Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J. de Vries, The quadruple involution of the cotangential points of a cubic pencil, in: KNAW, Proceedings, 17 I, 1914, Amsterdam, 1914, pp. 102-104

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl) > 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Mathematics. -- "The quadruple involution of the cotangential points of a cubic pencil." By Professor JAN DE VRIES.

(Communicated in the meeting of April 24, 1914).

1. We consider a pencil of cubics (γ^{3}) , with the nine base-points B_{k} . On the curve φ^{3} , passing through an arbitrary point P, lie three points P', P'', P''', which have the tangential point ') in common with P; in this way the points of the plane may be arranged in quadruples of an involution (P') of cotangential points. We shall suppose, that the pencil is general, consequently contains twelve curves with a node D_{h} . On such a curve d^{3} all the groups of the (P') consist of two cotangential points and the point D, which must be counted twice. Apparently the 12 points D are the only coincidences of the involution; as the connector of the neighbouring points of D is quite indefinite, the coincidences have no definite support. The points D_{h} are at the same time to be considered as singular points; to each of them an involution of pairs P, P' is associated, lying on the curve d_{h}^{3} , which has D_{h} as node.

2. The nine base-points B_k are also singular; to each point B_k a triple involution of points P', P'', P''' is associated, lying on a curve β_k , of which we are going to determine the order.

To each curve φ^3 we associate the line *b*, which touches it in *B*; in consequence of which a projectivity arises between the pencil of rays (*b*) and the cubic pencil (φ^3). The curve τ^4 produced is the locus of the tangential points of *B* (tangential curve of *B*).

The line b, which touches a $\varphi^{\mathfrak{s}}$ in B, cuts it moreover in the tangential point of B; this is apparently the only point that b has in common with $\tau^{\mathfrak{s}}$ apart from B. So $\tau^{\mathfrak{s}}$ has a triple point in B; there are three lines b, which have in B three points in common with the corresponding curve $\varphi^{\mathfrak{s}}$; i.e. B is point of inflection of three curves $\varphi^{\mathfrak{s}}$.

Let us now consider the tangential curves τ_1^* and τ_2^* , belonging to B_1 and B_2 . Both pass through the remaining seven base-points, consequently have apart from the points B, three points in common; so there are three curves q^* , on which B_1 and B_2 have the same tangential point. Hence it ensues that the singular curve β_1 belonging to B_1 , has triple points in each of the remaining eight points B; it does not pass through B_1 because (P^1) has coincidences in D_h

¹⁾ The tangential point of P is the intersection of φ^3 with the straight line touching it in P.

only. With an arbitrary μ^3 , β_1 has moreover in common the three points which form a quadruple with B_1 ; consequently 27 points in all. So the triplets of (P^4) belonging to B_1 lie on a curve of *order* nine, which passes *three times* through each of the remaining base-points.

We found that B_1 and B_2 belong to three quadruples; the three pairs, which those quadruples contain besides, belong to the singular curves β_1° and β_3° . They have moreover in the seven remaining points B_k , 63 points in common; the remaining 12 common points are found in the singular points D_k .

3. The locus of the points of inflection I of (φ^3) has triple points in B_k , has therefore with an arbitrary φ^3 , $9 \times 3 + 9 = 36$ points in common; it is consequently a curve of order twelve, ι^{12} . On a curve δ^3 lie only 3 points of inflection; we conclude from this, that ι^{12} has nodes in the twelve points D_k ; in each of those points ι^{12} and δ^3 have the same tangents.

The points P', P'', P''', which have I as tangential point, lie in a straight line, the harmonic polar line h of I. So ι^{12} is the locus of the points, which in (I^{24}) are associated to linear triplets.

The curves β_1° and ι^{12} have in the singular points B and D $8 \times 3^2 + 12 \times 2 = 96$ points in common; on β_1° lie therefore 12 points I, so that B_1 belongs to 12 linear triplets. From this it ensues by the way, that the involution (P^3) lying on β_1° has a curve of involution (p) of class twelve; for the line p = P'P'' will only pass through B_1 if P''' is a point of inflection, while P lies in B_1 . As B_1 is point of inflection of three φ^3 , (P^3) has three linear triplets, consequently $(p)_{12}$ three triple tangents.

The locus λ of the linear triplets has, as was shown, 9 dodecuple points B; as φ^{*} bears nine points of inflection, therefore 9 linear triplets, it has with $\lambda \ 9 \times 12 + 9 \times 3 = 135$ points in common.

Consequently the linear triplets lie on a curve λ^{45} .

4. We shall now consider the curve ϱ , into which a straight line r is transformed, if a point P of r is replaced by the points P', which form a quadruple with P_i ; for the sake of brevity we shall speak of the transformation (P, P'). If we pay attention to the intersections of r with β_k^{ϱ} and with σ_h^{ϱ} , we arrive at the conclusion that ϱ has nonuple points in B_k and triple points in D_h . It has therefore with a φ^{ϑ} in B_k 81 points in common; further these curves cut moreover in the three triplets which correspond with the intersections of r^{ϑ} and r. Consequently ϱ is a curve of order thirty. On an arbitrary straight line lie therefore *fifteen pairs of cotangential* points.

By the transformation (P, P'), the curve λ^{45} , which contains the linear triplets, is transformed into a figure of order 1350. It consists of twice λ itself, three times ι^{12} , twelve times the curves β^{9} and seven times the singular curves d^{3} . For $2 \times 45 + 3 \times 12 + 9 \times 12 \times 9 = 1098$; the points D produce therefore a figure of order 252. From this it ensues that λ^{45} has septuple points in the 12 singular points D.

The pairs P, P', which are collinear with a point E, lie on a curve ε^{33} , on which E is a triple point; the tangents in E go to the points of the triplet of the (P^4) , determined by E. The line EB_k cuts β_k^{9} in 9 points P, which form with B_k pairs of the (P^4) ; hence ε^{33} has nonuple points in B_k .

The locus of the pairs P'', P''', belonging to the pairs P, P' of ε^{33} , we shall indicate by $\varepsilon_{\#}$. As E is collinear with 12 pairs of the involution (P^3) lying on β_1 , B_1 is a *dodecuple point* of $\varepsilon_{\#}$.

On an arbitrary φ^3 the cotangential points form three involutions of pairs and the supports of the pairs of each of those involutions envelop a curve of class three (curve of CAXLEY). Consequently Eis collinear with 9 pairs P, P' of φ^3 , and this curve contains 9 pairs of ε_{∞} . As the two curves in B_k have moreover 9×12 points in common, consequently 126 points in all, ε_{∞} is a curve of order 42.

The curves ε^{33} and β_1^{9} have in the points $B_k(k = 1) \otimes 0 \times 3$ points in common; moreover they meet in 9 points of EB_1 and in the 12 pairs P, P' mentioned above. The remaining 48 common points must lie in D_h ; so ε^{33} has quadruple points in the 12 singular points D.

The curves ε_{\pm}^{42} and β_1^{9} have in $B_k (k = = 1) \otimes \times 12 \times 3$ intersections; further they meet in the 9 pairs P'', P''', belonging to the 9 points P' lying on EB_1 , and in the 12 points P'', belonging to the 12 pairs P, P' of β_1^{9} , which are collinear with E. So they must have 60 intersections in D_h ; ε_{\pm}^{42} has consequently quintuple points in the 12 singular points D.

The curves $\varepsilon_{\#}^{42}$ and ι^{12} have in $B_k \ 9 \times 12 \times 3$, in $D_k \ 12 \times 5 \times 2$ intersections, together 444; the remaining 60 lie in points of inflection, of which the harmonic polar lines pass through E. In such a point of inflection I, $\varepsilon_{\#}^{42}$ will have a triple point, for the corresponding polar line h contains a linear triplet, so three pairs of ε^{33} , so that I appears three times as point of $\varepsilon_{\#}$. Consequently E bears 20 straight lines h: the harmonic polar lines of φ^3 envelop a curve of class twenty.