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The total amount of chemical energy which® was set free in
geimination was therefore always larger than the quaniity of energy
given off as heat to the swroundmgs. A part of the free energy
which became available in the process of germination was therefore
evidently used for other purposes (osmosis ete.) than for heat-evolu-
tion only. -

This was however doubtful only on the second day, the evolution
of heat on that day was not determined; the loss of energy, cal-
culated from the heat of combustion, was however so small in this
period that it 1s very possible that the evolution of heat at that
moment, was larger. If afterward it should appear that this is really
the case, it would be very intelligible. For in the beginning of
germination imbibition will principally take place so that in this
case evolution of heat is not atall necessarily connected with chemical
transformations.

The results of this investigation may therefore be summarized
as follows.

The loss of energy calculated from the heat of combustion as
well as the evolution of heat increase with the duration of germination.

Both are small at the begmning of germination and greatly increase,
chiefly ou the 34 day.

The evolution of heat is greatly dependent on the swrrounding
temperature.

The optimum of beat-evolution is roughly 35°.

The total loss of energy during germinalion at 20° exceeds the
loss of energy by evolution of heal at the same temperature.

Utrecht, 1914. Botanical Laboratory.

Chemistry. -— “Liquilibria in lernary systems XV”. By Prof. F.
A. H. SCHREINEMAKERS.

(Communicated in the meeling of April 24, 1914).

In our previous considerations on saturationcurves under their own
vapourpressure and on boilingpointeurves we have considered ihe
general case that each on the three componenis 15 volatle and
occurs consequently in the vapour. Now we shall assume that the
vapour contans only one or two of the components. Although we
may easily deduce all appearances occurring in this case from the
general case, we shall yet examine some points more in detail.
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The vapour contains only one component.

We assume that of the componenis A4, B, and C the first two
are extrenely little volatile, so that practically we can say that the
vapour consists only of C. This shall e.g. be the case when A and
B are two salts and C a solvent, as water, alcohol, benzene, etc.

Theoretically the vapour consists always of A<+ B+ C; the
quantity of 4 and B, however, is generally eaceedingly small,
compared with the quantity of C, so that the vapour consists prac-
tically completely of C.

When, however, we consider complexes in the immediate vicinity
of the side 4B, circumstances change. A complex or a liguid
situaled on this side has viz. always a vapourpressure, although
this is sometimes inmeasurably small; consequently there is also
always a vapour, consisting only of 4 + B without (. When we
take a complex in the immediate vicinity of the side 4B, the
quantity of € in the vapour is, therefore, yet also exceedingly small
in comparison with the quantity of 4 4 B.

Considering equilibria, not situated in the vicinity of the side
AB, we may, therefore, assume that the vapour consists only of C;
when, however, these equilibvia are situated in’ the immediate
vicinity of the side 485, we must also take into consideration
the volatility of 4 and B and we must consider the vapour as
ternary. .

Considering only the occurrence of liquid and gas, as we have
formerly seen, three regions may occur, viz. the gasregion, the
liquid-region and the region L——G. This last region is separated from
the liguid-region by the lhquid-curve and from the vapour-region
by the vapourcurve.

As long as the liquid-curve is not situated in the immediate
vicinity of 4B, this last curve, as a definite vapour of the vapour-
curve is in equilibriom with each liquid of the liguid-curve, will
be situated in the immediate vicinity of the anglepoint C. Therefore,
the gas-region is exceedingly small and is reduced, just as the gas-
curve, practically to the point (. Consequently we distingnish within
the triangle practically only two regions, which are separated by the
liquid-curve, viz. the liquid-reéion and the region L—@G ; the first
reaches to the side AB, the lastto the anglepoint C. The conjugation-
lines liquid-gas come together, therefore, practically all in the point C.

When, however, the liquid-curve comes in the immediate vicinity
of the side AR, so that there are hquids wlich contain only exceed-
ingly little €, then in the corresponding vapours the quantity of
4 and DB will be large with respect to C. The vapour-curve will

-
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then algo be sitnated further from the anglepoint C' and closer to
the side 4B, so that also the vapour region is large. At a sufficient
decicase of pressure or increase of femperatnre, the vapour-region
shall even cover the whole components-triangle. Consequently it 1s
absolutely necessary that we must distinguish the three regions, of
which the movement, occurrence, and disappearance were already
formerly treated.

When the equlibrium F - L 4 G occurs, we may now deduce
this in the same way as it was done formerly for a ternary vapour.

a) The solid substance is a ternary compound or a binary com-
pound, which contains the volatile component C.

For fixing the ideas we shall assume that in the triangle ABC
of fig. 1 which is partly drawn, the point C represents water, I an
aqueaus doublesali, #” and F" binary hydrates. In accordance with
our previous general deductions we now find the following.

The saturationcurves under their own vapour-pressure are circum-
or exphased al temperatures below 7% (7 = minimum meltingpoint
of the solid substance nunder consideration). The corresponding vapour-
’ curves are reduced to the point C. When these substances melt with

Tig. 1.

increase of volume, the points A, A’ and H" are siluated with
respect to I, 1" and F" as in fig. 1; when they melt with decrease
of volume, these poinis are situated on the other side.
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In fig. 1 different saturationcurves are completely or partly drawn,
the pressure increases along them in the direction of the arrows.
Farther it is apparent that along the saturationcurve of I the pressure
is maximum or minimum in its points of intersection with the line
Ccr, the point of maximumpressure is situated closest to C. On
the curve bcdihg of fig. 1, which is only partly drawn, ¢ is,
therefore, a point of maximum-, 4 a point of minimumpressure.

The pressure along a saturationcurve of the binary hydrate F”
(or F") is highest in the one and lowest in the other end, without
being however in these terminating points maximum or’minimum.
On the curve abdgf of fig. 1 which 15 only partly drawn, the
pressure in o is the highest and in f the lowest.

This is also in accordance with the rule, formerly deduced, that
the pressure is maximum or minimum, when the phases F, L, and G
are situated on a straight line, but that this is no more the case
when this line coincides with a side of the triangle.

As the vapour has always the composition C here the point of
maximum- and that of minimumpressure of the saturationcurve of £
are, therefore, always situated on the line CF'; the saturationcurves
of F” and F'" can, however, not have a point of maximum- ov
minimum-pressure.

As we may obtain all solutions of the line C'%h (CB and C A)
by adding water to F (" and F") or removing water from £ (I’
and F"), we shall call the solutions of CAh (CB and CA) pure
sclutions of F (I’ and F"). Further we call the solutions of CH
(CH' and C H") rich in water and those of HA (H'B and H"A)
solutions poor in water. Consequently in fig. 1 a, ¢ and e represent
pure solutions rich in water and f, 4 and £ pure solutions poor in
water. We may express now the above in the following way :

Of all solutions saturated at constant 7' with a binary or ternary
hydrale, the pure solution rich in water has the greatest and the
pure solution poor in water the Jowest vapourpressure Therefore,
the pressure increases along the saturationcurve from the pure solution
poor in water towards the pure solution rich in water. When the
sohd substance is a ternary hydrate, the highest pressure is at the
same time a maximum- and the lowest pressure also a minimum

pressure. N
We see that this is in accordance with the direction of the arrows
in fig. 1.

) The solid substance is the component A or B ora binary com-
pound of A and B; thevefore, it does not contain the volatile com-
ponent C.
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In fig. 2 some saturationcurves under their own vapourpressure
of 4 (ak,bl,cm,on) and of B (h,g L, fm,pn) are completely or
partly drawn. When in one of the binary systews, e.g.in CB, there
exists a point of maximumtemperature FH’, then also there occur
saturationcurves as the dotied curve ¢r. As long as we consider
solutions, not situated in the vicinity of A B,-the vapour region is
represented by point C. When we consider, however, also solutions
in the vicinily of A B3, the vapour region expands over the triangle.
Consequently, when we de-
duce the saturationcurves
under their own vapour-pres-
sare, assuming that the
vapour is represented by C,
we may do this only for
solutions, not situated in the
vicinity of AB. For points
of the curves in the vicinity
of AB we take the case,

‘ A treated already in communi-

W) ew f J & cation XIII that the vapour

Fig. 2. is ternary. The same applies,

as M’ is situated in the vicinity of B, also to the curves in the
vicinity of H'.

If follows from the deduction of the saturationcurves that the
pressure, e.g. along a £, continues to decrease from a; only in the
vicinity of &, a point of minimumpressure may perhaps be situated.
As the pressure 1 6 and consequently also in the minimum possibly
occurring is exceedingly small and practically zero, we can say:
along tne saturationcurve of a compouent the pressure increases
from the solution free from water (1) towards the pure solution (a).
The pressure of the solution free from water is practically zero.

Let ns now take a binary compound of 4 and B {for instance
an anhydric double-salt); it may be imagined in fig.2 to be repre-
sented by a point J7' on AB. When we leave out of account satura-
tioncurves in the vicinity of /, we may say that the saturation-
curves under their own vapourpressure have two terminatingpoints,
both sitnated on AB. As the pressure is again very small in both
the terminatingpoints, it follows: along the saturationcurve of an
anhydric double-salt, the pressure increases from each of the solutions
free from water towards the pure solution.

¢) The solid substance coniains the volatile component C' only.

This is for instance the case when an aqueous solution of two

¢
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salts is in equilibrinm with ice; the sataration- or iceecurve under
its own vapourpressure has then, as curve ed in fig. 2, one ter-
minatingpoint on C 4 and one on €' B. We find further: along an
icecurve under its own vapourpressure the pressure is the same in
all points and it is equal to the pressure of sublimation of the ice.

We may deduce the previous results also in the following way.
As the vapour consists only of C, we equate, in order to find the
conditions of equilibvium for the system F -4 L4 G in (1) (II)
2z, =0 and y,=0. We then find:

Z— .zg—%——l/g .—Zandé—}-a +’)’ N )]
{H

For the saturationcurve of F' under its own vapourpressure we
find : -
(rt+yHdas+ @s+y)dy=—CdP. . . . . . (2
(«r4-Bside—+(es+Bt)dy=—UAF+C)dP . . . @3
which relations follow also immediately from 8 (II) and 9 (II). In
order that the pressure in a point of this curve should be maximum
or minimum, d P must be = 0. This can be the case only, when
ey=pz . . . . . . . . . @
This means that the liquid is situated in the point of intersection
of the curve with the line CF, consequently, that the hquid is a pure
solution of #. Consequently we find: along a saturationcurve under
its own vapourpressure of a ternary substance, the pressure 1s
maximum or minimuam in the pure solations.
In order to examine for which of the two pure solutions the
pressure is maximum and for which it is minimum, we add to the
first pmrt of (2) still thie expressions:

1 0s ds 0s 0Ot

5 —H ~~y da’-+- s+b—~+./——)dzdj+ th =ty Jdyt
0x 0 dy "0y

and to the first term of (3):

0s Os Ot \
2( +J3 )d.’b +((¢—“; -}'B'a—') (lbdj-‘l— (Yg:‘l/— -1—"3@') [ly -}— . e

Now we sublract (2) from (3), afller that (2) is multiplied by « and
(8) by w. Substituling further their values for 4 and C, we find:

— a (rde* + Dsdady + tdy®) = [(»

©)

Representing the change of volume, when one quantity of vapour




) 76

arises at the reaction between the phases F, L and (, by AV,
(5) passes into:

1 .
5@ (rda® 4 2sdedy + tdy®) = (v—a) AV, X dP . . . (6)

Let us consider now in fig. 1 the pure solutions of F, therefore
the solutions of the line Ch. For points between Cand F' x— a<{0,
for the other points # -« > 0. Considering only the solutions of
the line Ch, we can consider the system F -} L -+ G as binary.
Iimagining a P, 7-diagram of this system, H is the point of maximum-
temperature. From this it is apparent that AV, is negative between
H and F, positive in the other points of the line Ch. From this it
follows:

(z—a) AV, is negative in points between C and H, therefore for

the solutions of I rich in water.

(x—a) AV, is positive in the other points of this line, therefore,

for the solutions of F' poor in water.

The same applies also when the point H is situated on the other

side of F.

Let us take now a pure solution rich in water of £, for instance
solution ¢ of the fig. 1; as the first term of (6) is positive and
(w—a) AV, is negative, it follows: dP is negative. This means that
the pressure is a maximum in c.

v When we take a pure solation poor in water of F, for instance
solution A of figure 1, (x-—e&)A V', is positive, therefore, the pressure
is a minimnm in 4.

In accordance with the previous considerations, we find, there-
fore, that the pressure along the saturationcurve of a ternary com-
pound is a mimmum for the pure solution poor in water and a
maximum for the pure solution rich in water.

When the solid substance is a binary compound, as ¥ in fig. 1
or 3, we must equate « =0. (Of course g =10 for the compound
F". (2) and (3) pass now into:

(wr 4 ys)de +{ws +ytydy= —CdP . . . . (7)
Psde +ptdy—=— A+ C)dP, . . . . . (8

From this we find:
Bax(rt—sNdae=1[(as + yt) (A + CYy —BCOYjdP . . . (9)
From this it is apparent that d/ can never be zero or in other
words: on the saturalioncurve of a binary hydrate never a point of

maximum- or of minimumpressure can oceur.
In the terminatingpoint of a saturationcurve on BCa::O as
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. RT . . o
Limr===, while ¢ and s remain finite, it follows, when w&
KA

replace also 4 and, C by their values:
8.RT .de=[(y— )V, + 8V —yo]dP. . . . (10)

Representing by A7V, the change of volume, when one quantity
of vapour arises af the reaction between the three phases (I, L
and (), (10) passes into:

BRT .de=(y —B)AV,.dP . . . . . (L)

For solutions between C and I is y — <0, between /7 and
B is v —p3>0. lmagining a ~P,7-diagram of the binary system
F 4 L+ G, H is the point of maximum temperalure; AV is
consequenily negalive between J/’ and F”, posilive mn the other
ponts of CB. From this it follows: (y — 8) AV, is negative in points
between C and H’, thervefore, for the solutions rich in waler; (y—)
AV, is positive in pomts between /H’ and B, therefore for the
solutions of £ poor in walter.

From (11) it now follows: d/P is negative for liquids on CH’,
positive for liquids on H’B. In accordance with onr former resulis
consequently we find: along the saturationcurve of a binary hydrate
the pressure increases from the pure solution poor in water towards
the pure solution rich in water. '

When F is one of the components, which are not volatile, e.g.
B in fig. 2, then a =0 and p=1. From (11) then follows:

, RT.de=(y— )AV,.dP. . . . . ..(12)

We now imagine a P, T-diagram of the binary system B-+L-G;
this may have either a point of maximumtemperature /' in the
vicinity of the point /3 or not. When a similar point does not exist,
AV, is always positive; when a similar point does exist, AV 1s
positive Letween C and H’, negative between H’ and B. As we
leave, however, here out of account points, situated in the vicinity
of B, AV, is positive. As y — L is always negative, it follows
from (12) that dP is negative. In accordance with our former results
we find therefore: along the salurationcurve of a component the
pressure decreases from the pure solution towards the solution free
from water. o

When £ is the volatile component, as for instance in the equili-
brium ¢ce4 L4 G, then « =0 and 8 =0. The second of the con-
ditions of equilibrium ({) passes now into: Z ==& This means that
not a whole series of pressures belongs to a given temperalure, but
only one definite pressure, viz. the pressure of sublimation of the
ice. Therefore we find again: along.an icecurve under its own
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vapour pressure the pressure is the same in all points and equal to
the pressure of sublimation of the ice.

Now we shall consider the boilingpointenrves; in general the
same applies to them as to the saturationcurves under their own
vapourpressure, which we have considered above.

Now we assume that fhe curves in fig. 1 represent boilingpoint-
curves; the point H no longer represents a point of maximum
temperature, bul a point of maximum pressure; consequently if is
always sitnated belween € and JF. This point of maximuompressure
A is always sitnated closer to €' than-the point of maximum tem-
perature H; the same applies to the points A’ and A" in the figs.
2 and 3. Wishing (o indicate by arrows the direction in_which the
temperature increases, we must give the opposite direction to the
arrows in the figs. 1 —3.

We saw Dbefore that on the side CB of fig. 2 a point of maxi-
mumiemperature H’ may either ocenr or not; on this side, however,
always a poinlt of maximumpressnre is situated. The same applies
to the side (/4. We now find the following.

a) of all solutions saturated under constant P with a binary or
ternary hydrate, the pure solution rich in water has the lowest —
and the pure solution poor in water the highest boiliné'point There-
fore, the boilingpoint increases along the boilingpointeurve from the
pure solution rich in water towards the pure solution poor in water.
When the $olid substance is a ternary hydrate, the highest boiling-
point is at the same time a maximum- and the lowest at the same
time a minimnmboilingpoint.

0) along the boilingpointcurve of a component or of an anhydric
double-salt the boilingpoint increases from the pure solution. When
the solid substance is an anhydric double-salt, the boilingpoint of
the pure solution is at the same time a minimum.

c), along the curve of the solutions saturated with ice under' a
conslant pressure the boilingpoint is the same in all the poinis and
it is equal to the sublimationpoint of the ice.

The icecurve under its own vaponrpressure of the temperature
.7’ and the boilingpgintcurve of the ice under the pressure P coincide,
therefore, when P is the pressure of sublimation of the ice at the
{emperature 7.

The following is amongst others apparent from what precedes.
We take a pure solution of a solid subslance (component, binary or
ternary compound). Through this solution pass a saturationcorve

-10 -
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under its own vapourpressnre and a boilingpointeurve. Generally we
now have: when the vapour pressure at a constant 7" decreases (or
increases) from the pure solution, the boilingpoint under a constant
P will increase (or decrease).

- This, however, is no more the case for solutions between the
point of maximumpressure and the point of maximumiemperature.
The point of maximumpressure is sitnated viz. closer 1o (he point
C than the point of maximumtemperature. When we take a solution
between these poinis, it is a solnlion rich in waler with respect Lo
the saturationcurve under its own vapourpressure, & solution poor
in water, however, with vespect (o the boilingpointeurve. Consequently
as well the pressure along the saturalioncurve as the temperature
along the boilingpointcurve will decrease {from 1bis solution.

We may express the foregoing also in the following way: the
vapourpressure (at consfant 77) and the boilingpoint (ander constant
P) change from a pure solution generally in opposile directions.
When, however, the pure solution is situaled beiween the point of
maximumpressure and the point of maximamiemperalure, then as
well the vapourpressure as the boilingpoint decrease from this solution.

Formerly we have already considered the safurationcurve under
its own vapourpressure of two solid substances (viz. the equilibrium
F4+ F 4+ L4 &; now we shall discuss some points more in detail.
It should be kept in nidnd in this case that all deductions apply
also now to pomnts, which are not situated in the vicinity of AB.
The deductions discussed already formerly apply to points in the
vicinity of this line.

Let us take the solution m of fig. 2 saturated with 4 4 B, ihere-
fore, the equilibrium A 4+ B+ L, 4 G As the pressure 'increases
from m towards ¢ and lowards f, we may say: ihe solulion saturated
with {wo components has a smaller vapourpressure than the pure
solution of each of the components separately.

- When we consider the solution p of fig. 2 saturated with ice 44

and when we imagine curve np lo be extended up to C4, it appears:
the solution saturated with 7ce 4 4 has a grealer vapourpressure
than the solution satuvated with A< /3 and a smaller vapourpressure
than the metastable pure solution of 4.

In the previous communication we have alrcady discussed the
curves zu, zv, and zw; zu represents the solutions of the équilibrium
A+ B+ L+ G, 2w those of the equihbrinm ice + A4+ L+ G
and zv these of the equilibrium ey Bi-f 7. + G, w and ¢ are
binary, ¢ is the ternary cryohydric point underiils own vapourpressure.

-11 -
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Let us now contemplate the solution m of fig. 8 saturated with
the hydrates I 4 F'; it is apparent from the figure that solution m
has a smaller vapourpressure than / or n. When we take however

Iig. 3. . .

the solution b, saturated with these hydrates, this has a larger
vapourpressure than the solulions « and c. ’

Curve pq represents the solutions of the equilibrinm F+4 " L4 G,
point H is the point of maximuminieniperatuve of this curve. In
accordance with our previous definitions we call the liquids of branch
pH rich in water and those of branch Hg poor in water. We then
may cxpress what precedes in this way:

the solution saturated with two components or with their hydrates *
has in the region rich in water always a smaller vapourpressure,
in e rvegion poor in water always a greater vapourpressure than
the pure solution of each of the substances separately.

Let us now take a lignid saluraied with a double salt and one
of its limit-substances. [In fig: 1 the’ series of solutions saturated
with F of curve bed is limited in b by the occurrence of F’ and
in d by the occurrence of F". Therefore we shall call // and I
the limit-substances of the double-salt I7]. Curve po represents the
solufions of the equilibrivm I+ I 4 L 4 G, corve og those of
the equilibvium £ 4 F<4 L 4+ G and curve o7 those of the equili-
brium "+ '+ L+ G M and M’ are points of maximum-
temperature of these curves. In accordance with previous definitions
we call solutions of oM and oA/’ rrich in waler and those of My
and /'t poor in waler.

-12 -
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The following is apparent from the direction of the arrows in
fig. 1.

a. In the region of the hquids rich in waler. When a doublesalt
is soluble in water without decomposition, the solution saturated
with (his double-salt and with one of its limit-substances has a
simaller vapourpressure than the pure solution of the doublesalt and
also than that of the limit-substance.

When a double-sall is decomposed by water, the solution saturated
with this double-salt and onec of its limit-substances has a smaller
vapour pressure (han the pure solution of the limi{-substance. The
solution saturated with double-salt and with the limit-substance, which
is not separated, has a smaller vapour-pressure than the solution,
saturated with double-salt and with the limii-substance, which is
separated.

0. In the vegion of the liquids poor in water the opposite takes
place.

As a special case a liquid can be saturated with two substances
of such a composition, that one of these may be formed from the other
by addiion of water. They are
represented then by two points F
and 77, which are situated with C
on a straight line. In fig. 4 this line
CFE doés not coincide with one
side of the triangle. In thus figure
aecfis a saturationcurve under
its own vapourpressure of I, curve
bedf one of I"; the arrows
mdicate the direction, in which
the pressure increases. Both the

Fig 4. curves can be circuam- or exphased
and they either intersect or they do not. In fig. 4 they intersect
in ve and f, so that the equlibvia ¥ 4 F' 4 L, 4 G and
F4 F + Ly+4 G occur. Now we can prove that the vapour
pressure of those two equilibria is the same, therefore P.= Py.
When we remove viz. the liquid from both the equilibria, we retain
I+ F' 4 G- As between these thiee phases the reaction /22 F' 4G
is possible, we can consider ['+ F" -+ (¢ as a binary system. We
then have two components in three phases, so that the equilibrium
is monovariant. At each temperature I [ 4~ G has, therefore,
only one definite vapourpressure, from which immediately follows:
b, = Pr. :

6
Proceedings Royal Acad. Amsterdam, Vol. XVII.

-13 -
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Curve gehfk in fig. 4 indicates the solution of the equilibrium
F4+F 4+ L4 G; when in a P, T-diagram we draw the curve
F+ I 4 @ (consequently the carve of inversion F 2 I -} () and
curve F'+ ' 4+ L 4 G, then they coincide.

In fig. 5 the line CFF" coincides with the side BC of the triangle;
we assume viz. that the component B and its” hydrate /' occur as
solid substances; further we have also assumed that the component
A occurs as solid substance. The curves bc, fy and ik are saturation-
curves under their own vapourpressure of A4, 74 and e¢f of B, ab
and de of the hydrate F; the arrows indicate again the direction
in which the pressure increases.

[t is apparent from the figure thal vz represents the solutions of
the equilibrium 4 4 F -+ L 4 G, zw those of 4+ B+ L+ ¢
and zu those of B+ F-4 L4 G.
Consequently in z the invariant equili-
briom 4+ B+ F-+ L+ G occurs.
Curve zu terminales on side BC in
the quadruplepoint u with the phases
B4 F -+ L+ G of the binary system
CB. When we remove the liquid L,
from the equilibrinm B4-F4-L, 4G
occurring at ihe {emperature 7, and
C - > under the pressure Pc,we'retain the mono-

(W) V4 variant binary equilibvium B-+F4G.

Fig 5. When we draw in a P, 7-diagram the;
curve B-F4G (therefore the curve of inversion F 2 B4+ @) and
carve B4 F 4 L4 @, these two curves coincide. We can say,
therefore : ,

the vapourpressure of a solution, saturated with a component and
with its hydrate, is equal to the pressure of inversion of the hydrate
(the pressure of the reaction > B G).

From the divection of the arrow on de it follows that the pressure
in ¢ is smaller than in d. We can say, therefore:

the solution saturaled with a component and with one of is
hydrales has a lower pressure than the pure solution of the hydrate.

The same considerations apply also when two hydrates of a same
component occur.

We may summarise the previous resulls in the following way.
Through each solution saturated with two solid substances go two
saturationcurves; when we limit ourselves to the stable parts of

-14 -
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these curves, we may say that two saturationcurves proceed froni
such a solution. Then we may say : '

1. The {wo solid subsiances are situated in opposition with respect
to the line LG.

* a. The solution saturated with these substances is rich in water.

The pressure increases from this solution along the two satura-
tioncurves. .

b. The solution saturated with these substances is poor in water.
The pressure decreases from this solution along the two saturation-
curves. , ~

2. The two solid substances are situated in conjunction with
respect to the line LG.

a. The solution saturated with these substances is rich in water.

The pressure decreases from this solution along the saturation-
curve of that solid substance which is situated closest to the
line LG; the pressure increases along the other saturationcurve.

b. The:solution saturated with these subslances is poor in walter.

The same as sub 29; we must take however the changes of
pressure in opposite direction. f

3. The two solid substances are situated on a straight line with
the vapour. o

The pressure increases from the solution saturated with these sub-’
stances along the saturationcnrve of the substance with the largest
amount of waler, it decreases along the saturalioncurve of the sub-
stance with the smailest amount of water.

We find examples of 1¢ in the equilibria :

F+-F+L+G (g 1), F+F"+Lo+G (g 1), A4+B+L,+G
(figs. 1 and 2), #"+F"++L,+G (lig. 3), A4+B-+L,4G (fig. 5) and
F+A+4 LG (fig. ).

We find examples of 1¢ in the equilibria: F4-I"+ L 4G (lig.
1), F+F"+L 4G (fig. 2) and "I+ Ly,4-G (fig. 3).

An example of 2¢is found in the equilibrium F4- "4 L, +G (ig. 1).

We f{ind examples of 3 in the equilibria: F+I"4L+G (fig. 4),
F+F +L+G (fig. 4 and B4+I4-L,4 G (fig. 5).

We may deduce the above-mentioned rules also in the following
way. We shall viz., while the temperature remains constant, change
the volume of the system F -4+ I’ 4+ L - G, so that a reaction
takes place between the phases and there remains at last a three-
phase-equilibrium. AS this reaction is determined by the position of
the four points with respect to one another, we may immediately
distinguish the above-mentioned cases 1, 2, and 3. When we call

\ 6+
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the change of volume, when one quantity of vapour is formed at the
reaction, AV, then AV, is always positive, except when the
hqmd is represented by a point of the fourphase-curve between the
point of maximumtemperature and the intersectingpoint of this curve
with the line F/”. When we now apply the rule: “the equilibria,
which arise at increase (decrease) of volume, aré stable under lower
(higher) pressure”, we may easily refind the above-mentioned rules.

When we take as an example fig. 3 in which the case sub 1
occurs, the equilibvium /" + F" 4+ L -+ G is represented by curve
pg, which intersects the line F”F" in S; A is the point of maximum-
temperatnre of this curve. Consequently AV” is positive on pH and
Sg, negative on HS; the solutions of pH are rich in water, those
of Hg poor in’water. When we take a liquid rich in water, the
reaction is:

LZ2ZF +F'+ G AV, >O0.
F 4+ L 4+ @
"+ L 46 F4+F+ G
Fl __'_ —ZP/I _I__ L

As the reaction proceeds from left to right with increase of volume
(AV,>0), the equilibrium to the right of the vertical line occurs
on decrease of pressure and the equilibria 1o the left of the vertical
Line occur on increase of pressure. Therefore, from each point of
branch p@Q the equilibvia '+ L 4+ G and FF" 4 L 4 G proceed
towards higher pressures; consequently we find the rule 1.

When we take a liquid poor in water, this is situated on HS or
on Sg. When it is sitvated on HS, the above-mentioned reaction
applies also, but AV, < 0. Therefore, from each point of branch
HS tbe equilibria £/ + L 4 G and F" 4+ L + G proceed towards
lower pressures; this is in accordance with rnle 10,

When we take a solution of branch Sg, the reaction is:

P+ F'2L46G AV>0.
4+ 4L 4+ L+ G,
4+ G "+ L+ G

As the reaction proceeds from left to right with increase of volume
the equilibria to the right of the line occur with.increase of volume.

In accordance with rule 1¢ we find, therefore, that the equilibria
"+ L4 G and F"+ L+ G proceed from each point of the
branch Sg towards lower pressures.

Now we have deduced the rules 17 and 1% assuming that pointH
is situaled on branch pS; we may act in a similar way when point
H is sitnated on branch ¢S. In a similar way we can also deduce
the rules 2 and 3.
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Considering, instead of the saturationcurves the boiling point
curves, the same applies to these in general. ,We must then replace
on the fourphase-curve the point of maximumtemperature by the
point of maximum pressure. In fig. 3 besides the point of maximum-
temperature H, also the point of maximum-pressure @ is drawn.
We imagine further that the saturationcurves are replaced in, the
diagrams by boilingpointcurves. We then refind the rules 1, 2, and
3, with this difference, however, that increase of pressure must be
replaced by decrease of the boilingpoint and decrease of pressure by
increase of the boilingpoint.

From each point of the four-phase curve proceed two saturation-
curves and two Dboilingpointcurves. When this solution is to be
considered as rich in water or as poor in waler with respect to the
saturationcurves, it is also the same with respect to the boiling-
pointcurves. Only the solutions between the point of maximum-
pressure and the point of maximumtemperature make an exception;
these are rich in water when we consider the saturationcurves,
poor in water when we consider the boilingpointcurves. Now we
find: from a solution saturated with two solid substances the vapour-
pressure (along one of the saturationcurves) and the boilingpoint
(along the corresponding boilingpointeurve) change generally in
opposite direction. When, however, this solution is situated between
the point of maximumpressure and the point of maximumtemp@'atur\e,
vapourpressure and boilingpoint change in the same direction.

(To be continued).

Physics. — “On the thermodynamic potential as a kinetic quantity”.
(First part). By Dr. H. Huiswor. (Communicated by Prof.
J. D. van pEr WaaLs). B

1

(Gommunicated in the meeting of April 24, 1914).

In a communication published in These Proc. Il p. 389 of Jan.
27 19002 it has been set forth by me that in the capillary layer
the molecular pressure must have a different value in different
directions as a direct consequence of the attraction of the particles,
whereas the thermic pressure (the sum of the molecular and the

1) T expressly call attention to this date, because some time after, this subject
was treated in the same way by a writer who had informed me of his own
accord that he was going to publish an article on this subject in the Zeitschrift
fiir phys. Chemie, and that he should of course, cile my paper there, but who
has failed to do so.
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