point 5 comes however within triangle 234, we find :
2434425
235 B )
234 245
: 345
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When in fig. 2 (I) the equilibrium (1)=2 4 8 44+ 5 traces curve
(1) starting from the invariant point, then consequently the partition
of the regions is first indicated by reaction (1). Therefore, as is
also drawn in fig. 2 (II), towards the one side the regions 234 and 235,
towards {be other side the regions 245 and 345 start from curve (1).

When on curve (1) we remove further from the invariant point,
then instead of reaction (1) now reaction (2) may occar. The region
235 will no more go now from this part of the curve (1) towards
the right as is drawn 1n fig. 2 (II), but it will go towards the left.
Consequently this region will show a peculiarity, to which we shall
refer later.

When the equilibrium (1) traces curve (1) in fig. 2 (II), then
point 5 traces in the concentration-diagram a curve, which we shall
call curve 5; when the other phases have also a changeable com-
position, then each of them also follows a curve. The phases 2, 3,
4 and 5 of the equilibrium (1) follow in ftig. 1 (II), therefore the
carves 2(), 3W, 40 and 3. By this the quadrangle 2345 may be
deformed in different ways, so that the reaction in the equilibrium
(1) can change in many ways.

When the equilibriom (2)=1+4-344-4 5 follows in the P,7-
diagram curve (2), then each of the points 1, 3, 4, and 5 follows
a curve 1, 32, 4 and 5® in the concentration-diagram.

As the same is also true for the other equilibria (3), (4) and (5),
four curves slart, therefore, from each of the points 1, 2, 3, 4 and
5 in the concentration-diagram. Hence it is appavent, therefore, that
at some distance from the invariant pointin the P, 7-diagram, several
changes in form of the quadrangles of the concentration-diagram
may occur, by which the partitton of the regions in the P, 7-diagram
is changed. We call this the deformation of the regions.

In order further to elucidate those considerations, we take a
simple example viz. a ternary system in the invariant point of which
the phases: ’

watervapour == (#, solution = L and the salts Z, Z, and Z, occuu.

We assume that those phases are situated with respect to one
another as in {ig. 1. Now we have the monovariant equilibria:
(L) =2+ 24 L+ G (L)=Z+Z,+L+G; (Z)=Z+Z+L+C

(D=2, +2,~+2,+G: (h=2Z+2,+Z,+L.

In fig. 1 only three of these equilibria are drawn; curve La
represents (Z,;) consequently the saturationcurve of Z, 4 Z, under
its own vapour-pressure; curve Lb represenis (Z,) and curve L¢

represents (7). Consequently curve Lb is the saturationline of Z,-2,
99*
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and curve Lc the saturationline of Z, 4 Z, under its own vapour-
pressure. As Jong as those curves do not come too close to the .
triangle Z, Z, Z,, the vapour-pressure of those equilibria -increases
with the temperature; we shall assume this also here.

o

. Fig. 2.

The P,T.diagram is drawn in fig. 2; we may deduce it easily
in different ways. Of course it satisfies also the rule of the diagonal
order of succession. The phases form viz. in fig. 1 a monoconcave
quintangle [as in fig. 3 (I1)] with the sides GZ,, £,Z, Z,7Z, Z,L
and LG. When we trace this quintangle in diagonal direction, then
we find the same order of succession as the curves in fig. 2.
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It appears from a comparison of figs. 3 (//} and 4 (I[) [we have
to bear in mind that the figs. 4 (II) and 6 (I7) have to be inter-
changed] that (Z,) and (Z,) and also (Z;) and (G) must form a
bundle.

Now we draw in the P,T-diagram only the regions which contain
liquid and vapour. The region Z, L G is sitvated between its
limiting-curves {Z,) and (Z,); thé region Z, L G between (Z,) and
(Z,); the region Z; L @G between (Z;) and (Z,).

Now we draw a vertical line in the PP,7-diagram; this is dotted
in fig. 2. As far as this line is situated in the region Z, L @, it
represents the equilibrivm Z, L G at constant temperature, conse-
quently all the solutions which are saturated with solid Z, at that
temperature under their own vapourpressure. In the concentration-
diagram (fig. 1) these solutions are represented by a curve, “the
saturationcurve of Z, under its own vapourpressure”. [For a
fuller examination of these curves ‘confer the communications I—-
XVIII over “ternary equilibria”]j. _

In fig. 1 curve fa represents the solutions, which are saturated
at the temperature 7%, curve d/ the solutions which are saturated
at Ty, curve Lp the solutions saturated at 77 with solid Z, under
their own vapourpressure etc. All dotted curves, which proceed in
fig. 1 starting from ¢L and La towards the left, are, therefore, saturation-
curves of Z, under their own vapourpressure. All dotted curves
between La and L& are saturationcurves of Z,, under their own
vapourpressure for instance the curves agb and dmm. All dotted
curves, going to the right starting from c¢L and Lb are sataration-
curves of Z, under its own vapour-pressure. In fig. 1 the bivariant
region Z, LG is situated, therefore, at the left of the curves ¢L and
La, the bivariant vregion Z,L(@, therefore, between the curves
La and Lb; the bivariant region Z, LG at the right of the curves
cL and Lb.

The regions Z, LG and Z,LG exist, therefore, in stable condition,
as well above as below the temperature 7' of the invariant point;
the region Z, LG, however, only above this temperature. This is
also in accordance with the P,7T-diagram; herein a line parallel to
the P-axis, intersects at temperatures below 77 only the regions
Z, LG and Z,LG; at temperatures above 7} besides those also the
region Z,LG. .

Previously we have deduced that a saturationcurve under its own
vapour-pressure shows a point of maximum- and a point of minimum-
pressure; these points are sitnated on the conjugation-line solid-
v'apom'. On the parts of these curves, drawn in fig.1 only points
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of maximum-pressure occur. [Compave this figure with fig. 1 in
Communication XV on “Equilibria in ternary systems”]. The satu-
ration-curves under their own vapour-pressure of Z, have, therefore,
their point of maximnm-pressure on the line G'Z;. Consequently on
curve 0K the pressure has to increase in the direction of the little
arrows and it must be a maximnm in A The same applies to the
other curves of the region Z,LG. On curve cu, however, no maximum
of pressure occurs; this is metastable here. As it must, however, be
situated on the line G.7,, it follows that the pressure has to increase
from u towards ¢. .

In the region Z,LG the curves must have their point of maximum-
pressure on the line GZ,, in the region Z,LG on the line GZ,;
hence it follows thal the pressure increases along the curves in the
direction of the arrows.

Let us consider now the region Z,LG. At a change of 7" and P
in fig. 1 the phases Z, and G remain unchanged in place, the
solution L however traces the region between the carves Le and Lb.
Triangle Z,LG may, therefore, have its angle-point L sometimes
on the one side, sometimes on the other side of the line G'Z, and
casnally on this line.

In the P,7-diagram (fig. 2) this same region is situated between
the curves i and ¢b; in fig. 3 this vegion 1s drawn once more with
its limiting curves (Z,) = ¢b and (Z;) = 4. We take in this figure
a point m on ¢ and on ¢@ a pout d corresponding with the points

- (m)
| s/

/(23)

a

L —(Z)
£

Fig. 8.

m and d of \ﬁg. 1. As Ty=1T,, in fig. 3 the line dmn must be
parallel to the P-axis. The same applies to the line ab, when a and
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b are the sa,me',points in fig. 3 as in fig.,1. In general viz. each
saturation-curve under its own vapour-pressure from fig. 1 is represented
in the P,T-diagram (figs 2 and 3) by a line parallel to the P-axis.

Now we take a temperature T, between 7'y and Ty = T,. The
saturation-curve under its own vapour-pressure of Z, is situated at
this temperature 77, in fig. 1 between point L and curve dm. When
we follow this curve, starting from a point on L, then the pressure
increases, as is apparent from fig. 1. This is in accordance with
fig. 3, in which curve ¢/ is situated above curve ¢m. Hence it follows
that each point of the region Ldm of fig. 1, must be sitnated in
fig. 3 within the region idm. Region Ldm of fig. 1 is, therefore,
represented in fig. 3 by region idm.

Let us now take a temperature 7, higher than 7%, for instance
Ty=T.=Ty=1, (ﬁg.\ 1). On curve agb the pressure increases
as well if we start from a as from b, it reaches its maximum in g.
In fig. 3 the point ¢ must be sitnated, therefore, not only above
point b, but also above point a. The region Z,LG covers in fig. 3,
therefore, not only the line @b, but also the line ag: consequently
it extends over the point @. It appears from fig. 1 that a similar
extension occurs for each temperature 7 higher than T7q.

Starting. from curve mb (fig. 3) the region Z,LG finishes, there-
fore, not at once in curve da; it extends viz. first over this curve
da. up to a curve dg, then it turns to curve da, in order to finish
in this curve. We call dy the turning-line of the region Z LG.
We may. imagine, therefore, the region Z,L(G between the parts of
the curves mb and dg, as consisting of two leaves, the one of which
starts from mb and the other from da, they pass into one another
in the turning-line dg. Between the curves da and dy those leaves
cover one another. In order to represent this reversion of the region
in fig. 3 some lines have been drawn which unite a point of da
with a point of mb and which tonch the turning-line.

The region Z,LG starts, therefore, from < towards the right, from
da however towards the left, after having reached the turning-line,
it goes, however, again towards the right.

The turning-line dy from. fig. 3 corresponds of course with the
line dg from fig. 1. In the communications on equilibria in ternary
systems several of these lines have been discussed in detail under
the general name of M-curve. I only mention here, that it touches
curve i@ in ¢ and continues further, but then in metastable condition.

When we consider the equilibrium Z,L@ in its whole'extension,
viz. without taking into consideration which parts are stable or
metastable, then each leaf of this region extends itself over the
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curves (Z,) and (Z,). The turning-line of this region has -a form,
as curve aysu in fig. 5; we imagine the curves ¢z and ¢ entirely
within this turning-line and the point of contact  from fig. 3 between -
2z and y in fig. 5. - -

In fig. 3 we now have an example of that which we have called
above: the deformation of a vegion; we see that it is connected here
with the occurrence of point d, in fig. 1 the point of intersection
of carve La with the line G'Z,.

In the invariant point, and also as long as the liquid of the
equilibrium (Z,)= 2, + Z, + L 4 G is represented by a point of -
curve Ld, the reaction in this equilibrium (7,) is:

44+ 022,46

When, however, the liquid is represented by the point , then

the reaction is:

L2Z+6G
and when the liquid is represented by a point of da:
LZ2Z+ 2,4+ G

When the equilibrium (Z;) therefore follows, the curve La, then
the phasereaction gets amother form in the point . As it appears
from* fig. 3 in the P,7-diagram the deformation of the region begins
in the point d. -

Previously we have deduced: each region, which covers a curve
(F,), contains the phase F,. In fig. 3 the region Z,LG covers,
however, the curve (Z,} [viz. the part da] and yet this regjon does
not contain the phase Z,. When we bear in mind the first condi-
tion, viz. that we are allowed o consider regions only, which are
situated not too far from the invariant point, then this region Z,.LG
does not cover the curve (Z).

We way imagine the point d indeed in the vicinity of {, butnot
coineiding with it. For, in this case in fig. 1 the point L would
coincide with point ; three of the five phases of the invariant
equilibrium, viz. ¢, L and Z, should then be situated on a straight
line, so that the invariant equilibrium should show a particnlarity
which we have excluded up to now. For, in the three types of
concentration-diagrams which are represented n the figs. 1 (I1), 3 (II)
and 5 (II), no three points are sitvated on a siraight line. When
this is the case, then we have a transition-lype, to which we shall
refer later. ‘ i

We shall also show that also the second condition, mentioned
above, has a meaning in some cases. ,

For this we consider the bivariant region Z,LG. In the P,71-
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i

diagram (fig. 2) this region is situated between the curves ic and-b
and it extends over the curves (&) and (Z,). In fig. 4 this region
is drawn once more with its limit-curves; the other curves have
been omitted.

Now we take a temperature 77, bigher than 7, (fig. 1). When we
take 7,= 7, then the saturation-curve under its own vapoar-
pressure of 2, is represented in the concentration-diagram (fig. 1)
by curve bk and in the P,T-diagram (fig. 4) by the line AbZ,
parallel to the DP-axis. It is apparent from fig. 1 that the pressure
in the point % is higher than in b, in fig. 4 » must, therefore, be
sitnated higher than 6. When we take 7, = 71 = T, consequently
the temperature of the invariant point, then the saturationcurve
under its own vapourpressure of Z, is represented in fig. 1 by curve
Lvg, in fig. 4 by the straight line vig. As it is apparent from fig. 1

‘ ()
A

that the pressure is higher in » than in point L, in fig. 4 the
point v must, therefore, be situated bigher than 7. As this is valid
for each temperature 73, higher than T, the region Z,LG must
have, therefore, a turning-line which is represented in fig. 4 by
curve evh.

Now we take a temperature T}, lower than T, e.g. 7)= T¢.In
fig. 1 the saturation curve under its own vapourpressure is repre-’
sented by cu; hence it is apparent tbat the pressnre decreases starting
from ¢, so that in fig. 4 the point » must be situated below c.

The bivariant region Z,LG has, therefore, quite another form
above T than below 7, Below T, it falls viz. starting from its

-10 -
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limit-curve [consequently from the part ce on curve (Z)]; above
T, it rises starting from its limit-curves firsc up to its tarning-line
evh and afterwards it falls. This is represented again in fig. + by
some lines, which touch the turning-line. Below 7, the region
consists, therefore in stable condition of one single leaf only, above
T,, however, it consists of two leaves. The one falls starting from
the turning-line and it finishes in the curves es and ib; the other
falls also starting from the turning-line, but it extends moreover below
ihe curves ¢ and .

When we consider the region Z,LG in its whole extension iben -
we may again represent the turning-line by curve zyzu from fig. 5;
we imagine the curves 46 and ic in fig. 4 within this turning-line
and the point of contact anywhere on branch ay of the turning-line.

Here we have a deformation of a region, more important than
in fig. 3. The region covers here, viz. its limit-curves (Z)) and (Z,)
already in the vicinity of the invariant point, which is not the case
in fig. 3. Also we see that this region does not occupy in fig. 4
the whole space between the curves (Z),) and (Z,), but a partonly.
Consequently this is different to that which we should mean {o be
allowed to deduce from fig. 2. Also several other properties seem
to be no more valid now. When we take e.g. the rule: each region
which covers a curve (F),) contains the phase F); the region Z,LG
covers here viz. the curves (Z,) and (Z,) and yet it contains neither
the phase Z, nor Z,. Also the property: a regionangle is always
smaller than 180° seems to. be no more true now; the region
Z, LG extends itself viz. in fig. 4 over the invariant point 7, so
that the region-angle is 360°.

All those contradictions disappear, however, when we take into
consideration’ the conditions 1 and 2.

When we consider viz. in accordance with the first condition,
only pressures and temperatures, which differ a little only from
those of the invariant point or in other words, when we take from
the curves (Z;) and (Z,) only parts in the vicinity of the point
then the region Z,LG occupies indeed the space between the curves
(Z) and (Z).

The other contradictions disappear when we take into consider-
ation the second condition; this is apparent from the following.

When we take away from fig. 4 the leaf cevhkgsu, so that the
leaf evhdi remains only then all contradictions have disappeared.
The region-angle is then smaller than 180° and the region Z, LG
covers no more its limit-curves (Z,) and (Z,).

The liquids of the remaining region ¢vhbi in fig. 4 are repre-

-11 -
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sented in fig. 1 by points of ev/hd L; hence it is apparent that all
properties are true again now, as long as the liquid of the equili-
brium Z,LG is represented by a point of evhb L.

Consequently the liquid is allowed to change its compogition only
starting from Z (fig. 1) up to the line e¢Z;; correspondingly on this
line the equilibrinm shows something particular; here the triangle
Z, LG passes viz. into a straight line.

In our previous considerations we have assumed everywhere that
each point of a region (F,F,) represenis one single bivariant equi-
librium (£, F,) only. This is alsc the case when we take in fig. 3
a point of the region Z,LG between the curves zz and ib; no more,
however, when this point is sitnated between da and dg. Then it
represents two equilibria Z,L(, wbich differ from one another by
the composition of the liquid Z. The liquid of the one equilibrium
is situated in fig. 1 at the one side, that of the other equilibrium
at the other side of the line dZ,.

In fig. 4 each point of the region Z,L(@, which is situated within
evhbi represents two equilibria Z,LG; the liquid of the one equi-
librium is situated in fig. 1 at the one side, that of the other equi-
librium at the other side of the line ¢Z,. Also, however near to
the point 7 we take this point within ev /b7, yet it always represents
two different equilibria. The point ¢ itself represents still two
different equilibria; in the one equilibrium the lignid has the com-
position, indicated by point L in fig. 1; in the other equilibrium
the liquid is situated somewhere on vq.

Hence it is apparent' that this property is true again when we
take into consideration- in fig. 3 the first condition and in fig. 4
the second.

After this discussion of some examples, we shall now consider

the general case. For this we take the field
(FIFn):]Ps"}_F:: +“'E1+2

first in its whole extension, consequently without taking into con-
sideration which parts are stable or metastable. When all phases
have an unvariable composition, then nothing particular can take
place on change of P and T7'; this is the case, however, when one
or more phases with variable composition occur. We take from the
equilibrinm (#,F,) a complex X and we change the pressure at
constant 7" or the temperature under constant P. Now the phases of
this complex change their composition; we may imagine that at a
certain moment between them a phase-reaction becomes possible.
This is the case e.g. when in a binary system two poinis coincide

-12 -
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which are first situated separated from one another; when in a
ternary system three points, which first form a triangle, take their
place on a straight line, when in a quaternary system four points,
which first form a tetrahedron, fall in a plané; in general when
between the phases of the equilibrium a reaction:

aly +a,F 4. Fappe =0 . . . . .(38)
can occur.

[We might imagine the phases of (#,F,) also in such a way that
they satisfy (3) in the invariant point not always, but casually. In
both cases the phases have then already something particular in
the invariant point. The corresponding P,7-diagram forms then a
transition-type, to which we shall refer later].

When between the phases of the complex X reaction (3) can
occur, then at constant 7 the pressure —, and under constant P the
temperature is for this complex a maximum or minimum.

When the temperature is a maximum (minimum) under constant
P, then the complex X no more exists above (below) this tem-
perature; below (above) this temperature then however at each 7'
two equilibria X’ and X’’ may occur, in which the variable
phases have different compositions. When the pressure is a maximum
(minimum) at constant 7, then the complex X no more exists
under higher (lower) pressures; under lower (higher) pressures how-
ever two different equilibria X’ and X’/ occur again.

Hence it is apparent that the bivariant field (F,F,) is limited by
a curve (M) which is defined, because in the equilibrium:

(1]1) = (Fng) g Fa + F4 —l- c . _F,l'_]_g
reaction (3) occurs. :

Each point of this region (Z,F,) represents, therefore, two different
equlibria (# F,) and (F,F,) which pass’ into one another at the
limit of this field. Curve (M) is, therefore, the turning-line of this
field. Consequently the field consists of two leaves, which cover one
another and which we shall call leaf (F\F,) and leaf (I"\F,)".

In fig. 3 dy is the turning-line of the field Z,L(7; each equilibrium
Z,LG has on this turning-line at constant 7' a point of masimum-
pressure and under constant P a point of minimum-temperature.
The same applies in fig. 4 to the equilibrium Z,LG.

In our previous considerations ‘“Equilibria “in {ernary systems
1I—XVIII” we have fully examined different ternary turning-lines
under the name of M-curves. They may have different forms, we
find one of those in fig. 5 which represents a general form of the
turning-lines dg (fig. 3) and ¢k (fig. 4.’ a

-13 -



As the fleld (F\F,) consists
of two leaves, each point of
this field represents two equi-
libria (F, F,) and (F,F,)"; both
equilibria consist under the same
P and T, but they differ from
one another by the compositi-
ons of the variable phases.

Fig 5. We imagine in fig. 5 the
curve (7)) to be drawn. As the equilibrium (7)) contains all phases
of the equilibrium (/" F,), curve (F,) cannot come outside the field
(I F,), therefore, also not outside the turning-line. When curve (F))
meets therefore the turning-line somewhere in a point d, then d is
not a point of intersection. but a point of contact of those curves. In this
point of contact curve (F,) passes from the one leaf into the other.

When we imagine in fig. 5 a curve within the turning-line, then
we see that this curve must have points of maximum- or minimum
pressure and temperature.

For the deduction of the P,7-diagramtypes and of the properties
of their fields we have nsed the following properties [deduced in
communication I]:

each point of a field (F, F,) represents one single equilibrium
(F, F,) ounly; g .

the stable part of a field (#, F,) extends itself between the stable
parits of its limit-curves (X)) and (F,) without covering them;

a field-angle is smaller than 180°.

Now the question arisesin how far those properties are still valid now.
For this we imagine in the field (/, /,) a point¢on the leaf (F F.,)’.
The curves (I7)) and (F,) are situated, sturting from this point, first
in the leaf (F, F,)’; in their point of contact with the turning-line
they pass into the other leaf.

When we deduce the properties mentioned above, just as in
Comm. I, then it appears that théy are valid, when we leave out
of consideration the leaf (F,F,)".

When the invariant point ¢ is situated in the leat (#\F), then
we shall say that the equilibria of this leaf are situated within, and
those of the leaf (F\F,)" outside the turning-line. We do not say
that with respect to the P and 7' of those equilibria, but with
respect to the compositions of their phases. In order to convert viz.
an equilibriom (&, F,) continually into an equilibrium (F,F)", the
first one must pass starting from a point of the leaf (7, F7,)' through
the turning-line into the leaf (& .17)". .

-14 -
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Then we may say: the properties are valid, as dong as the equi-
libria (F)), (F,) and (F,F,) are situated within the turning-line of -
the field (#,F,) _

As in a P,7'diagram several fields are situated around the inva-
riant point, we have to take into consideration the turning-line of
each field; then we may say: the properties are valid as long as
we consider those parts of the curves and the fields, which are
sitnated within the corresponding turning-lines.

We have to bear in mind that “within the turning-line” means
here ‘belonging to the same leaf on which the invariant point is
situated”. }

The meaning of “not too far” and “not too much” in the con-
ditions 1 and 2 is consequently indicated here somewhat more exactly.

Above we have already stated that we may imagine that the
phases of the equilibrium (F, F,) satisfy reaction (3) casually in
the invariant point; then the point 7 is situated in fig. 5 accidentally
on the turning-line. Then the two curves (¥)) and (F,) come in
contact with one another and with the turning-line in this point 4.
The corvesponding P,T-diagram forms then, as we have already
mentioned, a transitioniype, to which we shall refer later.

Leiden. : Inorg. Chem. Lab.
(To be continued).

Physics. — “On the Symmetry of the Ronigen-paiterns of Triclinic
and some Rhombic Crystals, and some Remarks on the Diffrac-
tion-Images of Quartz”. By Prof. Dr. H. Haea and Prof.
Dr. F. M. JArGEr.

(Communicated in the meeting of March 25, 1916).

§ 1. In the following paper we wish to communicate in the
first place the results of the experiments, which as a sequel to
our previous studies, were made with ecrystals of the triclinic
system. The ecrystals of each of the two symmetry-classes of this
system: those of the #riclinic-pedial and those of the #riclinic-pina-
coidal class,—of which crystals the first mentioned are wholly un-
symmetrical, while the second possess only centrical symmetry,—
will of course necessarily behave in the same way, as far as the
diffraction-phenomenon of Rontgen-rays is concerned. But because
the centre of symmetry cannot manifest itself in the structure of
the Rontgen-images in any way, all obtained Rontgenogrammes will
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