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Astronomy. — “The Motions of the Lunar- Perigee and Node.
and the Figure of the Moon.” By Prof, W. pr SITTER.

1. The motions of the perigee and node of the moon have been
derived from the observations by different investigators.
For the perigee the resulting sideral motions are :

E. W. Brown?) 146435".35
i P. H. Cowrry?) .37
E. J. pr Vos vaN STEENWUIK ?) .29
Nzwcoms ) .30

All these values have been reduced to the value 50".2500 of the
constant of precession (see the preceding paper). The first three
depend on meridian observations. The agreement between Cowkry
and Brown is excellent, but the vesult of pr Vos deviates rather
more jthan ecan be explained by the mean errors (which are about
=+ 0".02 for each result): It is, however, in perfect agreement with
the value derived by Newcoms from the discussion of occultations.

The theoretical motion due to other causes than the figures of
the earth and moon is by Brows’s theory:

146428".77.
There thus remains for these two causes
I. BrowN—CowrLT, do = - 6".59

II.  Nuwcoms—be Vos do = + 6 .53,
For the node the results derived by Nrwcoms®) and Browx®) are
in perfect agreement. They both find
— 69679".44°
The theoretical value, as above, is
— 69673".22,
The part due tor the figures of the earth and moon is thus
d§) = — 6".22°,
The mean errors of both values of d& and of d}, so far as it
is due to the observations, is = 0".02. The theoretical value, how-
ever, in both cases is the sum of a large number of terms, each

1) Monthly Notices, Vol. LXXIV, p. 419.

2) Monthly Notices, Vol. LXV, p. 275.

3) These Proceedings, Vol. XVI, p. 891.

f) Researches on lhe motion of the Moon. (Second’ papcl) p. 224. The cor-
rections indicated by Browx, M.N. Vol'LXXIV, pp. 420 and 562 huve been applied,

%) Monlhly Notices, Vol. LXXIV, p. 503:
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of which was computed to two decimals only, and may thus be
(0" 005 in error. The mean error of the sum can be assumed on
this account to be about == 0".02. The mean error of the differences
do and dS) thus becomes == 0".03.

-

2. The terms due to the figure of the earth are, by Brown’s

theory, the factors being given as logarithms . .
do = [3.5907] J, -
4, = — }3.5620] J,

With &1 =1295.96 &= 0.20 (see the preceding paper), we have -
J = 0.0016502, from which )
dd = 6".430 == 0".008, -
d§) = — 6.019 = 0.007.

There thus remains for the figure of the moon
I dé =+ 0".16 % 0".08,
II do = 4 0.10 = 0.03,

The values used in BrowN’s theory are
A6 = 4 0".03, df = — 0".14.

The contradiction 15 apparently very great. It will be shown,
however, that the values (1) can very well be ascribed to the figure
of the moon. Brown’s values depend only partially on actually
determimed constants, from which they are derived by means of

a9 = — 0".205 £ 0".08 . (1)

C
the hypothesis that the ratio ¢ =3 T has the same value for the

moon as for the earth. It will be seen below that the values (1)
lead to a different value ¢’.

Let A4’, B, (" be the moments of inertia, M’ the mass, and 0’
the largest radus of the moon. Further, in analogy with the notation
used for the earth

20'—A'~ B B -4 -
- s
2M'p'®  K=4 Mp's

Then the theoretical expressions for the motions of the perigee and
the node are ‘

I3
J'=3

dé = + 890" J' —~1027"K", 0
A= —470 J'— 235 K.~ ~ T ®)

The coefficients are easily derived from Brown’s theory, Chapter
V, §378 '), where however db, — 6".57, db, = — 6" 15, must be

1) Memous R. Asti. Soc, Vol. LIX, Part I, p 81, ‘
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substituted for -+ 6".41 and — 6".00 vespectively. The numerical
coefficients in the next line of formulas then become
8".62, — 45".4 and — 8".07.

Then, discarding the assumption regarding ¢/y : C/s and intro-
ducing J’ and K, the formulas (2) are easily derived.

Comparing (1) and (2) we find _

I 1r 1 (I4-11) me.

J'=0.000435 0000410 0000422 == 0.000055 j

K' = 0.000009 0.000057 0'000033. =+ 0.0000382 ) ~
8. The ratios

C'—B g= c—4' B4
“=Ta R =T
are, in the case of the moon, so small that we may neglect the
difference of the numerators, and take 8=« + 7.

These ratios appear in the theory of the hibration of the moon ?),

where they are analogous to H — in the theory of precession

» @ .
and nutation. Generally 8 and j:E are introduced as unknown

quantities to be determined from the observations. The constant §is
derived with great acenracy from the mean inclation of the moon’s
equator on the echptic. The equation determining this mean inelina-
tion ¢, as a function of 3 is given by Tisseraxp, Vol. II, p. 472,
and also, more exactly, by Hayn, Selenographische Koordinaten, I%),
p- 900, with a further addition on p. 909. The values of 4, derived

by different investigators are: ©a -
Franz,  from observations by ScHrurer 0, = 1°3122".1 =+ 7"3
STRATTON, © ,, © ", p 19937 = 71
Havd 0 770 0 0 T s T 182 6 = 15

. 1 addpt ' ' ‘

8, = 1°31'40" = 20",
Introduecing this into Hayw’s equation, 1 find
- B (L -+ 0.0047 /) = 0.0006286 == 0000022,
For, f =0 this gives 3 = 0.00062886,
ahd for f=1 ..... 3= 0.0006257.
Now we have from (3) )
J' 4+ 4 K =0.000439 3 .000066

R See e g. TissEraxD, Mécanique céleste, Tome II, Chapter XXVIIL
%) Abh. der K. Sachs. Ges. der Wiss. Band XXVII, Nr. [X, 1902,
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Referring to the définitions given above we have
J+3 K =q.8 ) ¢
Taking now
g =0.000626 &£ .000002,
we find -
g' = 0.70 == 0,11,
which differs considerably from the value for the earth (g = 0.502).

If fis brought into evidence in the expressions for do and df) _

we have, ‘
do = [— 832"  1222" f1(J' + 4 K'),
df) = — 470" (J' + 4 K). -

From dy), we find, of course, the valuc of J' 4 1 K' stated above,
and then from deo:

I I7 L (I + IT) m. e. )
f=0.98 0.87 0.92° + 0.06° )

Generally 7 is determined from the coefticients of certain terms
in the libration in longitude, which depend on 7?), and of which
the largest are, for f—4, — 156" sin .S and 4 22"sin M, where
S and M are the mean anomalies of the sun and moon respectively.
The geocentric amplitudes of these oscillations are 1".4 and 0".2
respectively. It is hardly surprising that the determinations of such
small quantities by different observers are not very accordant. The
results are -

Franz f=048777 = 0.0278
STRATTON 050 == 0.03
Hay~ 0.75 £ 0.04.

The results of Franz and StrarToN are both derived from the
observations by ScartTee. The results of the different observers are
very discordant amongst themselves as well as with the value ().
It seems- certain that the mean errors of the values derived from
the observations of the libration are no true measure of the real
accuracy. The true value of f is certainly much nearer to unity
than to 4. The value found by Scurtrter and others for the coefficient
of the principal term of the libration in longitude must then be due
to systematic errors in the observations with a period of a year?).

»

1) It would thus be more natural to take as unknown %: 1—f Al writers

have however expressed their results in terms of f£. ' ’

?) See also Hayx, Selenographische Koordinaten II, p. 135—186. He there finds
f=0.85 %007 and explains how the-smaller values found by Franz and Hare-
wie (0.47) can be due to errors in the adopted radius-vector of MosTiNG A-which,
through optical libration, give rise to a spurious oscillation of yearly period, if the
observalions are made near the time of full moon. -



1818

We may remark that /' cannot exceed unity. A value of /larger
than 1 would mean that the moment of inertia about the axis
pointing to the earth was larger than abont the axis which is tangent
to the orbit, and this would be an unstable state. .

4. The theory of Crairavt would lead to values of.J', 8, fand ¢,
which are absolutely in contradiction with those found above from
the observations.

Although the development of the theory is well known, and also
its application to an ellipsoid with three uneqnal axes introduces no
new principles, it is perhaps not devoid of interest to collect the
differen{ formulas into a concise summary.

The forces acting on the moon are: its own gravitational attract-
ion, the attraction of the earth, and the centrifugal force. Take a
system of coordinate axes, with its origin in the centre of gravity
of the moon and the axis of Z along the axis of rotation. We can
with sufficient approximation suppose the earth to be situated on the
axis of X at a constant distance- R from the origin.

The equipotential surfaces are approximately ellipsoids of which
the principal axes arve situated along the coordinate axes, and have
the lengths

g, B1—m, Bl--9

Furtber the equipotential surfaces are also surfaces of equal den-
sity. The density: at any point is denoted by A and the mean density
within any equipotential sultcwe by D. We have thus

W—)f s —Ou =M.

As we will only develop the theory to- the first order of » ando
mcluuve, we requirer [, only to the order zero; thus

A R d3..
#’f & a

Rurther “we introduce the mtegmlb

I
1 ) —_—
=(;Uf dﬁw ohdg, f S,

g

1 d N
P ”-b—ﬁf PICRY N f Ny

#
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If then r, ¢, 2 are the polar coordinates of any point, the poten-
tial 7, at that point due to the attraction of the moon is given by *)

5,
4xf T,

+%n%Ww{§S+WT}+

‘l" (‘};—%) cos® P sin® )L [g; P + TQQ:I .

If o Dbe the velocity of rotation, and if we put

-~

then the pOtenﬁfﬂ of the centrifugal force is ' -
Ef V,=4Dorcos*p.
Further if M be the mass of the earth, and
M '
i} = IRRD’
the potential of the attraction of the earth is
Z?Tf Vo=Dzs[1 — }sin® o — §cos® p sin® 2] .
Along an equipotential surface the sum V=7V, 4V, 4 V,
must be constant. If we are content with the first order of ¢ and
» we can also take r==p in the factors of S, 7, P, Q, o and =.
The equation to the equipotential surface then becomes, if a is a
constant: -

S=D(1+30) 4 G —4sin ) [3(S + 1) + 4 Do + Di]
+ G — $eos? @sin®2) [2 (P + Q) + Dx].
The equation of the ellipsoid is
r=g {1 — oein’® p — vcos® pein® 2},
Comparing the coefficients of sin* ¢ and cos® ¢ sin® 2, we find
Do =%+ 1)+ 4 Do + 3 Dx, ©)
Dv=3(P+ Q) + $ Dx. SR
The quantities referring to the outer surface will be distinguished
by the suffix 1. We then have

M=4%4txD b, . g
C'— A= &ana8 b", B — A =& a PV,
7, =0, Q. =0.

1) The constanfjof the gravitation 7 in this formula of course is a different thing
from the ratio f, which has been defined above.
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Consequently for the outer surface we have

,C—4'
6 '—Z j'/[/blg +"-52+2 19 (7
s N |
V= M + 3 %

Putting now
f
—_— 1
& = 0,—3

so that_e, is the mean compression of the meridians, we find

'—J,+E\17
IZK,}_M........(S)
5. We now pui
B do g dv c g dD
M= — = —_ .= e —  —,
1=5 48 v a8 DB

From the definition of D we find easily
=31 4
= o)
If now the assumption is made that the densily never increases
A
from the centre outwards'), we have always 1 ;5_?:0, or
06«3

We now differentiate the equations (6). If the whole mass rotates
as one solid body, then Dg is constant. Also Dx is a constant. We

thus find easily
8

N )
: P
a+3GEm4):a

We have thus
8° oD (§—n) = 3 (B* S—fF° Lo).

d
It for 3°S we write f Ajé(ﬁﬁ"’) dB. and integrate by parts, we find
[\ .

1) 1t is not mecessary lo suppose that, for all values of 3, ——~<O It is suffi

; ap=
£
cient if f[i"' *Edp’ <0 'mdf{i’”o'—- dg<o

0

87
Proceedings Royal Acad. Amsterdam. Vol, XVIL
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¢ dA
B 6D (§—n) = — f[;"o‘?lgdﬂ. -
0

ah . .
Sice TR supposed never to be positive, the integral also cannot

be positive, and we conclude
§2 . N
Similatly we find
5> 6.

Now differentiating (9) again, we find

d
ﬁ~d—2+571+1f~2é'(1+°z):0, -
p (10)

For B=0 we have =06 =0. For small values of 8, % and

d . . .
T are therefore necessarily of the same sign. It follows from (10)

ap
R dy
that this is only possible when % is positive ; 5 and c—i?; thus begin

by being both positive, and % cannot become negative without
passing through zervo. But, for values of 8 larger than zero, we find

d .
from (10) that, fory =0, -d—q is positive. It follows that % can never

become negative. The same reasoning holds for 6. Collecting
the different inequahties, which have been found we can write

0<n<8L8,

0<d<E<s. (1)

From (10) we find
d
i pE (m—6) + 5(n—06) + (n+ 6) (n—06) — 28 (4—6) = 0.

Putting now

we find
d
5a%+[_6+91+¢9—2§]y:0. C e (1)

The factor in square brackets is necessarily positive, and is equal
to 6 for # =0. Putting thus
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(64548 —2]=6pf-4agh 4. ..
y=a+ 03+ eF+....,
and substituting in (12), we can successively determine the constants
a,b,c... We find that all these coefficients are zero. Consequently
y=0, or
n=0.

This being so for small values of 8, it remains. true for all B,
since 1 and & satisfy the same differential equation.

Referring now to the various definitions given above, we conclude

v P Q P B—A  ix

—e—m = — =17 . 13
s S I8 C—A du +lo, % - 13)

Now, since the velocity of rotation equals the mean motion in
the orbit, we have by KgpLew’s third law, for the average value of R,

Rl = AfM (14-p),

where the factor A is taken from the lunar theory. Therefore

2 A4 =1.0005
®

We have thus from (13):
1 — f==0.7482, f==0.2518.
We found above that for the actual moon the true value of f is
probably very near unity. We must thus conclude that the distribution

of mass within the moon is nof approximately in accordance with
the theory of Crairaum

6. Continuing however to trace the consequences of this theory,
we now apply Rapav’s transformation of the differential equation
(10) of Craravr. Since f=, it is sufficient to treat the equation
for 1.

Put

@ =Dp V1t

Differentiating, and comparing with (10), we find

g LAt
ag T
N L4 — &7
Now the tunction /= L an = % is nearly constant for small
V1 + Ui
values of 7, as will be seen from the following little table

87*

-10 -
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N=0... F=1

1 1.00074 (maximum)
0.6 0.99928

1 0.98995

3 0.8 -

Theretfore, /7, being a certain mean value of 7, which will
never differ much from unity, we have

D V1= & = 5F, /Dﬂ‘d(i‘, e (19

Now the moment of inertia (’ is given by

~

)
i .
C=Ha f A ?;TB [8° (1—0) (1 —v)*] d8
0

b/
=3 m:fAﬁ‘dB — (C'— A — 2 (B'—A).
0
If in C’" we neglect small quantities of the first order, we can take
aD
A=D(1—18 =D+ ip (Zg-, and consequently

[npaz= fvpas+ s (55 3
Integrating the second integral in the right hand member by parts,
and substituling n the value for (’, we find *
¥
(' =3aDb° — 'z | D3dp.
0
The integral is determined by (14). Introducing the mass
M=1ab""D, we find

. OV (15)
9 =% 3 = s
Since 0 < 9, £ 3, we have
329 >0.

The upper limit corresponds to homogencity, the lower limit to
condensation of the whole mass in the centre.
We have found above
¢=070x011. . . . . . . . (16)
The most probable value of ¢’ is therefore outside the limits
of CLAIRAU:I‘, thongh the mean error does nol entirely exclude
a value near the upper limit. An excess of ¢’ over the value for

J

-11 -
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homogeneity indicates that in the moon the density increases from
the centre outwards. A small excess could of course be due to
irregularities in the distribution of the mass. But, unless we are
prepared to admit a considerable excess of density of the outer
layers of the moon over the mean density, we are led to the con-
clusion that the true value of ¢’ is certainly notlarger and probably
smaller than the value (16). Now this value was determned from
the observed motion of the node combined with the adopted com-
pression of the earth &—!=—296.0. For &1 =297.0 we should have
found ¢’ = 0.85, and Hrimurr's value 298.3 gives ¢’ = 1.02. Thus,
if the observed motion of the node is accepted, any value of &
appreciably smaller than '/,,, becomes very improbable.

7. From (7) and (9), combined with (1), we find easily
"1291 + %”1§‘71§%91 =+ 1‘15 %1y
T EInS Y -
The numerical value is approximately
0, = %, = 0.0000078.
Therefore
0.0000156 _<__ o, éO 0000390

0.0000117 < », £ 0.0000292.
Take e.g. )
o, == 0.0000300, », = 0.0000225.
We then have from (6)

-4 0.0000144 B 0.0000108
M T ’ Py T ’

and consequently
J'=10.000021 , K'=0.000011.

For the hmiting case of homogeneity, these values would become
J'=10.000032 , K'=0.000018.

The values derived from the motions of the perigee and the
node weie

J'= 0.000422 = .000055 , K'=10.000033 £ ,000032.
Further we have from (9), with the above value of o,:
d s 0'—4 1
=31l - — ——— . — | = 0.60.
h [ 5 AU'b* 61]

Then from (15) taking £, =1, we find ¢'=0494 and conse-
quently :

-12 -
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,_ !
3:9__‘1: 0.000029. -
Cl

For the case of homogeneity this would become ;
8= 10 000059. _

The value derived from the mean inclination of the moon’s

equator was
# = 0.000626 == .000002. -

Here again we find an enormous difference between the true
values and the theory of CrArrsor.

8. The conclusion that the distribution of mass_in the body of
the moon is not in agreement with the theory of hydrostatic equi- -
libriwm, has already been reached by Larrace?).

The mass constituting the crust of the earth is not in equilibrium
either. But below the isostatic surface there is equilibrium. We
are naturally led to assume that the depth of the isostatic surface
is the depth at which the pressure of the outer layers becomes so
large that the material of the earth behaves as a fluid and there-
fore necessarily is in equilibrium®). To form an estimate of the:
pressure at the isostatic depth we can compute the pressure as it
would be if the whole earth, including the crust, were in hydro-
static equilibrium. Then, treating the earth as a sphere, we have

b
P :ng dr,
—Z

where ¢ is the acceleration of gravity.- Now

_Jfm

b
7?

g m = } ar'D.

Therefore
)

p:%nffﬂ.p.v'(lo‘ -

b—Z
For the earth the interval of integration is relatively small, and
we can take A and D constant. Then D= D, and very approximately
A =4 D,. Further if Z=£b, we find
p =% af Db’ [k—%4].
1) Mécanique Céleste, Livre.V, Chapitre I, § 18.
2) Sq far as constant, or slowly varying forces and stresses are concerned. The

behaviour of the material with 1cspect to sudden forces is of no importance for
our argumecnl,

-13 -
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-The material oul of which the mocon is bnilt up is probably not
very different from that of the outer layers of the earth. We will
therefore assume that it requives the same pressure to be fuid
enough for the state of permanent equilibrium. If now on the moon
the depth of the isostatic surface, if there be one, is Z” = £’0’, we have

¥
- p=23 “)ifA’ D' rdr.
- 7

Now we can put A’. D’ = aD,”’. If the moon were homogeneous,
we should have ¢ =1. If the density increases towards the centre,
then at the outer surface ¢ <1, and at the centre « >1. If «, be
a certain mean value of « over the interval of integration, we have

P =4 afe, D67 [K—$ k"]

Now

V=02726 -, D/=0.610D,

Taking further £=0.018, we find from the condition p’ =7p

0.32
Kb =,
2 a,
It we take «, =1, we find
‘ K = 0.40.

Most probably the true value of ¢, does not differ much from
unity. The isostatic surface in the moon would thus be situated at
a depth of about two fifths of the radius, and little more than one
fifth of the total volume would be inclosed within it. Of course
there can be no question of an isostatic compensation as there is
in the earth. The differences of the moments of inertia are almost
entirely determined by the irregularities in the “crust”, which lere
contains by far the largest part of the mass, and the small central
part has only very little influence.

This reasoning, of course, is not entirely rigorous, but it undoubt-
edly points out the true reason why the theory of Crairaur, which
in the case of the earth agrees so well with the actual facts, is not
al all applicable to the moon.

-14 -



