Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J. de Vries, A cubic involution of the second class, in:

KNAW, Proceedings, 17 I, 1914, Amsterdam, 1914, pp. 105-110

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Mathematics. - "A cubic involution of the second class." By Prof. Jan de $V_{\text {ries }}$.
(Communicated in the meeting of April 24, 1914).

1. By the class of a cubic involution in the plane we shall understand the number of pairs of points on an arbitrary straight line ${ }^{1}$). In a paper presented in the meeting of February $28^{\text {th }}, 1914^{2}$) I considered the cubic involutions of the first class, and proved that they may be-reduced to six principally differing sorts.
The triangles Δ, which have the triplets of an involution of the first class as vertices, belong at the same time to a cubic involution of lines; the sides of each Δ form one of its groups.

The cubic involntions of the second class possess the characteristic quality of determining an involution of pairs i.e. an involutive birational correspondence of points. For, let $X, Y^{\prime}, X^{\prime \prime}$ be a group of an involution $\left(X^{3}\right)$ of the second class; on the line $X^{\prime} X^{\prime \prime}$ lies another pair $Y^{\prime \prime}, Y^{\prime \prime}$; the point Y, completing this pair into a triplet, is apparently involutively associated to X. In the following sections I shall consider a definite' $\left(X^{3}\right)$ of the second class and inquire into the associated involutive correspondence ($X Y$).
2. We start from a pencil of conics p^{2} with the base-points A, B_{1}, B_{3}, B_{3} and a pencil of cubics $\%^{3}$ with the base-points B_{1}, B_{3}, $B_{3}, C_{h}(h=1$ to 6$)$. The curves x^{2} and ψ^{3}, which pass through an arbitrary point X, intersect moreover in two points $X^{\prime}, X^{\prime \prime}$, which we associate to X. As the involutions I^{3} and $l^{\prime \prime}$, which are determined on a straight line by the pencils $\left(y^{2}\right)$ and $\left(r^{2}\right)$, have two pairs X^{\prime}, $X^{\prime \prime}$ and $Y^{\prime}, Y^{\prime \prime}$ in common, a cubic involution (X^{3}) of the second class arises here.
The ten base-points are singular points, for they belong each to ∞^{1} groups; on the other hand is a singular point certainly a basepoint of one of the pencils.
The pairs of 'points which with the singular point A determine triangles of involution Δ, lie apparently on the curve a 3 of the pencil (ρ^{3}), passing through A. As they are produced by the pencil $\left(r^{2}\right)$, they form a central involution, i. e. the straight lines $x=X^{\prime} X^{\prime \prime}$ pass through a point T of a^{3} (opprosite point of the quadruple $A B_{1} B_{2} B_{8}$).

Analogously the pairs $X^{\prime}, X^{\prime \prime}$, which are associated to C_{h}, lie on

[^0]the conic $\gamma_{h}{ }^{3}$ passing through C_{h}, which' conic belongs to (μ^{2}); the straight lines x intersect in a point M_{k}, the centre of the l^{2}.

In order to find the locns of the pairs, corresponding to B_{1}, we associate to each φ^{3} the ϕ^{2}, which touches it in B_{1}. The pencils being projective on this account produce a curve of order five, $\beta_{1}{ }^{5}$, which has a triple point in B_{1}, nodes in $B_{2}, B_{\overline{3}}$ and passes through A and C_{k}. If the straight line $x=X^{\prime} X^{\prime \prime}$ is associated to the straight line, which touches the corresponding curves φ^{2} and φ^{2} in B_{1}, a correspondence $(1,1)$ arises between the "curve of involution" enveloped by x and the pencil of rays B_{1}; from this it'ensues that (x) must be a rational curve. As no other lines ${ }_{u}$ can pass through B_{1} but the tangents at $\beta_{1}{ }^{5}$ in the triple point $B_{1},(x)$ is a rational curve of the third class, has consequently a bitangent; on it lie two pairs of $\left(X^{3}\right)$. To the tangents of $(x)_{3}$ belong the lines $A B_{3}$ and $A B_{3}$.

There are three singultur straight lines $b_{k}=A B_{k}$; each of them bears a I^{2} of pairs $X^{\prime}, X^{\prime \prime}$. The corresponding points X lie on the line $b_{m n}=\mathcal{B}_{m} B_{n}$.
3. The curve of coincidences (locus of the points $X \equiv X^{\prime}$) has triple points in B_{k} and passes through A and C_{h}. With the singular curve $\gamma^{2}{ }_{1}$ it has 10 intersections in A and B_{k}; as it touches it in C_{1} and at the same time contains the coincidences of the involution ($X^{\prime}, X^{\prime \prime}$) lying on γ^{3}, it is a curve of order seven ${ }^{1}$), which will be indicaled by $\boldsymbol{\delta}^{7}$. It passes through the 12 nodes of ($\boldsymbol{\varphi}^{3}$) and the 3 points $\left(b_{k} b_{l m}\right)$.

As $\boldsymbol{\sigma}^{7}$ has six points in common with ψ^{3}, apart from B_{k} and C_{h}, the involution L^{3} of the Δ inscribed in ψ^{3} possesses siv coincidences. In the same way it appears that the involutions L^{2} lying on a^{3} and $\beta_{l}{ }^{5}$ possess four coincidences each.

The supports of the coincidences envelop a curve (d) of class eight; for through A pass in the tirst place the lines b_{k}, each bearing two coincidences, and which consequently are bitangents of (d) and further the tangent in A at a^{3}, which will touch (d) in A.
4. To the points X of a straight line l correspond the pairs of points X^{\prime} and $X^{\prime \prime}$ of a curve 2 , which has in common with l the two pairs of the (X^{3}) lying on l, besides the points of intersection of l and d^{7}; hence λ is a curve of order eleven. By paying attention to the intersections of 1 with the singular curves $\alpha^{3}, \beta_{k}{ }^{5}$, and γh^{3}, we see that λ^{11} passes three times through A, five times through B_{7} and two times through C_{l}.

[^1]On $2^{21}, X^{\prime}$ and $X^{\prime \prime}$ form a pair of an involution; of the stranght lines $r=X^{\prime} X^{\prime \prime}$ six pass through A. Three of them are indicated by the intersections X of l and a^{3};'here X^{\prime} lies every time in A. The remaining three are the lines b_{k}; for each of them contains a pair $X^{\prime}, X^{\prime \prime}$ corresponding to the point $X=\left(l b_{m n}\right)$.

The curve $(x)_{0}$ enveloped by x is rational, because we can associate x to X; it has therefore ten bitangents. As such a bitangent bears two pairs $X^{\prime}, X^{\prime \prime}$ and $Y^{\prime}, Y^{\prime \prime \prime}$ it follows that the involution (X, Y) contains ten pairs on l, and consequently is of the tenth class.
5. Let a straight line l be revolved round a point E; the pairs $X^{\prime}, Y^{\prime \prime}$ and $Y^{\prime}, Y^{\prime \prime}$ lying on it describe then a curve ε^{6}, which passes twice through E and is touched there by the straight lines $E E^{\prime}$ and $E E^{\prime \prime}$. On $E A$ lie two points X^{\prime} and Y^{\prime}, each forming with E a pair of the $\left(X^{3}\right)$; so A is a node of ε^{0}. For the same reason ε^{0} has nodes in B_{k}; it also contains the points C_{h}. In consequence of the existence of 5 nodes, ε^{6} is of class 20 , so that E lies on 16 of its tangents. Of these 8 contain each a coincidence of the $\left(X^{3}\right)$; the remaining 8 are represented by four bitangents, being straight lines s, on which both pairs belonging to (X^{3}) have coincided. From this it ensues that the lines s envelop a curve $(s)_{4}$ of the fourth class. Apparently the straight lines s, passing through A, are tangents to α^{3}. In the same way the four tangonts out of B_{k} to $\beta_{k}{ }^{5}$ are the straight lines s, which may be drawn through B_{h}.

Apart from the singular points ε^{6} and α^{7} have 16 points in common; to them belong the 8 coincidences of which the supports d pass through E. The remaining 8 must be points X^{\prime}, coinciding with the corresponding point X without $(P$'s passing through E; i.e. they belong to the locus ε_{x} of the points X, which complete the pairs lying on ε^{6} into groups of (X^{3}).

As E lies on three of the straight lines $. x=X^{\prime} X^{\prime \prime}$ belonging to B_{k}, B_{k} is a triple point of ε_{p}; analogously A and C_{h} are simple points of that curve, so that the later has $2+3 \times 2 \times 3+6=26$ intersections with ε^{8} in the singular points. Besides the 8 points of δ^{7} indicated above they have moreover the points $E^{\prime \prime}, E^{\prime \prime}$ in common; so we conclude that ε_{y} must be a curve of the siath order'. To the intersections X of ε_{*}^{a}, and l correspond lines x, which pass through E; from this it ensues again that x envelops a curve of the sixth class, when X describes the straight line l.
6. If E is laid in C_{1}, ε^{0} is replaced by the figure composed of the singular conic $\gamma_{1}{ }^{2}$ and a curre $\gamma_{1}{ }^{4}$, which has a node in C_{1}, and passes through the points A, B_{k}, C_{l}. The two curves have apart
from A and B_{k} two more points $E^{\prime \prime}, E^{\prime \prime}$ in common; the lines $C_{1} E^{\prime}, C_{1} E^{\prime \prime}$ touch γ_{1} in C_{1} and are apparently the only possible lines s passing through C_{1}; hence C_{1} is a node on the curve $(s)_{4}$.

The curve $\varepsilon_{\xi}{ }^{6}$ belonging to C_{1} is represented by the figure composed of $\gamma_{2}{ }^{2}$ and a curve ${ }^{*} \gamma_{1}{ }^{4}$, which has nodes in B_{k}. This may be found independently of what is mentioned above. The transformation replacing a point X by the corresponding points $X^{\prime}, X^{\prime \prime}$, transforms a straight line l into a curve γ^{12}, consequently the curve $\gamma_{1}{ }^{4}$ into a figure of order 44. It consists of $\gamma_{1}{ }^{4}$ itself (for this curve bears ∞^{1} pairs X, X^{\prime}), twice γ_{1}^{2}, the curves $\alpha^{3}, \beta_{l}{ }^{5} \gamma_{k}{ }^{2}$ and twice the locus of $X^{\prime \prime}$; the latter is therefore of order four.

If E is brought into the centre M_{1} of the L^{2} lying on $\gamma_{1}{ }^{2}, \varepsilon^{0}$ passes into $\gamma_{1}{ }^{3}$ and a curve $\mu_{1}{ }^{4}$ with node M_{1}. Of the latter 6 tangents pass througb M_{1}, whereas this point lies on 2 tangents of $\gamma_{1}{ }^{2}$; from this it ensues anew that the lines d envelop a curve of the eighth class. As $\gamma_{1}{ }^{2}$ apart from A and B_{k} has with $\mu_{1}{ }^{4}$ four points in common, which must form two pairs of the I^{2}, and so idetermine two lines s, M_{1} too is a node of the curve $(s)_{4}$.
If E lies in A, ε^{6} consists apparently of α^{3}, and the three lines b_{k}; whereas $\varepsilon_{w^{*}}{ }^{6}$ is the figure composed of an α^{3} and the three lines $b_{m n}$. For E in $T \varepsilon^{6}$ is replaced by the figure formed by a^{3} and a curve τ^{3}, also passing through T and having with a^{3} besides the four points A, B_{k} two more pairs collinear with T; consequently T is also a node of $\left(s_{4}\right)_{4}$.

For $B_{k} \varepsilon^{6}$ consists of $\beta_{k}{ }^{5}$ and the line $B_{k} A ; \varepsilon_{y!}{ }^{6}$ of $\beta_{k}{ }^{5}$ and $B_{n k} B_{n}$.
7. Passing on to the consideration of the involutive correspondence (X, Y) we cause X to describe the straight line l, and we try to find the locus of the couresponding points \bar{Y}. On each line $X^{\prime} X^{\prime \prime}$ lies a second pair $Y^{\prime}, Y^{\prime \prime}$; the curves φ^{3} and φ^{3}, which intersect in the points $Y^{\prime}, Y^{\prime \prime}$ we shall associate to each other. In order to determine the characteristic numbers of this correspondence, we consider the involutions l^{3}, which are formed on a curve φ^{2} or φ^{3} by grcups of (X^{3}).

The sides of the Δ described in a ψ^{2} envelop a conic; among the 12 tangents, which this curve has in common with the curve of involution $(x)_{\text {, }}$ belonging to λ^{11} must be reckoned the two lines $X^{\prime}, X^{\prime \prime}$, for which X is one of the intersections of l and φ^{\prime}. The remaining 10 contain each a pair $Y^{\prime}, Y^{\prime \prime}$; consequently each φ^{2} is in the said correspondence associated to 10 curves ψ^{3}.

The involution J^{3} on a ψ^{3} possesses a curve of involution of the third class; for B_{1} bears in the, first place the line b_{1}, which contains
a pair of the I^{3}, then the lines joining B_{1} to the two points, determined by the μ^{2}, which touches ψ^{3} in B_{1}. The intersections of l and g^{3} procure three common tangents of $(x)_{3}$ and $(x)_{0}$; there are consequently 15 straight lines, which bear a pair $Y^{\prime}, Y^{\prime \prime}$, so that the said correspondence associates 15 curves ψ^{2} to ψ^{3}.

By means of this correspondence the points of a straight line r are arranged into a correspondence (30,30). For to the ψ^{2} passing through a point R of r correspond the 30 intersections R^{\prime} of r with the 10 curves ψ^{3} associated to ψ^{2}; on the other hand the φ^{3} passing through R^{\prime} procures 30 points R, by means of the corresponding $15 \omega^{2}$. The intersections of the corresponding curves form therefore a figure of order 60 ; it consists, however, of two parts: the locus of the pairs $Y^{\prime}, Y^{\prime \prime}$, which lie on the tangents of the $(x)_{0}$, and the locus of the points Y.

The former may also be produced by the pencul $\left.\left({ }^{2}\right)^{2}\right)$ and the system of rays $(x)_{0}$. To each ψ^{2}, in virtue of the consideration mentioned above, a number of ten straight lines is associated, which are each coupled to one ψ^{2} only; hence a $(10,12)$ arises now on r, so that the pairs of points $Y^{\prime}, Y^{\prime \prime}$ are lying on a figure of order 22.

For the points Y we find therefore a figure of order 38 ; it is composed of the three lines $b_{m m}$ and a curve of order 35 . For to the intersection X of l and $B_{1} B_{2}$ corresponds a pair $X^{\prime \prime}, X^{\prime \prime}$ on $A B_{3}$; but this line bears ∞^{1} pairs $Y^{\prime} ; Y^{\prime \prime}$ and the corresponding points Y of $B_{1} B_{2}$ are all associated to X. Apart from these three lines the line l is transformed by means of the birational correspondence (X, Y) into a curve of order $35, \lambda^{35}$. It cuts l in 10 pairs $X, Y(\$ 4)$ and in 15 coincidences $X=Y$. There is consequently a curve of coincidences of order fiftecn. The figure of order 22 found above consists of the three lines' b_{k} and a curve λ^{10}, for to the conic (b_{3}, b_{12}) corresponds the tangent b_{3} of $(c)_{8}$.
8. We shall now determine the fundtemental curves which are associated to the fundamental points A, B_{k}, C_{k}. The curves of involation $(x)_{3}$ belonging to $\beta_{1}{ }^{5}$ and $\beta_{2}{ }^{5}(\$ 2)$ have 9 tangents in common, there are consequently 9 lines, for which X lies in B_{1} and Y in B_{2}. Therefore the fundamental curve of B_{1} has nonuple points in B_{2} and B_{3}. No other point Y of the line $B_{2} B_{3}$ can correspond to a point X lying in B_{1}; the said curve is therefore of order 18. It has a nonuple point in B too and passes three tumes through each of the points A and C_{h}; for through T or M_{h} passes one line, bearing a pair $X^{\prime}, X^{\prime \prime}$ of $\beta_{1}{ }^{6}$ and a pair $Y^{Y \prime}, Y^{\prime \prime}$ of u^{3} or $\gamma_{h}{ }^{6}$; throngh which then $B_{1}=X$ corresponds to a point Y lying in A or C_{l}.

The fundamental curve of A is apparently identical with the curve $\varepsilon_{\dot{r}}{ }^{6}(\$ 5)$ belonging to the point T; we shall indicate it by α^{6}. As a^{3} has i,wo pairs in common with \boldsymbol{r}^{3} ($\$$ 6) A is a node of a^{6}. That $"^{6}$ passes through the points C_{k}^{\prime} and has triple points in B_{k} ensues from the consideration of the lines $7 M_{h}$ and of the tangents out of T to the $(r)_{3}$ belonging to B_{k}.

It appears analogously that the fundamental curve of C_{1} has triple points in B_{k} and a node in C_{1}; it passes through A and the remaming points C_{h} and is of order six. This curve is at the same time the $\varepsilon_{x}{ }^{6}$ belonging to M_{1}.

We can now prove once more that the birational correspondence is of order 35. To the intersection X of two lines l, corresponds the point Y, which the two curves λ, apart from the fundamental points, have in common. As appears from what was mentioned above 2. passes 18 times through B_{l} and 6 times through A and C_{h}; from $1+3 \times 18^{3}+7 \times 6^{3}=1225=35^{2}$ it appears now that 2 is a curve of order 35 .

Physics. - "On the manner in which the susceptibility of paramargnetic substances depends on the "density." By Dr. W. H. Kebsom Supplement $\mathrm{N}^{0} .36 c$ to the Communications from the Plyssical Laboralory at Leiden. Communicated by Prof. H. Kanerlingil Onnes.
(Communicated in the meeling of April 24, 1914).
§ 1. Introoluction. In Suppl. N'. $32 a$ (Oct. '13) an expression was developed for the molecular rotatory energy in a system of freely rolating molecules as a function of the temperature. This expression was introduced into the theories of Lavgevin and Weiss, on the supposition that, when the equipartition laws are deviated from, the statistus of the molecules under the action of an exterior directing field, in this case a magnetic field, is determined by the value u_{1} of the rotatory energy in the same way as for equipartition it is by $k T$. It then appeared that different experimental resulis can be represented very satisfactorily in that way ${ }^{1}$).

[^2]
[^0]: ${ }^{1}$) This corresponds to the denomination introduced by Caporali for monolutive birational transformations. (Rend. Acc. Napoli, 1879. p. 212).
 $\left.{ }^{2}\right)^{\text {(Cubic involutions in the plane". These Proceedings vol. XV1, p. } 974 .}$

[^1]: ${ }^{1}$) This corresponds to this well known proposition: the locus of the points where a curve φ^{m} of a pencil is touched by a curve ψ^{n} of a second pencil is a curve of order $2(m+n)-3$.

[^2]: ${ }^{1}$) The expressions developed in the above-mentioned paper appear to be also suitable to give a quantitative representation (as far as observations are available) of the dectease of the temperature of the Curie-point by the addition of a diamagnetic metal to a ferromagnetic one, with which it forms mixed crystals, on the supposition that the diamagnetic metal exerts no other influence than that the nutual action of the ferromagnetic molecules is lessened in consequence of the

