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Astronomy. - ,. Tlte J.l10tions of tlte LUOO1" Pel'~qee and Node. 
and tlte FifJure of the Maan." By Prof~ W. DI!' SITTER. 

1. The motions of the perigee and node of the moon have been 
derived fl'om the observations by different investigators. 

For the pel'igee the l'esulting sideral motions are: 

E. W. BROWN 1
) 146435".35 

P. H. COWEU,2) .37 

E. J. DI!: VOS VAN S'l'EENWIJK 8) .29 
NEWCOl\lB 4) .30 

All the&e mlues llave been l'edllCed to the value 50".2500 of the 
COllsta,nt of preeessioll (see the preeeding paper). The first thl'ee 
depend on meI'Ïdian observatiolls. The agreement bet ween COWEI,T, 
and BROWN is ex.cellent, bu t the result of DE VOS deviates rathel' 
more .than ean be explained by the mean errors (which are about 
± 0".02 fOl' each l'esultt It is, however, in lJerfect_agreement with 
the value derived by NEWCOl\IB ti'om the discussion of occultations. 

The theoretical motion elue to othel' causes than the figul'es of 
the earth anel moon is by BROWN'S theory: 

146428".77. 

Thel'e thus remains tor these two causes 

1. BnowN -COWELT, 

11. NEWCOTllB-DE Vos 
dm = + 6".59 

dm=+ 6 .53. 
Fot' the node the results del'ived uy NI!.WCOl\lB 4) anel BROWN 5) are 

in 'perfect agreement. They both fin,el 

- 69679".445 

The theol'etical vaIue, as above, is 
- 69673".22, 

The part dne to· the figures of the eal'th and mOOll is thllE> 

d~6 = - 6".22 5
• 

The mean errors of both values of dm anel of dD" so tal' as it 
is due to the observ~tions, is ± 0".02. Tho theoretical value, how­
ever, in both cases is the sum of a large numbel' of terms, each 

I) Monthly Notiees, Vol. LXXIV, p. 419. 
2) Monthly Notiees, Vol. LXV, p. 275. 
0) These Proceedings, Vol. XVI. p. 891. , 
I) Researches ou lhe motiou of the Moou. (Second' papel'), p. 2~4. The COl'­

rcctioLlS iudicalcd by BlWWN, M.N. VoCLXXIV, pp. 420 aud 562 have becn applicd. 
5) lVlOllLhly Noliccs, Vol. LXXiV, p. 563; 
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of which waE> compnteel to two elecimals önly, anel ma.y thus be 
0" 005 in errOl', Tb€} mean error of the sum can be assUIueel oh 
this account to be about ± 0".02. The mean error of the ditfel'enCeb 
düi anel cl9, thus becomes ± 0".03, 

2. The terms elue to the figul'e of the eal'th are, by BHOWN'S 
tileol'Y, tile factol's being gtven as Iogartthms. 

dU:; = [3.5907] J, 

d[i, = - l3.5620] J, 

With Ei-i = 295.96 ± 0,20 (see the pl'eceding pclopel'), we luwe -
J = 0.0016502, frolll which 

dU:; = 6".430 ± 0".008, 

d~ = - 6.019 ± 0.007, 

Thel'e thus remains fol' the I figul'e of the moon 
I dtil = + 0".16 ± 0".03, 

II dU:; = + 0.10 ± 0.03, 
dg, = - 0".20 ó ± 0".03 

The val lies used in BROWN'S theory are 

düi = -l 01/.03, d~ = - 0".14. 

(1) 

The contradiction IS appat'ently very gl'eat. It wiJl be shown, 
ltowevel', that the mInes (1) can very weU be ascribed to the figme 
of the moon, BROWN'S values depend only partiallyon actually 
detel'mmed constant", ti'om whirh they are derived by means of 

C 
the hypothesIs that the ratIO 9 = j - has the same vallIe for the 

Mb J 

moon as tOl' the earth. It wiU be seen below that the valtles (1) 
lead to a elifferent "aIue ,(j'. 

Ilet A', B', C' be the moments of inel'tia, Atl' the muss, and (/ 
the la.l'gest radms of tlle moon. Fllrthel', in analogy with the notation 
nseel fol' the earth 

2C'-A'-B' 
J' - ~ 
• - lï 2l11'b'2 

B' -A' 
IC-~ -­

- 2' AI'b'2 

Then the thE'ol'etlcal expressions fol' the motions of the perigee and 
the node are 

dU:; = + 390" J'-1027I/K', 

d~= - 470 J' - 235 IC. 

( 

. . . . . (2) 

The coeffirients tl.l'e easily clel'ived ft'om BHOWN'S theol''y, Ohaptel' 
V, § ~78 I), whel'e howevel' d'b 2 = 6".57, dÛ a = - 6" 15, must ue 

1) 1\1p1110I1S R. Astl. Soc. Vol. LIX, l?art I, p 8], 
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substituted for + 6".41 and - 6".00 respecti, el~r. The 1111mel'iral 
coefficients in tbe next line of formulas then' become 

8".62, - 45".4 and - 8".07. 

Then, discardmg the assllmption regal'ding CIM: CIE, 

dncing J' and IC, the formulas (2) are easily derived. 
Comparing (1) and (2) we find _ 

1 II m~. 

and intro-

J' = 0.000435 

1(' = 0.0000\)0 

3. The ratios 

0000410 

0.000057 

-t (I +11) 
0000422 ::t: 0.00005 5 i 

± 0.00U032 \. (3) 0.000033 

C'-B' 
a=A' ' 

C'-A' 
~=J3I ' 

B'-A' 
y=-C-'-' 

are, in the case of ~ the moon, so sm all that we may neglect the 
difference of the numerators, and take tJ = a + y. 

These ratios appeal' in the theory of the ltbration of the moon 1), 
C-A 

where they are analogous to H = -C- In the theory of precession 

a 
nnd lIutation. Genprally {J and f = ïi are jnt..oduced as unknown 

qllalltities to be detel'mmed from the observatIons. The conRtant (J is 
derived with great accnraey from the mean inchnation of the mOOll's 
equator on tile echpttc. The equation determming tlus mean lI1clina­
tion () 0 as a function of ,j is gl ven by TISSERAND, Vol. lI, p. 472, 
and aIso, more exactly, by HAYN, Selenogmphische Koordinatell, 12

), 

,po 900, wit}~ a further additLOl1 on p.909. The values of (Jo derived 
by dIfferent investigators are: ' 1 

FR<\NZ, from ohservations by SCHuiTER 00 = 1°31'22".1 ± 71/.3 
STRATTON, ' " r " "" 1 1'2937 r ±' 7l 
BAYN 1: -:''-

1 addpt 
(Jo::::: 1 °31 14011 ± 201

'. 

In!l'odhcing th is into HAYN'S equaholl, I fiud 

1 32 6 ± 15 

{J (1 + 0.0047.1) = 0.0006286 ± ,0000023. 

ForJ= 0 this gives [1 = 0.0006286, 

I1hd fol' f= 1 ..... B = 0.0006257. 
Now we have fl'om (3) 

J' + t K' = 0,000439 :l: .000066 

1) See eg. TrssERANDI Mécaniql)e célestp, Tome Ir, Chaplel' XXVIII. 
~) Abh. del: K. Saclls. Ges. deL' Wiss. Band XXVII, Nt·. IX, 1902, 
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Refel'ring to the définitions given above we havé 
J' + ! R' = g' . (j 

Taking now 
{J = 0.000626 ± .000002, 

we find 

which diffel's consfdel'ably fl'om the value fol' the eal'th (g = 0.502). 
If ! is bl'ought info evidence in the expressions for dw and dfJ, _ 

we have, J 

dm = [ - 832" + 1222" i] (J' + t K'), 
d~ = - 470" (J' + ! IC). 

Fl'om (1.~/, we find, of COlu'se, the valne of J' + 1 !C stated above, 
and then fl'om dm: 

I J [ ~ (I + 1 [) m. e. t 
i = 0.98 0.87 0.92 6 ± 0.06" . 

. (5) 

Generally f is determined from the coefticients of cel'tain terms 
in the libmtion in longitnde, whieh de):iend on y 1), and of which -
the Ial'gest are, fol' f=~, -156" sin S and + 22" sin M, whel'e 
S anel J[ are the mean aJlomaIies of the sun anel moon respeetively. 
The geoeentric amplitudes of these oseillations are 1".4 and 0".2 
l'espectively. It is hal'dly surp1'ising that the determinations of sneh 
small quantities by different observers are not very aecordant. The 
results al'e r 

FRANZ 
STRATTON 
HAYN 

! = 0.48777 ± 0.0278 
0.50 ± 0.03 
0.75 ± 0.04. 

The l'csults of FRANZ and STRATTON are both del'ived from the 
obsel'vations by SCHLÜTER, The resuJts of the different observers are 
vel'y discordant amongst themselves as weIl as with the valLle (5). 
It seems- certain that the lUeall errqrs of the values derived ti'om 
the observations of the libration are no true measure of the real 
accuracy. The true valLle of f is certainIy lUnch nearer to unity 
than to 1. The value found by SCHLÜTER and others for the coefficient 
of the principal tel'm of the libration in longitude must then be dlle 
to systematic el'1'01'S in the obsel'vations with a pe1'iod of a year 2), 

l' 
~) It would. th us be more natural .to take as unknown {j = 1 - f. All writers 

have howevel' expressE'd their results in tel'ms of f. 
2) See also HAYN, Selenogl'aphische Koordinaten II, p. 135-136. Hè there finds 

f = 0.85 ±. 0.07 and explains how the' smaller values found by FRANZ and HART­

WIG (0.47) èan be due to el'1'Ol'S in the adopted radius-vector of MÖSTING A-which, 
through optical Iibration, give l'ise to a spurious oscillalion of yearly period, if the 
observalions are made neal' the time of full moon. 
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We mar l'emal'k thai / C[tnllot exceed miity. A vaIlle of/hl:ge1' 
than 1 would mean that the moment of inel'tia about the axis 
pointing to the eUl'lh was larger than abont the axis which is tangent 
to tlle Ol'bit, anti th is would be an llnstable state. , 

4. Tbe theory of CLAIHAU'f would lead to values of./', f/, f and .r/, 
which a1'e absolutely in contL'adiction with those found above from 
tile obscrvations. 

Although the development of tbe theor)' is weIl knowl1, and also 
its application to all ellipsoid witl! thl'ee llneqllal axes illtl'oduces no 
new pt'inciples, it is pel'haps not devoid of intere~t to eollect the 
different formulas into a eoneise summar)'. 

The forces actÏ11g on the moon are: its own gravitational attt'act­
ion, the attraction of thl3 eal'th, aJld the centl'ifugal force. Take a 
system of cOOl'dinate axes, with its Ol'igin in the centre of gl'avity 
of the maan and tlle axis of Z along the axis of l'otation. We ean 
with sllfficient appl'oximation suppose the eat,th to be situated on tbe 
axis of X at a constant distance -Tl from the ol'igin. 

The equipotelltial sud'aces are apPl'oximately eUipsoids of which 
the principal axes are sltuated along the coordinate axes, and have 
the lengths 

f/, f/ (1 - v), f/ (I -- 6) 

Furtbel' the equipotential surfaees are al80 surfaces of eqnal den­
sity. The density' at any point is denoted by 6. and the Illeun density 
within any equipotential surface by D. Wc have thns 

r~ 

1 J' d' D = ~3(1-6)(1-1') '6. di!. ri33 
(1 - 6) (1 - 1')1 a~ . 

o v 

As we wiU only develop the theol'S' 10" the first orde!' of l' 

inclllsive, we l'equil'e' DI only la the' order zero; thus 
[5" 

lJ =: ;3 J l::. f/~ dij·. 

o 
'lfI11,thcr 'we intt'odnce 

j3 

the integrals 

1 f' cl S =: W 6. d~ (f3~ ())cl~:! 
o' , 

mld 0 
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I, 

1:314 

ir thell 1', (1', J, are the polar rool'dinates of an'y point, the poten­
tial VI at that point due to the atü;-action of the moon is given bi I) 

If w be the ve)ocity of rotation, and if we put 

3w2 

0---
" - 41'CfD ' 

then the potentialof the eentrifllgal force is 
ti 

3 
- V~ = i D {! 1,2 cos: cp , 
4:rf 

FUl'thel' if lJ1 be the mass of the earth, and 

3M 
x----

- 4:n:R3D' 

the potentialof the attl'aqtion of the earth is 

3 1'2 & 2 '2 41'C/ V:, = D/. [1 -2 sm tp - y cos rp szn ).]. 

Along an eqllipotential slll'fiwe the sum V = VI + V2 + Va 
must be constant. If we are content ,,,ith the fil'st order of {J and 
v we ean also take r = {I in tbe factol's of S, 1~ P, Q, (! find x. 
The equation to the equipotential sUl'face then beeomes, if a is fi 
constant: 

l' 

- =]) (1 + -} (!) -+ Ct -t sin2 (p) [t (S + 1') + 1-DQ + Dy.] 
a 

+ Ct - ~- cos2 tp sin2 ).) n- (P + Q) + Dy. J. 
The equation of the ellipsoid is 

9' = a {I - {J8in2 (p - v éOS2 (P 6in2 ).1. 
COlllparing the eoefficiellts of sin2 rp and cosi 'P sin2 )., we find 

]Jo _ ! (S + T) ~ t D{! + f Dx, I (6) 
Dv_-;;(P+ Q) +yDy.. \ 

Thè qUmltities ref'erring to the outer sUl'f'aee will 'be distinguished 
by the suffix 1. W" e then have 

M'=t:;rD1 b'3, 

C' - A' = ft:;r SI b'S, B' - A' == -ft:Ir PI b'S, 

1'1 = 0, Q, = O. 
, .. 

1) The constant',of t11e gl'avitàtion f in tbis formula of course is a different thing 
ft'om the mlio f, which has been defined above. 
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OonsequeJltly fol' the outer surftwe we have 

C'-A' I IJl = t M'b';- + ~ QI + t "I' 

B'-A' , 
1\ = 4- J.lf'b'a + 4- "I' 

. . . . . (7) 

Putting now 
r 

so that_l\ is the mean compressiol1 of the meridians, we tind 

5. We now puL 

(J dû 
')} = -;; . d{J' 

El = J' + k Qp i 
VI = IC +- t "I ~ 

Fl'OI11 the definition of D we find easily 

~=3(1-~} 

. . . . (8) 

Tf now the assumption is made that the densiiy ne\'e1' inc1'eases 
D. 

fl'OI11 the centl'e ontwards I), we have always 1 > D> 0, or 

o ~~ < 3. 

We now diffel'eutiate the equations (6). If the whole mass rotates 
as onc solid body, then DQ is constant. A,lso Dit is a constant. We 
thus find easHy 

. . • . . . (9) 

We have thus 
(J" û]) (;-11) = 3 ({Jó S-{J5 D.û). 

If for WS we wl'ite fo d~ (fI'o) dfl, "nd integl,,,te by pal'!S, we find 

o 

db 
1) It is not nccessary to suppose_ that, for uil values of ~, dfJ ~ O. IC is 

'f3 ' f3 

cient if.r83 ~l~ d{J <0 lU1dJ{Jó(J~~ d{J~O 

suffi· 

o 0 

87 
Proceedings Royal Acad. Amsterdam. Vol. XVII. 
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db.. 
SIIlC0 - is supposed nevel' to be positive, the integral aIso Callnot 

dIJ 
be positive, and we concJllde 

Similally we find 
;> O. 

Now differentiating (9) again, we find 

~ r I p d{J + 511 + 11
2 

- 2~ (1 + 1/) = 0, -

o dO -I- 58 + 8 2 
- 2; (1 + 0) = O. 

dp 

. (10) 

FOl' {J = 0 we have 1] = 8 = O. J:!'or small values of {J, 1] and 
(h1 . ' .• 
d{J are thel'efore lleCeSSal'll.r of the same slgn. It follows from (10) 

1 1" 1 \bl I ' , . ct d11 tI b' j lat t l1S IS on y pOSSl e w len 1J IS pOsltlve; 1] all - lUS egm 
d,~ 

by being both positIve, and 1] Cal1Ilot become negative without 
passilIg thl'ou~h zeeo, But, fol' yalues of (J Iarger than zel'O, we find 

f' (10) 1 f' 0 dt] , 't' It f' 11 th l'om taat, Ol' 11 = , d{J IS poslive. 0 OWS at 11 ran never 

become negative. The same l'easoning holds tor 8. Oollecting 
the diffel'ent inequahties, which have been fonnd we ean write 

o < 1] < ; < 3, 

o < f) < ; < 3. 
. . . . , (11) 

Fl'om (10) we find 

d 
{J d{J (11-f) + 5(11-f) + (11+ f) ('t]-O) - 2; (11-0) = O. 

Putting now 

we find 

1j-f) 
Y=-{J-' 

• (12) 

The f'aetol' in squaee brackets is necessal'i1y positive, and is eqllal 
to 6 for {J = O. Putting thus 

------~~---- - -- -
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[6 + 1] + (} - 2Ç] = 6 +- p{J + fJW + .... , 
y = a + bfl +- oW + ' ... , 

nnd subslituting in (12), wc can suC'cessively cletcl'mine tbe constants 
11, b, c ... We find that all these coeffieÎentb are zero. Oonsequently 
y=O, Ol' 

1]=0. 
This being so fol' small va.Iues of (1, it l'emains. t1'ne fol' all (1, 

sin('e 1] tl,nd (} satisfy the same dlffel"ential equatlOJI. 
Referring now to the V,tJ"I011S clefinitiOlls given above, we conclude 

l' P Q P1 B'-A' j "1 
a=S='j=S=C'-A'=.ix +.ln = 1-j .. . (13) 

1 1. 10'1 J ~1 

Now, since the velocity of l'otation eqlutls tlle mean motion in 
the Ol'bit, \ve kt\ e b) KEPj,}~It'S tllll'cI law, fot" the u\ el'age value of R, 

R3W 2 = Af AI (I + ft). 
whel'e the factor A is taken fl'om the lunar theory. Thel'efol'e 

Q - = A (1+(1-) = 1.0095 
y. 

We ha\ e thns from (13): 

1 - j= (1.7482, f= 0.2518. 

/ 

'Ve fonnd ahove Jhat fol' the actual moon the t1'ue valne of .f is 
probably very near nmty. We must tIms conclude that the clistl'ibution 
of mass within the moon is not approxIluately il1 accorclance with 
the theol'Y of OMIRAUT. 

6. OOl1timling hOwevel' to trace the consequences of this theot'j", 
we n0w apply RADAU'S transfol'mation of the diffel'elltial equation 
(10) of CrJAIRAuT. Sil)-Ce &=1], it is suffident to tl'eat the equation 
fol' 1]. 

Put 

flJ = Dp· VI+1]. 
Diffel'entiating, and cOlupal'ing with (10), we find 

dflJ 1 + 1.1] - ...L11 2 _ = 5D{14 • ~ 10 

d(1 VI + 1] 

.. 1 + "Î11 - lo 11 2 
• Now the fnnctlOll F = IS neal'ly constant fOl' sll1all 

VI + 11 

vnlues of 1], ns will be seen from the followillg Uttle table 
87* 
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; 

1)= 0 ... F=l 
1 1.00074 (maximum) I 

0.6 \ 0.99928 

1 0.98995 

3 0,8 

Thercfore, Po being a certain mean vaille 
nevol' dIffer ml~ch fl'Olll unity, we have 

of F, which WIlt 

D{1" VI +11 = ([J = 5P'o JDWd(J, 

Now the moment of inertia C' is given by 
b' 

C' = -ft; 1rft::. ~ [{35 (I-a) (l-v)21 d{3-
elfJ 

o 
b' 

= 1- n (t::.Wd{3 - (C'-A') - 2 (B'-A'). 
ij 

. (14) 

r 1f in C" we neglect small quantities of the first order, we ean take 
dD 

t::. = D (1-t;) = D + -~-(J dp , and consequf'ntl,r 

Jt::. Wd(J fD{34 d{3 + tJ p5 ~~ d{3. 

Integl'ating the second integml in the l'ight hand member by pads, 
and snhstitnting 111 the mlue fol' C', we find 

b' 

C' = ~ 1rD1b'5 - \f' ;r fD,34d{3. 
o 

Thc integml is detcl'mined by (14). Intl'oduring the mass 
jll'=-1:rcb 'J D1 we find 

, _ I C' _ 1 2 Vl-t "h 
,q - ïf J.11'b'J - - 1> -y- . 

o 
• (15) 

Sinre 0 < 'lIJ < 3, wc 11a\'e 

f> g' >0. 
The llpper limit cOl'responds to homogeneity, tbc 10wer limIt to 

condensation of tiJe whole mass in thc centl'e. 
\Ve have fonnd a,hove 

.9' = 0.70 ± 0.11. . . (16) 

The most probable valne of pi is therefOl'e olltside the limits 
of CLAIHAUT, thongh the mean erl'OI' does not entil'cly excillde 
u valuc n~ar the upper limit. An excess of g' ovel' the value for 
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homogenelty indicates that in the moon the density inC1'ease::, ft'om 
the cenh'e outwards. A small excess <,ould of <,ourse be due to 
irl'egulal'Ïties in the distl'ibution of the mass. But, u11less ,-ve are 
prepal'ed to admit a considerable exce&s of density of the outer 
L:tyel's of the moon o,'e1' the mean density, we are led to the con­
clnsion that the trne mIne of g' is certainly not large1' ano probably 
smallel' than the value (16). Now this value was determll1ed from 
the observed 1lI0tion of the node combined with the adopteel com­
pression of the earth 1:-1 = 296.0. For 1:-1 = 297.0 we shonld have 
found y' = 0.85, anel HEljMERT'S 'Talue 298.3 gives y' = t.02. Thus, 
if tile observed motlOll of Lhe node is accepted, any ntlue of I: 

apprecIably smaller than 1/206 becomes very improbable. 

7. From (7) allel (9), combineel with (11), we fiud ea'3ily 

~ QI + :!- %1 < al < t QI + Y Xp 

-f XI < VI < Y %1 • 

The Jlumerical value is approximately 

Therefore 

Take e.g. 

fh = %1 = 0.0000078. 

0.0000156 < al < 0 0000390 

0.0000117 < VI < 0.0000292. 

al = 0.0000300, VI = 0.0000225. 

We thell have from (6) 

C'-A' 
~ i.vI'b"ïS = 0.0000144, 

and consequently 

J' = 0.000021 

B'-A' 
.2.2 --- = 0.0000108, 

lJl'b'2 

, JC = 0.000011. 

Fot' the hmitlIlg case of homogeneity, these vaillec:; wuulcl become 

J' = 0.000032 , K' = 0.000018. 

The values derived from the motions of tile perigee <tnel the 
1l0Jle wele 

J' = 0.000422 ± .000055 , IC = 0.000000 ± ,00003~. 

Fut'ther we have fl'orn (9), with the abo\'e value of al : 

r 

Th en ft'o III 
quently: 

1iJ = 3 [1 - :> C' , :1' . ~J = 0.60. 
2 111 b ~ al 

(15) takillg Fo = 1, we fine! ,q' = 0.494 and. con se-
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C'-A' 
R = __ = 0.000029. 
P C' 

Fo!: the case of homogeneity this wonld become 

fl = 0 000059. ~ 

The value del'Îved ft'om the mean inclination of the moon's 
equator was 

(J = 0.000626 ± .000002. 

Here again we find all enormous diffel'ence bet ween the tt'Ue 
"alues and the theory of CJJAJRAUT. 

8. The eonclusion that the disü'ibution of mass_ in the body of 
the moon is not in agreement with the theo1'y of hydrostatic eqlli- -
librium, has all'eady been reached by LAPLACE 1). 

The mass constituting tlle erust of the earth is not in equilibrium 
either. But below the isostatie surface there is equilibrium. We 
are naturally led to assume thè:tt the depth of the isostatie slll'face 
is the depth at which tlle pl'essure of the outer layers beeomes so 
large that the material of the earth beh~ves as a fluid and there­
fore necessarily is in equilibrium 2). To form an estimate of the \ 
pressure at the isostatie depth we can eompute the presslu'e as it 
would be if the whole eal'th, including the erust, were in hydro­
statie equilibrium. Then, treating the eal'th as a sphere, Vi'e llüve 

I 

b 

p= JLgdr, 
b-Z 

where g is the aceeleration of gravity.-Now 

Therefol'e 

fm 
9 = - , m = * 3't1,3D. 1,2 

b 

P = ! 3'tf J L . D • 1'c71, 

b-Z 

For the earth the interval of integration is relatively smalI, and 
we can take L. and D constant. Then D = DI and very approximately 
L. = t Dl' Fnrther if Z = kb, ViTe find 

p = i- :;rf D12b2~~--}k~J. 

1) Mêcanique Cêleste, Livre. V, Chapitrc II, § 18. 
2) SQ.. fal' as constant, Ol' slowly varying (Ol'ces aud stresses are concel'l1ed. The 

bflha viour of the material with 1 espect to sudden forces is of 110 importancc 1'01' 

our argument. 
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,The material out of which the moon is built up is probably not 
very different fl'om that of the outer layers of the earth. VVe wiU 
therefore assume that it l'equil'es the same pJ'essul'e to be Huid 
enough tOl' the state of permanent equilibrium. If now on the moon 
the depth of the isosüttic sUl-face, if there be Ol1e, is Z' = k' (J', we have 

b' 

p' . t~tJ~', D'. rdl'. 

b'-Z' 

No\\' we can put 1::.'. D' = aD/'. [f the moon were homogeneons, 
we should have ct = 1. If the elensity illCl'ea,ses tow<1,rds tlte centre, 
then at the onter sud'ace a<l, anel at the centl'e a>l. If ao be 
a eet'htin mettll va,lne of a over the interval of integl'ation, we luwe 

p' = t :;rfao Dr'Jb'J [k'-tk'JJ. 
Now 

1/=0.272b /, lJ1'=O.610lJ1• 

Taking flll'thel' Ic = 0.018, we tind from the cOlldition p' = P 

0.32 
k' -t k'~ = --. 

If we take ((0 = 1, we fiud 
k' = 0.40. 

Most probably the true vaJne of ao does not diifer muell from 
unity. The isostatie surltwe in the moon would thus be situated at 
a depth of abont two tifths of the radius, a~nd little more thall 011e 
fifth of the total volume would be inelosed within it. Of course 
there can be no questioll of all isostatie compensation ns there is 
in the earth. The diifel'enres of the llloment5 of iner!ht arc almost 
entirely determined by the il'regulal'ities i.n the "ernst", ,'"hieh here 
contains by far the largest part of the mass, and the smaJl central 
part has onI.)' \'e1'..)" little influenee. 

This reasoning, of course, is not entil'ely l'igorous, but it undoubt­
edly points out the tl'ue reason why the theol'y of CLAIRAU'I', which 
in the case of the earth ag rees so well with the aetnal faets, is not 
aL -all applicabie to the moon, 


