Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

W. de Sitter, Remarks on Mr. Woltjer's paper concerning Seeliger's hypothesis, in: KNAW, Proceedings, 17 I, 1914, Amsterdam, 1914, pp. 33-37

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

$$
\frac{d \tilde{\omega}}{d t}=+2^{\prime \prime} .28 \quad ; \quad \frac{d \Omega}{d t}=-2^{\prime \prime} .22
$$

Perturbations caused by the second ellipsoid.
I find:

$$
\begin{gathered}
\frac{\partial^{2} \boldsymbol{\Omega}}{\partial x^{2}}=\frac{\partial^{2} \boldsymbol{\Omega}}{\partial y^{2}}=-2 E_{2} ; \frac{\partial^{2} \boldsymbol{\Omega}}{\partial c^{\prime} \partial y}=0 ; \\
\frac{\partial^{2} \boldsymbol{\Omega}}{\partial x \partial z}=-2\left(a^{2}-c^{2}\right) E_{3} \sin \Phi \sin J ; \quad \frac{\partial^{2} \boldsymbol{\Omega}}{\partial y \partial z}=2\left(a^{3}-c^{3}\right) E_{3} \cos \Phi \sin J ; \\
\frac{\partial^{2} \boldsymbol{\Omega}}{\partial z^{2}}=-2 E_{2}-2\left(a^{2}-c^{2}\right) E_{3}
\end{gathered}
$$

from which follows.

$$
\begin{aligned}
\frac{R}{k^{2} \pi q a^{2} c}= & \frac{1}{2} \frac{a_{1}{ }^{2}}{a_{1}{ }^{2}}\left[-2 E_{2} a_{1}{ }^{2}-3 E_{2} a_{1}{ }^{2} e^{3}-E_{3}\left(a^{2}-c^{2}\right) a_{1}{ }^{2} \sin ^{2} i\right. \\
& \quad+2\left(a^{2}-c^{2}\right) a_{1}{ }^{2} E_{3} \sin J \sin i \cos (\{\mathfrak{j}-(\mathbb{T})] .
\end{aligned}
$$

Although the term $a^{2}-c^{2}$ is not small, yet it is allowed to omit the periodic term.

I get $E_{2}=0.684, E_{0}=2.445$ from which follows taking as unit of time the century :

$$
\frac{d \tilde{\omega}}{d t}=-0^{\prime \prime} .16 \quad ; \quad \frac{d \Omega}{d t}=-0^{\prime \prime} 28
$$

Thus both ellipsoids together give :

$$
\frac{d \tilde{\omega}}{d t}=+2^{\prime \prime} .12 \quad ; \quad \frac{d_{3 \dot{b}}}{d t}=+2^{\prime \prime} 5(1 ;
$$

both insensible amounts.

Astronomy". - "Remaris on Mh. Wolpser's paper concerning' Seeliger's hypothesis." By Prof. W. de Sitter.
(Communicated in the meeting of Aprl 24, 1914).
Sketiger's explanation of Nuwconb's anomalies in the secular motions of the four inner planets consists of three parts, viz.
a. The attraction of an ellipsold enturely within the orbit of Mercury The light reflected by this ellupsoid is, on account of the neighbourhood of the sun, invisible to us.
b. The attraction of an ellipsoid whech incloses the earlh's orbit. The light reflected by this ellipsoid appears to us as the zodiacal light.
c. A rotation of the empirical system of co-ordinates with reference

Pioceedings Royal Acad. Amsterdam. Vol. XVII,
to the "Inertialsystem". This rotation is equivalent with a correction to the constant of precession. The value of this constant which is implied in Newcomb's anomalies is that used in his first fundamental catalogue (Astr. Papers Vol I). In "The Observatorg" for July 1913 I have shown that this constant requires a correction of $+1^{\prime \prime} .24$. (per century). Consequently, of Smidere's rotation r only the part $r_{1}=r-1^{\prime \prime} .24$ can be considered as a real rotation.

The position of the equatorial plane of the ellipsoid a was determined by Sebiagrr from the equations of condition: he found it not much different from the sun's equator. For the ellipsoid b the sun's equator was adopted as the equatorial plane.
It is important to consider the part which is contributed by each of the three hypotheses towards the explanation of the anomalies. By the way in which Sreliger has published his results this is very easy. It then appears that the ellipsoid a is practically only necessary for the explanation of the anomaly in the motion of the perihelion of Mercury, and has very little influence on the other elements. Similarly the ellipsoid b affects almost exclusively the node of Venus. The rotation r of course has the same effect on all perilelia and nodes. In the followirg Table are given Neivcomb's anomalies together with the residuals which are left unexplaned by Serleger's bypothesis. In addition to Skediger's residuais I also give residuals which are derived: A. by rejecting the rotation $r_{1}{ }^{2}$), and C. by omitting the second ellipsoid. The constants imphed in the three sets of residuals are thus

$$
\begin{array}{cccc}
\text { Sreliglir } & q_{1}=2.18 \times 10^{-11} & q_{2}=0.31 \times 10^{-14} & r_{1}=+4^{\prime \prime} .61 \\
A & 2.42 & 0.93 & 0 \\
C & 2.03 & 0 & +6.85
\end{array}
$$

where q_{1} and q_{2} are the densities of the two ellipsoids expressed in the sun's density as unit.

Sembarr did not compute the value of $\frac{d i}{d t}$ for the earth. The residual given in the table is derived from the preceding paper by Mr. Wolfjer.

From the table it appears that the residuals C are quite as satisfactory as those of Sebliger. Consequently the ellipsoid b is not a

[^0]hecessary part of the explanation. Of the residuals A on the other hand there are, amongst the 10 quantities which were considered

	Mercury	Venus	Earth	Mars
$\frac{d e}{d t}$ Newcomb	$-0^{\prime \prime} .88 \pm 0^{\prime \prime} .50$	$+0^{\prime \prime} .21 \pm 0^{\prime \prime} .31$	$+0^{\prime \prime} .02 \pm 0^{\prime \prime} .10$	$+0^{\prime \prime} .29 \pm 0^{\prime \prime} .27$
(Newcomb	+8.48 ± 0.43	-0.05 ± 0.25	+0. 10 ± 0.13	+0 75 ± 0.35
$\frac{d \tilde{\omega}}{}$ Selliger	-0.01	-0.10	+0.03	+0.16
$d t$ A	0.00	-0.05	+0.18	+0.52
c	-0.02	-0.12	-0.04	0.00
Newcomb	+0.61 ± 0.52	+0.60 ± 0.17		+0.03 ± 0.22
sin ${ }^{d \Omega}$ Seeliger	-0.04	+0.02	\cdots	-0. 20
$d^{t}{ }^{\text {a }}$	+0.55	+0.01		-0.11
c	-0.31	+0.05	\cdots.	-0.24
Newcomb	+0.38 ± 0.80	+0.38 ± 033	-0.22 ± 0.27	-0.01 ± 0.20
di Sebliger	-0.14	+0.21	$(+0.28)$	+0.01
$\overline{d t}\left\{\begin{array}{l}\text { d }\end{array}\right.$	-0.12	+0.17	+1.18	+0.05
c	-0.15	+0.23	-0.17	-0.01

by Seeliger, 3 residuals exceeding their mean error'. This in itself would not be sufficient to condemn the hypothesis, but the residual for the secular variation of the inclination of the ecliptic ($+\mathrm{I}^{\prime \prime} .18$) is entirely inadmissible. We conclude therefore that the rotation r_{1} is a vital part of the explanation.

The great influence of the ellipsoid b on the ecliptic is, of course, due to the large inclination of its equator. If this equator was e.g. supposed to coincide with the invariable plane of the solar system, instead of with the sun's equator, this influence would be much smaller. It is impossible to decide a priori whether it will be found possible so to adjust the position of the equator and the density of this ellipsold that it has the desired effect on the node of Venus without appreciably affecting the earth's orbit.

The motion of the node of the earth's orbil is the planetary precession Calling this λ, we have, for $t=t_{0}$

$$
\Delta \lambda \cdot \sin \varepsilon=\frac{d p}{d t}
$$

where p is the quantity so called by Mr. Woirser. We thus find for the three hypotheses

Skeliger	$\Delta \lambda=$	$+0^{\prime \prime} .47$
A		+1.13
C		+0.15

Newcomb did not include a deviation between observation and theory for this quantity. At the time of the publication of the "Astronomical Constants" (1895) it was of course entirely correct to consider a determination of the planetary precession from observations as impossible. Since that time however very accurate investigations of the precession have been executed by Nnwcons himself (Astr. Papers, Vol. VIII) and by Boss (Astr. Journal, Vol. XVI, Nrs. 612 and 614). Now the precession in right-ascension depends on the planetary precession, but that in declination does not. We have

$$
\begin{gathered}
m=l \cos \varepsilon-2 \\
n=l \sin \varepsilon .
\end{gathered}
$$

l being the lunisolar precession.
Netroons determined l from the right-ascensions and the declinations separately, and found a large difference in the results. If this were interpreted as a correction to the planetary precession, we should find

$$
\Delta \lambda=+0^{\prime \prime} .47 .
$$

- Boss determined m and n separately, the latter both from rightascensions and from declinations. From his results I find (applying the correction of the equinox $\Delta e=+0^{\prime} .30$, adopted by both Boss and Newcomb):

$$
\Delta \lambda=+0^{\prime \prime} .85 \pm 0^{\prime \prime} .22
$$

The mean error does not contain the uncertainty of the correction Δ e. Its true value probably is about $=+0^{\prime \prime} .25$. The mean error of thie value of $\Delta \lambda$ derived from Newcomb's work is difficult to estimate; we may assume it to be equal to that of Boss. The mean of the two determanations would then be

$$
\left.\Delta \lambda=+v^{\prime \prime} .66 \pm 0^{\prime \prime} .18^{2}\right)
$$

l) Also L. Strove (A N. Vol. 159, page 383) finds a difference in the same sense. Neglecting the systematic conection :, I find from his results

$$
\Delta^{\prime}=+0^{\prime \prime} .93 \pm 0^{\prime \prime} .80
$$

The m. e. again is too small as it does not contain the effect of the uncertainty of the correction..

Now it is certamly very remarkable that this correction is of the same sign and the same order of magnitude as the planetary precession derived from the attraction of Sherigna's ellipsoids. It must however be kept in mind that it is very well possible to explain the discrepancy between the determinations of the constant of precession from right-ascensions and from declnations (or from m and from n) by the hypothesis of systematic proper motions of the stars. Thus Hovgh and Halm (M. N. Vrl. LXX page 586) have from the hypothesis of unequal distribution of the slars over the two streams derived a systematic difference which is equivalent (for Newconb) ${ }^{1}$) to a correction

$$
\Delta i=+0^{\prime \prime} 56
$$

As the effect of the attraction of Sebinger's ellipsoids on the motion of the moon Mr. Wor.tuler finds a secular motion of both the perigee and the node. Both of these are due chiefly to the inner ellipsoid and are thus not much altered if Sebigerrs hypothesis is replaced by etther of the hypotheses A or C. We find

Sieliger	$\frac{d \tilde{\omega}}{d t}=$	$+2^{\prime \prime} .11$	$\frac{d \delta \delta}{d t}=$
A		-2.04	-3.50
C		+210	
C		-2.06	

All these quantities are well withon the lumits of uncertanty of the observed values.

Chemistry. - "The application of the theory of allotropy to electromotive equilibria." II. By Dr. A Smis and Dr. A. H. W. Aten. (A preliminary communication). (Communicated by Prof. J. D. van der $W_{\text {afiss }}$.
(Communicated in the meetmg of April 24, 1914).

1. In the first communication ${ }^{2}$) under the above title it has been demonstrated that the theory of allotropy applied to the electromotive equilibrium between metal and electrolyte, teaches that a metal that exhibits the phenomenon of allotropy and is therefore built up of different kinds of molecules immersed in an electrolyte, will emit different kind of ions.

The different kinds of rons assumed by the theory of allotropy, need not be per se different in size, as was remarked before. They

[^1]
[^0]: 1) The residuals A have alteady been given in the above quoted paper in "The Obset vatory". The density γ_{2} is there eironeously given as 0.37 instead of 0.93 (the correction to Sreligre's value having been taken as 0.2 times this valuc, instead of 20). I have used the figues as pubhished by Sembiger. The small deviations found by Mr. Woliser are of no importance.
[^1]: ${ }^{1}$) For Struve's stars the correction would be $+0^{\prime} .77$. For Boss the corresponding computation has of course not been executed by Hough and Halm.
 ${ }^{2}$) These Proc. Dec. 27, 1913, XVI. p. 699.

