Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J. de Vries, The quadruple involution of the cotangential points of a cubic pencil, in: KNAW, Proceedings, 17 I, 1914, Amsterdam, 1914, pp. 102-104

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Mathematics. -- "The quetriuple involution of the cotangential points, of a cubic pencil." By Professor Jan de Vries.
(Communicated in the meeting of April 24, 1914).

1. We consider a pencil of cubics ($\left(r^{3}\right)$, with the nine base-points $B_{h l}$. On the carve p^{3}, passing throngh an arbitrary point P, lie three points $P^{\prime}, P^{\prime \prime}, P^{\prime \prime}$, which have the tangential point ${ }^{1}$) in common with P; in this way the points of the plane may be arrarged in quadruples of an involution ($P^{\prime \prime}$) of cotangential points. We shall suppose, that the pencil is general, consequently contains tuelve curves with a node $D_{l l}$. On such a curve r^{3} all the groups of the (P) consist of two cotangential points and the point D, which must be counted twice. Apparently the 12 points D are the only coincidences of the involution; as the connector of the neighbouring points of D is quite indetinite, the coincidences have no definite support. The points D_{h} are at the same time to be considered as sinqualar points; to each of them an involation of pairs $P, P^{\prime \prime}$ is associated, lying on the curve $\delta_{l}{ }^{3}$, which has D_{k} as node.
2. The nine base-points B_{k} are also singular; to each point' B_{k} a triple involution of points $P^{\prime \prime}, P^{\prime \prime}, P^{\prime \prime \prime}$ is associated, lying on a curve $\beta_{k s}$ of which we are going to determine the order.
To each curve ψ^{3} we associate the line b, which touches it in B; in consequence of which a projectivity arises between the pencil of rays (b) and the cabic pencil (\boldsymbol{p}^{2}). The curve r^{4} produced is the locus of the langential points of B (tangential curve of B).
The line b, which touches a ρ^{3} in B, ents it moreorer in the tangential point of B; this is apparently the only point that b has in common with τ^{4} apart from B. So τ^{4} has a triple point in B; there are three lines b, which have in B three points in common with the corresponding curve ϕ^{3}; i.e. B is point of inflection of three curves $\boldsymbol{\psi}^{3}$.
Let us now consider the tangential curves $\boldsymbol{r}^{4}{ }_{1}$ and τ^{4}, belonging to B_{1} and B_{2}. Boll pass through the remaining seven base-points, consequently have apart from the peints B, three points in common; so there are three curves ψ^{*}, on which B_{1} and B_{2} 'lave the same tangential point. Hence it ensues that the singular curve β_{1} belonging to B_{1}, has triple points in each of the remaining eight points B; it does not pass through B_{1} because (P^{4}) has coincidences in D_{h}

[^0]only. With an arbitrary $4^{3}, \beta_{1}$ has mareover in common the three points which form a quadruple with B_{1}; consequently 27 points in all. So the triplets of (P^{4}) belonging to B_{1} lie on a curve of order nine, which passes three times through each of the remaining base-points.
We found that B_{1} and B_{2} belong to three quadruples; the three pairs, which those guadruples contain besides, belong to the singular curves $\beta_{1}{ }^{9}$ and $\beta_{8}{ }^{\text {g }}$. They have moreover in the seven remaining points $B_{k}, 63$ points in common; the remaining 12 common points are found in the singular points D_{h}.
3. The locus of the points of inflection' I of ($\left(p^{2}\right)$ has triple points in B_{k}, has therefore with an arbitury $\rho^{3}, 9 \times 3+9=36$ points in common; it is consequently a curve of order twelve, \boldsymbol{t}^{10}. On a curve d^{3} lie only 3 points of inflection; we conclude from this, that \boldsymbol{t}^{12} has nodes in the twelve points D_{l}; in each of those points \boldsymbol{t}^{12} and f° have the same tangents.
The points $P^{\prime}, P^{\prime \prime}, P^{\prime \prime \prime}$, which have l as tangential point, lie in a straight line, the harmonic polar line h of l. So t^{15} is the locus of the points, which in ($\left.i^{\text {I }}\right)$ are associated to linear triplets.
The curves $\beta_{1}{ }^{9}$ and $i^{1 z}$ have in the singular points B and D $8 \times 3^{2}+12 \times 2=96$ points in common; on $\beta_{1}{ }^{3}$ lie therefore 12 points I, so that B_{1} belongs to 12 linear triplets. From this it ensues by the way, that the involution ($\left(2^{3}\right.$) lying on $\beta_{1}{ }^{9}$ has a curve of ${ }^{\prime}$ involution (p) of class twelve; for the line $p=P^{\prime} P^{\prime \prime}$ will only pass through B_{1} if $P^{\prime \prime \prime}$ is a point of inflection, while P lies in B_{1}. As B_{1} is, point of inflection of three $p^{3},\left(P^{3}\right)$ has three linear triplets, consequently ($p)_{12}$ three triple taingents.

The locus 2 of the linear triplets has, as was shown, 9 dodecuple points B; as ρ^{2} bears nine points of inflection, therefore 9 linear truplets, it has with $\dot{\lambda} 9 \times 12+9 \times 3=135$ points in common.

Consequently the linear triplets lie on a curve i^{45}.
4. We shall now consider the curve ϱ, into which a straight line r is transformed, if a point P of r is replaced by the points $P_{.}^{\prime}$, which form a quadruple with P_{P}; for the sake of brevity we shall speak of the trausformation (P, P^{\prime}). If we pay attention to the intersections of r with $\beta_{k}{ }^{9}$ and with $\delta_{h}{ }^{3}$, we arrive at the conclasion that ϱ has nonuple points in B_{k} and triple points in D_{k}. It has therefore with a p^{3} in $B_{k} 81$ points in common; further these curves cut moreover in the three triplets which correspond with the intersections of 1^{3} and r, Consequently ρ is a curve of order thirty.

On an arbitrary straight line lie therefore fifteen pairs of cotnngential points.

By the transformation $\left(P, P^{\prime}\right)$, the curve 2^{45}, which contains the linear triplets, is transformed into a figure of order 1350. It consists of twice 2 itself, three times t^{12}, twelve times the curves β° and seven times the singular curves d^{3}. For $2 \times 45+3 \times 12+9 \times$ $12 \times 9=1098$; the points D produce therefore a figure of order 252. From this it ensues that λ^{45} has septuple points in the 12 singular points D.

The pairs P, P^{\prime}, which are collinear with a point E, lie on a curve ε^{33}, on which E is a triple point; the tangents in E go to the points of the triplet of the $\left(P^{\mathrm{i}}\right)$, determined by E. The line $E B_{k}$ cuts $\beta_{k}{ }^{9}$ in 9 points P, which form with B_{k} pairs of the $\left(P^{4}\right)$; hence ε^{33} has nonuple points in B_{k}.

The locus of the pairs $P^{\prime \prime}, P^{\prime \prime \prime}$, belonging to the pairs $P, P^{\prime \prime}$ of ε^{33}, we shall indicate by $\varepsilon_{\xi_{w}}$. As E is collinear with 12 pairs of the involution (P^{3}) lying on $\beta_{1}{ }^{\prime \prime}, B_{1}$ is a doclecuple point of $\varepsilon_{\varepsilon_{4}}$.

On au arbitrary ψ^{3} the cotangential points form three involutions of pairs and the supports of the pairs of each of those involutions envelop a curve of class three (curve of Caycer). Consequently E is collinear with 9 pairs P^{\prime}, P^{\prime} of ${ }^{\prime} \varphi \rho^{3}$, and this curve contains 9 pairs of $\varepsilon .$. . As the two curves in B_{l} have moreover 9×12 points in common, consequently 126 points in all, ε_{e} is a curve of order 42.

The curves ε^{33} and $\beta_{1}{ }^{9}$ have in the points $B_{k}(k=\mid=1) 8 \times 9 \times 3$ points in common; moreover they meet in 9 points of $E B_{1}$ and in the 12 pairs P, P^{\prime} mentioned above. The remaining 48 common points must lie in D_{k}; so ε^{33} has quadruple points in the 12 singular points D.

The curves $\varepsilon_{8}{ }^{42}$ and $\beta_{1}{ }^{2}$ have in $B_{k}(k=\mid=1) 8 \times 12 \times 3$ intersections; further they meet in the 9 pairs $P^{\prime \prime}, P^{\prime \prime \prime}$, belonging to the 9 points P^{\prime} lying on $E B_{1}$, and in the 12 points $P^{\prime \prime}$, belonging to the 12 pairs P, P^{\prime} of $\beta_{1}{ }^{\circ}$, which are collinear with E. So they must have 60 intersections in $D_{h} ; \varepsilon_{v^{45}}{ }^{4}$ has consequently quintuple points in the 12 singular points D.

The curves $\varepsilon_{5}{ }^{42}$ and t^{19} have in $B_{k} 9 \times 12 \times 3$, in $D_{l} 12 \times 5 \times 2$ intersections, together 4 ± 4; the remaining 60 lie in points of inflection, of which the harmonic polar lines pass through E. In such a point of inflection $l, \varepsilon_{1}{ }^{42}$ will have a triple point, for the corresponding polar line h contains a linear triplet, so three pairs of ε^{33}, so that I appears three times as point of ε_{\nless}. Consequently E bears 20 straight lines h : the harmonic polar lines of P^{3} envelop a curve of class twenty.

[^0]: ${ }^{1}$) The tangential point of P is the intersection of φ^{3} with the straight line touching it in P,

