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which is™described by the pair X, ¥, will be the combination of
twice ¢°, five times o and twice SiY.
Hence
82=16+5z+18y . . . . . . . (7)
If Z describes the curve *8,*, the corresponding figure of order 4z
consists of the curve B,%, of thrce times «%, and of the 8 curves
B (k=E=1). Hence : -
de—=4 432 +8y. ..
Out of (6), (7), (8) we find by elimination of z and y,
2* — T2 1 882 = 0;
so z is equal to 63 or 14. The second value, however, must be
rejected ; for we have proved above, that (XY Z2) is of the class 21,
so that / has 42 points in common with A at the least. So we find
the values

(8)

z = 63, & = 40, — 16.

For the involution (XYZ), A is a singular point of order 40,
By, a singular point of order 16.

As [ and 2 besides the 21 pairs already mentioned can only have
coincidences in common, the curve of coincidences (XYZ) is of
order 21, d*'.

Apparently «*° has in 4 a 20-fold point, B'® in By an eight-fold
point; in these points d*' has the tangents in common with «** and 8;*°.

If X is placed in 4 and Y in B, 2= X'X' envelops a curve
of the 5% class, y= Y'T" a conic; so there are 10 straight lines
@ =1y. From this if ensues that the singular curve «*" has ten-fold
points in B In a similar way we find that the curve £z'° has
quadruple points in B;; it passes ten times through A, eight times
through By.

Mathematics. — “On the functions of Hermrre.” (Third part),
- By Prof. W. KaprTEYN.

(Communicated in the meeling of May 30, 1914).

12. After bhaving wrilten the preceding pages, we met with two
important, newly published papers, on the same subject. The first by
Mr. H. Gasrin: “Sur un developpement d’une fonction & variable
réelle en série de polyndmes” (Bull. de la Soc. math. de France
T. XLI p. 24), the second by Prof. K. Runge ¢ Ueber eine besondere
Art von Integralgleichungen” (Math. Ann. Bd. 75 p. 130).
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In this section we will give their principal vesults tllough'hoi
allogether after their methods, and make some additional remarks.

13. Mr. Gansrux considers the question of the expansion of a
function between the limits @« and b, in a series
f("”) - Ao[[o ("”) + A1H1 (""’) “l' .

where
b

— 51171—, I/L}?. e~ f(a) H, (a) da.
a

He finds that this expansion is possible when f(z) satisfies the
conditions of DiricHLET between the limits a and 0. This agrees
with our result in Art. 7, the only difference being that our limits
were — o and - . T,ihis difference however is not essential, for
considering a function which has the value zero for all values
a>ax>0 Art. 7 gives immediately the expansion of Mr. GALBRUN.

His proof resis on two interesting relations which may be easily
deduced from the formulae in the first part of this paper.

The first relation

% Hp (=) IJp (@) — 1 Ifn-l—l (#) H, (¢) — H, (2) IIn-{-l (@)
s 2p! 2n+1n! z—a

may be established in this way. )

According to (5) we have

2a Hy, (2) = Hyi (v) + 20l () (> 0)
2eH, (¢) = Hyt1 (@) + 20l - 1(0)

Multiplying these equations by Hy(«) and H,(z) we find by sub-

tracting ‘
2 (z - a) II, (2) I, (&) = Hpg1 (v) LD, (¢) — 1T, (2) LI, _1 ()
— 2n [Hy (@) 1 (@) — Tl (2) 1T, ()]

"(29)

Hence, putiting for n successively 0,1,2,..n, we get —
1 2(.?:—0)H0(,C)HU(H) = Hl(‘?")Ho(a)"Ho(‘?”)Hl(a)
1
ET 2("”'")Hl(mjﬂl(”)=Ha(m)H1(a)—Hl(‘T)Hz(a)_z[H1(""')Ho(a)'Ho(m)Hl(a)J
1

757 |2 (@) (=H (a)H («) H(}Hy()-4[H()H,(«)~H,(2)H ()]

2w~ Bo(2) Er( @)= L 1) ELo(e) ~ L () H o ()
—2n| Hy()H, _(a)-H—1(2)H(a)].
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Multiplying these relations with the different factors written on
the left, the addition of these products immediately gives the formula
in question.

The second relation

x €

$H@HE) f;—ﬂ dz. . . . . (80)

1 2, n/

0

may be obtained by introducing (9) into the first member.
Thus we get

o, Hy(o)Hur(a) _
T oa T
e?z2 o0 1 W_f_
= — P e 4 umcos w———— du e—UQv"—lsm .w—-———— dv
T 22l
0
where

I o, uon _nn nu
— 2 cos| a sn| av — — | =
v 12%.n/ T 2
cos zu sin av © uky?k stn &u cos v o uk+1p2k41

v L 2% 2R v , 226 +1(2 1)/

uv un uv uy

cosausinav e 4-¢ 2 ] sin zu cosav e2—e¢ 2
v 2 v 2

Substituting this value, it is evident, according o the formulae ot
Art. 6, that all the terms of this sum vanish except only the term
corresponding to —1.

Hence

w ® “2"*'"!
g L) T ( 1,) ff‘ T4 08 u sin xv smusmav o
) on, !t ’

and because

® u®

j e Yosaudu=Vme . . . . . . (a)
0
. Lo
g‘ [In(t’u)lt];l__l(.’:,) — 1_ eTsfe— ISZ‘H av v .
1 2n ., nl Va v

If now we multiply the equation (@) by de and mteglate between
0 and 2, we have
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-3 _u2 2
2 8in @ —
fe + 20 udu:: ane—xgda};
u
0 0
thus finally
x
% —-————n(m)”n_l(w) — e f e~ da
1 27, nt o
0

14. Prof. Runce gives the solution of the integral equation

f(u)::f]((w)(p(u—l—m)da:. B (7))

where f(u) and K (z) are given functions and ¢ (2) is required, by
means of Hermite’s functions.
He assumes
K (2) = e2*[a,H () + o, H () + a,H,(z) + ...]
@ (2) = e=2 [b,H,(v) + b, H (2) + b,H,(w) + ...]
which gives
Sw)y= = an,b, f e~ Hy () e~(vt2? H, (u + =) dz

or, after some reductions

u
Vo - %2 H m+n(_§:)

be; 4 -4
=——2(—1)ya,b, —_—
J (@) Vou (— 1)y anba e 2y
If now, the given function f () is expanded in this form

| “ el
z:[ ")~
’ Ve owey

+

we have from (31)
6, =ab, , ¢, =ab, —ab, , ¢, —=ab, —ab, + asd,..
and it is evident that from these relations the coefficients 4 may be

determined. If f(u) and ¢ (z) were the given functions, the same
relations would be sufficient to determine the function K (z).

15. The preceding reduction vests on the formula

z+y 1
H, = H(x P Hya(VH, JH,_o(2)H, o
(V2_> s L6) . Hs () + O a0+
+ G H.(y)] *(32)




s
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where OZ’ are the binomial coefficients. This relation may be obtained
in the following way..
According to Art. 8 II we have

e 2 h®
e =1 L, )+ H,6) — e HG) 4 s - (7)

and, expanding by Tayror’s theorem
Fo+hy+h

F (o) = e —

d

e— (@R~ (y+A3 ev* - =™ ? I:e—z'—f/' -+ k? —J’——( —x’)+e—x’ . (e—yﬂ)(
wy

k* @’ d S d?

NI PR 22 =22 VD —y2 —a2 | p—2 ]

i () (o ) (o )i ()1

which may be written

kZ
e ket == 1 — k[, (0)+ I (y)] + 5 [y (e)+ 2 H () H, (- H () - (9)

wheve

. __aty . _
Putting now z = g (p) and k= V in (q) we get

vty), W, (oF
@I =12 —1 — }, [] ( ’7) ( Z/ -

V
_ )3
V=l — 1 % L4, (=) + H, )] +
]2
, (z 2 H, (v) H, o,
+(|/2)2/[ (*) + @) 2, () + H, ()] + - -

n

. )
Comparing the coefficients of — m the second members we obfain
n.

the required relation (31).
Proceeding to the reduction of the integral

o0
M= |e—* H, (z) e=(+ H, (u+2) da
—

we put, according to (2)

m

d
1, ('L) frene) ( l)m ot (e"ﬂ")

- d Nt
then
o0
M= (——1)"1[1 . (e=%). e w2l H, (u42) da.
r")l
- ®

Now, integrating by parts we have generally
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fU Ndm:( 1)»ng da -+
dam dam

[Udm—_l vV dUdn—2V dm—1t }

—_— -1 _
dzm d’b dagm—2 + bt +\ )m dem—1 4

thus, assuming
U=ewts! O, uta), V=g
and introducing the limits — oo and o

m

d
M= e_ﬁd_'c,:;l [e—(et2)® H, (ud-2)] do

@

- dmt-
— u f p—al
- (1) e damtn

( —ut2f) do

-— o0
0

— (—1y» fe - —(utef H,y, (ut-a) da

—®
or, adopting

Y T i ’
V2

L 5+
M= e=5 Hyyn d
Ve . +(V ) >

—>
Applying now the relation (32), it is evident that the integral
reduces to the first term, thus
(—1)m =1 -I']m—{-n (v)

M=
Ve (Vgyrtn

or finally

; , u
(__1)771 e—‘ ?177"‘1'72(‘/'2')
\‘/'2' (|/§)m+n :

16. We will now compare the preceding solution of the integral-
equation (31) with the formal solution given by Prof. K. ScHWARZSCHILD
Astr. Nachr. Bd. 185 N°. 4422). -

Putting

M=

l—¢ Y% s=—e*

the equation
fA (t.s) I'(s)ds = B ()
0

takes the form




s
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f A= @td) F (%) e~z da = B (¢Y)

or, assuming
e F (e—*) = K (v)

A (=) = o (uta)
B = /(1)

fK(a,) @ (u -+ ) de = f(u).

Now ScuwarzscHILD multiplies this equation by e—“*du and inte-
grates between the hm:ts — o and -~ o, thus

f f?u) e~ du = fw K (z) dz jip (&) e du

-

:fK (m) el)tl‘ d‘ufcp (U\ g—l)!) dv

——®

and puts

(-} 1 @
f@)=|F@) e du thus F @)= ;;ﬁ'(u)e—z)u du

K@= |LWexde ., LH=5 J K () e=v= du
ow 1 ©
@ (v) =D (2) avde N, /13 (1) = é—n-f(p (v) e—iv Jy
therefore
F () =2xaL (- A) @ (})
or

1 F(=))
W= B(—7)
Multiplying again by e¢*di and integrating between — oo and
—+ oo this relation, he obtains

= L (EA,
K(-L) = E‘! D (_2’) & 2 da,

If now we compare this result with the preceding, we have



146

1 4
F@)= erf () e~#u dy

or
U (12
— @ u2 b H1 = _ H, (‘—:) !
F(;.)—_—i Ve e—ie 2\ 4o & +o V2 +. | du
27 V'Y Y ve Ty '

The general term in the series of the second member being

«©

P, = f[? H, (‘—/"5) o=ty = VT fe ~ fT () e~V Ty

-

it is obvious that for n =21 the imaginary part and for n — 281
the real part of-this integral vanishes. Thus for n= 2%

Py = VZ—fe“"“Hgk (v) cos (A v l/_2—) dv ,

where according to Art. 8 II
Pt
€08 (lvl/ﬁ_)_—_e 2 § (— )P ——
0

thus

Pyo=(— 1)t2 > Vxe 2 a2,
In the same way, we get

2

Pt = — i (— 1) 26+ Vi o 2 A2kt
and therefore
42
o2k . < G2k

e 1T
E-—sz'—'ZEmP‘zk-}-l

) =g 2%

9 2

1
=ge [ (— rou ¥ —i 3 (1) ayys 204

In the same manner we find

A2
1 —
D(2) = 27/—5?6 4 [Z (—1)k bop, 42% — ¢ = (—1)4 boppr 22R4+H]

and finally
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K (‘l,') . - .Z 2(—- l)kcok} 2k + 1,2(—- 1)kc2k+12,2k+1 l):l: da,' )
2;/” S (1Yo i3 (— )bt

If now the condmons
€, == a,D, ¢, = agb, — ab, ¢, = a,b, —ab, + ab, ..
ave satistied, &K (¢) must be reducible to )
e [a,H, (v) + a,H, (v) + a,H, (v) 4 .. .]
It is easy to show, that this is the case; for if the conditions are
satisfied we have
3 (—1)eopd2b i E(—Dkerppid2btt

Z(—1)kbopa2h 453 (—1)kbopp14 P e A adt . —i(ad—a A L)

thus
on »
1 -z
K(z)= TV ¢ ! [= —1)*as; a2k 2 (-1)* agr. 4.1 A2k+1](cos Az +-isin dw)dA
n
w
1 _Z
=go= = [cos Ap 2 (—1)k agp a2k 4 sin} & 2 (—1)kagp4q 42++1] dA.

or, mtroducmg (9)
p
) e—at — (& 1F %
Hyp, (v) e~ |6 * a2 cos Ax da
V —
;2

1
( ¥ 4 22 gin 2w di

Ve
)= oy Ho ) By 8) - 00, ) .

Hyppq (7)) e =

17. From the relation (32) another important result may be
deduced. For multiplying by ¢—%*dy and integrating between — o

and o, this relation gives - -
fe—JaHn( +y) Z_VV-\j—n nw).
or, [;thting .
z -}: Y= aV'2
- - - ‘/:_z
‘j;—(z—av2)2 Hn(a)da = -(—-‘7_2:‘)m H,,(.v).

-—w

Therefore, assuming ~

-10 -
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22

1 =
Pu(z) = -‘—n—-——— e 2Hy@)
22)/nl W
we obtain
9 1 ~ __i z”—iazl/—f-{-aﬂ
e =(—%— il prle)da

thus, in the same way as in Art. 9
_ 1 3 (et iim
Ay = (1 2y, Ka@og)=——c¢ ° (1 3 V2 4 )
Vi
Here the value of the function K (z.«) is finite for zand o £ .
In the same manner as in Art. 9, therefore -
E (e = § £r9))
0 )-n
or
5 & Hn } E[n
e—(@*—2x )2 4 22) — E] %{__@
2 2 qnt

which may be verified by (9).

18. " Now, according to the theory of the integral equations the
determinant D(2) of the kernel K(v,¢) must vanish for the values
A=02pH(n=0,1,2...).

To examine this, we write J(2) in the form which is given by
PremELY 1)

D'(a .
b%; — (@ tadtart .. )
where
a, :fK (@r)dz, a,—= f K (e.x)de, o)== | K (x 2)de, ...
Ku(z,a) :fK(.g,y) Ky «(y,e)dy (n =1,2.3..) .
and

K(z.0) = K(2.0)
From K(zy), which may be wrntten
K (vy) = Ae—hart2kay—1ly?

1) Monatshefte f. Math. und Phys, 1904 p 121,

-11 -
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the functions K,(zy) which have the same form
Ki(ey) = AT+ 2hnwy—1loy?,

may be easily deduced, for

K(o.0) = Adys fe— (4 Ta) g+ 2k Ty~ (i + e Vg
and
w o j[ =) .
g —jh g
- f e SPy—h dy—=¢ [ f e f(y /) dy
—w —c0
2—fh —
— ’ ffl Vi
vy
Hence .
— a4 2kwa—Iy0®
n € -

k? kkn-—-l ]‘711——12
—| b= 2% -2 se—| ljqg ————— |i®
_ A Apy it (L l—[—hn—l)o F l+7ln—1w (z ' l‘l‘hn—l)”
Vﬁ_—{—ﬁn_1

which gives

AAiq . k kk,_y Fn—i
A= —— y hp=h— , k.= y b=l — ———
Vi b Vaes b R - Vbt T
Now, we know
1 8 — 3
A=m—c, h=— , b=V % l=—
va' 2 V=3
thus
1 ) 2 5
Al=-‘—/—5_:;-r_, hl='_6-7kl='—3- ' Z1=_6—
1 9 2V 9
A= hy=—, by=—, l,=—
1 17 4 17
f= ey by y k=, =
V1w 30 15 30
and
et
1 ont1L 1 9072

A;=—~—_:_—:_—'—____, 7,:——-————2 ny y—=——————
T Veriona o) T e

This gives
11

Proceedimgs Royal Acad. Amsterdam. Vol. XVIL.

-12 -
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1
52 1,
oo/ 1 © ntl @ 1
0T 41
1 = | K, (o d.v:—-m——ﬁ o= ——
frt () VEH—1) = 2"__‘:‘ 1

Constructing now, according to WEIERSTRASS, an integral function
J@), with the assigned zeros

A= V2, A=V, a=(V2p0...

we obtain
i . m( 2 )
—_— e () nil— —_—
5@ n==0 (‘/2)"+1 B
1
P, 8SSuUmin ON=1, GN=0, —=1r i
o g S @ v
F() = IT (L—dont),
n=0
Thus
;@ _ 7l 7 N
—f—(ﬁ T 1 + 1—1%2 + 1—7%2 T
and expanding the fractions of the second member
F@) _ 2 E o 2
—_— =2 2 Y- .
73 l’—f- 17‘+ 19"+
Comparing this with
D@ _ a, A »
_W—al'*'a + a, + ...
we see that (1) =D (4), for f(0)=D©0)=1 and
g, oy 1
™ Ak ._p Elql - 1—rnt1 - 7_’_'_{_'_1 '
g 2
Mathematics. — “The theory of BRravals (on errors in space)

Jor polydimensional space, with applications to corrclation.”
(Continuation). By Prof. M J. van Uver. (Communicated by
Prof. J. C. KaPTEYN.) !)

(Communicated in the meeting of April 24, 1914).

In the theory of correiation the mean values of the products 22
are to be considered; denoting these by ,z, we have

1) The list ot authors who have treated vpon the same subject, may be supple-
mented with Cn. M. Scrots Theorie des errears dans le plan el I'espace. Annales
de I'Ecole Polytechmgue de Delft, t 1I (1886) p, 123.
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