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Mathematics. — “Combination of observations with and without
conditions and determination of the weights of the unknoun
quantities, dertved® from mechanical principles. By Prof. M. J.
vAN Uyven. (Commanicated by Prof. JaN pr Vrigs).

(Communicated in the meeting of May 30, 1914).

The theory of the combination of observations by the method or
least squares has already been the object of numerous geometrical
and mechanical illustrations. In the geometrical representations the
leading part is usually played by vectors (L. von ScHrurka '), C.
Ropricuz ?) ); the mechanical ones are taken partly fromi the theory
of the “pedal barycentre” (Y. Vinarceav?), M. p’Ocalfe %)), partly
from the theory of elasticity (S. FinsTerwarDpEr®) R. p’Emivio®),
S. WELLISCH, PANTOFLICEK N, F. J. W. WareeLi ®), M.oWESTERGAARD ?),
G. ALBENGA %)) ‘

In the following paper we will try to develop a mechanical
analogy of the solution of the equations furnished by observation,
supposing that no conditions are added, as well as for the case
that besides the approzimate ‘equations of condition (called by us:

1) L. vox ScuruTkA. Eine vectoranalylische Interpretation der Formeln der Aus-
gleichungsrechnung nach der Methode der kleinsten Quadrate. Archiv der Math. u,
Physik, 3. Reihe Bd. 21 (1913), p. 293.

?) C. Ropricurz. L.a compensacion de los Errores desde el punto de vista geo-
metrico Mexico, Soc. Cientif. “Antonio Alzate”, vol. 33 (1918—1914), p. 57.

%Y. Viearceau. Transformations de l'astronomie nautique. Comptes Rendus,
1876 I, 531.

4) M. p'Ocacne. Sur la détermination géométrique du point le plus probable dongé
par un systeme de droites non convergentes. Comptes Rendus, 1892 1, p. 1415, Journ?,l
de I'Ecole Polytechn Cah. 63 (1893), p. 1.

5) S. FinsterwaLper Bemerkungen zur Analogie zwischen Aufgaben der Aus-
gleichungsrechnung und solchen der Statik. Sitzungsber. der K. B. Akad. d. Wissensch.
zu Minchen, Bd. 33 (1903), p. 683.

6 R. p'Emmio. Illnstrazioni geometriche e meccaniche del principio dei minimi
quadrati. Atti d. R. Instituto Veneto di scienze, lettre ed arti, T. 62 (1902—1903),
p. 363.

7) 8. Werusca, Fehlerausgleichung nach der Theorie des Gleichgewichts elasti-
scher Systeme. PantoruiCek. Fehlerausgleichung nach dem Prinzipe der kleinsten
Deformationsarbeit. Oesterr. Wochenschrift f. d. off. Baudienst, 1908, p. 428.

8) F. J. W. WaippLe. Prof. Bryan's mean rate of increase. A mechanical illustration.
The mathematical Gazette, vol. 3 (1905), p. 173.

9 M. WrstereaarD. Statisk Fejludjaevning. Nyt Tidsskrift for Matematik, B, T' 21
(1910), pp. 1 and 25.

10) G. Asenga. Compensazione grafica con la figura di errore (Punti determinati
per intersezione). Atti d. R. Accad. d. Sc. di Tormo, T. 47 (1912), p. 377.
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“equations of observation”) also rigorous equations of condition -
are given. .

Moreover, in either of these cases also the weights of the unknown
quantities will be derived from mechanical considerations.

The method here developed is founded on the staties of a point
acted upon by elastic forces and is in principle closely related to
the procedure of the last-memntioned mathematicians.

To obtain general results, we will operate with an arbitrary
number (V) of unknown quantities or variables, which are consi-
dered as coordinates in N-dimensional space. In order to render the
results more palpable, we shall, at the end, recapitulate them for
the case of two variables. '

I. To determine the N unknown quantities

&y Yy 2y o .. (N)
the n (approximate) equations of condition or equations of observation
ax by +ez ...+ m=0 t=1,...n),
are given, with the weighis g; resp.

In the sums, frequently occurring in the sequel, we will denote
by = a summation over the coordinates z,y,2 ... or over the
coxrespondmg quantities (for inst. their coefficients a;,6;,¢c;,...) and
by { ] &« summation over the n equations of observation, thus over
¢ from 1 to n.

Putting accordingly

. aﬂ—{—bf—{—cz’—{—...:Eaiz-
and introducing . .
b; e mi

s P S
we may write the equations of observation in the following form
Vi=zoje+Biy+yiz+ ... +w=0 E=1,...n)

or
Vi=Z2a;x 4+ u; =0 @G=1,...n).
These equations have resp. the weights
pi=gi & ai’.

The equations Vi=0 represent (IV —1)-dimensional linear spaces;
their normals have the direction cosines (ai, 8;,'7:,...) resp.

In consequence of the errors of observation, the approximate
equations 7, =0 are incompatible; in other words: the n linear
spaces V;=0 do not meet in the same point. By substituting the
coordinates &,y,2,... of an arbitrary point P in the expressions
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Vi, the latter ohtain the values v,, representing the distances of the
point P to the spaces V;=0.

The distance from V;= 0 to P is to be considered as a vector
v; with tensor »; and direction cosines «;, 8, vi,. . .

We now imagine a force §; acting upon P (in N-dimensional
space) in the direction of the normal v, (from P to V;=0)and the
magnitade of which is proportional to the distance »; and a factor
p. characteristic of the space V,. (The space V;=0, for instance,
may. be considered as the position of equilibrium of a space V;=u;
passing through P by elastic flexion.) ,

So the space V; acts upon P with the force

%i-—: — pi¥.

All the spaces V,(¢=1,...n) combined consequently exert on P

a resultant force, amounting to
§=[5]=— [piu].

This resultant force depends on the position of the point P.
Hence we have in N-dimensional space a vector-field §. determined
by the above equation.

Now the question to be answered, is: at which point P are these
forces §; in equilibrium? For this point P we have

F=0 :
- \ 3
[p: 0:]1=0. '

The ‘““‘components” of this vector-equation in the directions of the

axes are

or

[Pl”lal]——o [piviBi]=0. |pivivi] =0, .

Substituting for v, the expression V;= = a,»c—l—m, we obtain
[piei*le + [pieBi]y + [pieivil e + ... + [piips] =0,
[piicilz + [piBi*]y + [piBivilz + --. + [PiBiw] =0,
[pivieid @ + [PiviBily + [piyi*lz + o+ [pivipd =0,

or by

_ bi G om
&= l/z ,’Bl VE;'YI—m"”M—T/_E-az’
[gia:®1 2 + [giwd ]y + [gi@we]) z + ... + [giarm] =0,
lgibiada + [0y + [giba] 2 + .-« + [g:bimi] =0,
[gicale + [g:ad ]y + [9ee.*) s+ ..+ [geom] =0,

TP =0 Eai,,

In this way the *normal equations” are found.

Ly

¢
B e a0
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The force §, = — p.t; has the potential
U=4pv'=4p V"; -

for

ol; oV,
(Ft)xz —g =m0 v, = — P ete.

oz Oz
The whole potential therefore amounts to~
‘ U=[U]l=%IpV:’]. _
As the equation V,= Se;iz 4w =0 has the weight p;, the
mean error of weight 1 is determined by

N (.o "]
&= ’
n—N i
hence
. 20 -
& _n—-—N.

At the point P satisfying the normal equations the potential and
consequently also & is a minimum. The “weight” of the distance v, was
p.. This weight may be determined a posteriori, if we know the
influence of the space V; alone acting upon any point. We then
have but to divide the amount F, of the force §; by v..

II. In order to find the weights of the unknown quantities, we
now remove the origin by translation to the point P, which satisfies
the normal equations.

(Calling ' the minimum potential U,, denoting the new coordinates
by «,%,%,... and introducing

=ad + Ry Fd S+ =Zad
we obtain
[p: V."]=2(U— U,) =2U".

So U’ is the difference of potential existing between a point
(#,y,2,...) and the minimum point P.

The equation [p, V,"*]=2U" represents a quadratic (N —1)-
dimensionpl space L, closed (ellipsoidal) and having P as centre.
This space is an equipotential space and at the same time the locus
of the points of equal & We shall call these spaces £ briefly hyper-
ellipsoids. The hyperellipsoids £ are homothetic round P as centre
of similitude.

Introducing the principal axes as axes of the coordinates X, Y, Z, ...,
we obfain for £ an equation of the form

AX* + BY* + CZ* +...=2U"

The components of § in the directions of the principal axes are

found to be




( 4 4
Fyx=— — oU = AX, Fy =— Q—I;J—:-—BY, Fym—— i—)—[i
04

We may therefore attribute these components to attractive forces
of the spaces X=0, Y =0, Z=0,... (principal diametral spaces),
which are perpendicular to these spaces and proportional to the
“principal weights” 4, B, C, . ..

For a point on the principal axis of X holds

Fy— —AX , Fy=0, Fy =0, etec.

Consequently the principal weight 4 may be determined by dividing
the force at a point of the principal axis of X by the distance X
of that point to the principal diametral space X — 0. To determine
the weight of another direction I, only those points are required, at
which the direction of the force coincides with the direction [, i.e.
the points the normals of which to the hyperellipsoids £ bave the
direction . When dividing the amount of the force existing at such
a point Q by the distance of the tangent space of Q to the centre
P, the quotient found is equal to the weight of the given direction.

So, in order to determine the weight ¢, of the direction of the
original z-axis (or of the wx-axis), we only have to turn back to the
coordinate system ,%,2',..., relatively to which the equipotential
spaces have the equation

=—C2, ete.

[pi Vi"*] = 20",

For a point Q(z',y,2,...) at which the normal to the equipotential
space, passing through @, is parallel to the z™-axis (or to the z-axis),
we have

Fyp=—gx' , Fy=0 , Fy=0, etc.

o 0 ou’ 0
U , U U ~
W...gxw ' -5;/-,-=0 . Bz—’=0' ete,
hence ’
lpiaiVil=gd' | [pihVi'|=0 , [pi:Vi']=0, ete,
or
|piei®] &' + [pieipi] y' + [picivi] &' + 0. == gody
[pBald 4+ [pB]Y + (2 Biv 12 +...=0,
(pyeila + [piviBly + [P0 2 4+ ... =0,
ot .

1 ] z'
[pief1— + [pieip.] y, +ipiaiyil — 4+ ... —1 =0,
9z gutt 9a®

U x

2wl 0 Y el 2 _
[pzmm]gx + [p.8. ]M, + [Pzﬂz?t]gxm, +...40=0,
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1 y 2
Tpfylal]" P[p;ﬂﬂz]’T‘F[pz‘/zﬂ"‘*,‘ +...+0=0,
gz Ja® J2&

¢

or
, ] yl zl
lg;az]-—-{-[gtalbz]—,--!*[glazc:] ; ‘i‘ .—1=0,
9= gz Gz
1 o Y 2
g0 ] — 4+ [9.6.%]) — + [g.be] — + ...+ 0=0,
9z it Yl

!

1 ) ' 2z
ea] — + [pabl = + [g6*] —+ ... +0=0,
Ix Fz® gz

EA

1 ~
So — 1s apparently found as the first unknown quantity 1n the
9=z

“modified” normal equations, modified m this way, that the constant
terms are replaced by —1,0,0,... resp.
- Considering U (c.q. U;) as an (N 4 L) coordinate perpendicular
to the N-dimensional space (z,v, z, . ..), the equation
VP =20,
represents a quadratic space of N dimensions, buwlt up of oo (N-—1)-
dimensional linear generator-spaces, all parallel to (V,=0, U= 0),
the intersections of which with the planes perpendicular to (V,=0,
U=0) are congruent parabolae. The parameter of these congruent

o1
parabolae is —.
P
The quadratic space p, V.*=2U, will briefly be called a parabolic

cylindric space with parameter p—l—

0

The equation
[(p.V:*]=2U )

represents a quadratic space ¥ of N dimensions, the centre of which
is at U=oo, and the ntersechions of which with the N-dimensional
spaces U = consi. are hyperellipsoids £. Thus ¥ 1s the extension
of the elliptic paraboloid. -

The pomnt 7 of ¥ with minimum U (U,), and hence closest fo
U=0, which 15 called the summit of ¥, is projected on U =0
in the point P, satisfying the normal equations.

By displacing the system of coordinate axes (w,y,2,..., U) (by
translation) from O to 71, ¥ obtamns the equation

. [p. V"] =2 U =2 (U~TU,).
By constructing the enveloping cylindric space, the vertex of which
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coincides with the set of points of the space =0 at infinity, thus
the tangent cylindrie space, the generator-spaces of which are parallel
to the z-axis, we find for this cylindric space the equation

gz =2 U

1
Its parameter is —, or the reciprocal value of the weight of the
9z

direction z.

III. We now suppose, that the variables z,y,z, ... must at the
same time satisfy the following » rigorous equations of condition
D) (2, y,2,..)=10 (j=1,...v)
Then the point P is constrained to the common (N—v)-dimensional
space @ of intersection of the » (N—1)-dimensional spaces @,.
Now the point P, subjected to the elastic forces §,, is in equi-
hbrium, when the resultant § ={[%,] 1s perpendicular to .
Let the normal at P to &, have the direction cosines
0D, 0D, 0P,
0z , Oy 0z
O =, e Y= 2
A A )
.22 6-27
The normals at P to the spaces #, form a linear »-dimensional
space. In this space § must lie, which means: § can be resolved
in the directions of these nmmfds, the unit-vectors of which will be
denoted by w,.
So we have

, ete.

8 =g wy)
where [ ] signifies the summation over j from 1 to ».
The components of this vector-equation are . -

oven] + [y 1 =0,[p0fi] + [ B =0, [P0 2] 4 [9 1) =0, ete.
or

[plalﬂ] z 4 [Ptazﬁz] Yy + [plalYl] z + e + [plal“l] + [QJ aJ,], =0,
[pllgzaz] -+ [pz i 2] Y + [szz )’1] z - -+ [PLBZM] + [9.7 131']’ =0,
[Py o] @ + [pml?-] y+ [pm’] z + + [pmuz] + [9: Yy]' =0,

Puttmg

0d,\*
G =qVE 35‘), b=1..v A

we may write the above equations in the form

0P,
[9.0.°] @ + [.%azbt]y -+ [g,alcl],z 1 e [ram] + [g) "_‘] =0,
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[gibiai] @ 4 [g:0:*]1y + [g.biei) 2+ - .. 4 [gidimi] + [77 ] =0,

] ap i
[gic;ail @ 4+ [gieibi ]y + [9ie:®] 2 + ...+ [gieims] + [g) -—7 J"—O -

These N equ'ations serve, together with the » conditions fDJ-:O, to
determine the N variables a,y, z,... and the » auxiliary quantities q;'.

Now the solution of the problem is not represented by the centre
of the hyperellipsoids £, but by the point, in which the intersection
space @ (space of conditions) is fouched by an individual of the set
of the hyperellipsoids £.

The analytical treatment of the problem is simplified by taking
the coordinates so small, that in the expressions ®; homogeneous
linear forms suffice. The geometrical meaning of this is that a new
origin O (2, ¥,, 2,, . - -) 18 chosen in the space of conditions @ near
the probable position of the required -point. So the spaces ®; are
replaced by their tangent spaces I;, and the space of conditions by
its tangent space R of N—v dimensions, intersection of the tangent
spaces E;.

Denoting the coordinates obtained by translation to O by§, 5§, .,
so that =, 4 §,... and putting
a5y, + Biyo + 1120 + e =g 5 @iz, + by, + 6z, + e+ mp=mi,
we find

=[pileis + Biy + 12 - + w)’] = [pi(ed + Bin + vi8 + - + )]
or, putting
&+ B + vt 4 .. =T,
U= [p:V:?.
The equations @, (z,y, 2. ..) =0 may now be written:
g bfb 0P
(p.ﬂ'(wovyo’zm")‘l'(_—tjg““_i +a‘7§+ )+ =
or, since O’ is dssumed in ®; =0, and higher powers of §, Ny 8y 04
are to be neglected,
0D; 2 0D, 0B,
—_ — — .= 0 (=1,...
O s ay 7 + az §+ (x? 11 v)
or ’
Wi=a/§+8'n+y/'8+..=2a¢/5=0. (J=1,...0)
So the normal equations appear in the following form
[giai°) § + [giaibi]w + [giaia ] § + . + [graimi] + g5 /7 =0,
[9:bia:]§ + [9: 6" + [gibiai] § + -« + [g:bimi] + [g5 BT = 0,
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lgiciail § + [gicibi]m + [gew* 1§+ - + [giemi] + [g5 177 =0,

IV. To determine the weights of the directions 2, 8 ..., We

again Dbegin 'by shifting the origin (by translation) from O’ to the

point P, satisfying the normal equations and T, =0.

Calling U, the potential in P, U—U,=U’ the difference of
potential relatively to P, &,%’,%’,... the coordinates with respect
to P, and putting finally ‘

af B F il =T, @ E 3 T+ =T
we find o

20 =ps Vi) — 2 [ W)

This equation represents the set of equipotential spaces L. /=0
furnishes the hyperellipsoid £, touching # (or R) in P.

Now those points must be found, at which the force can only be
resolved into an (inactive) component perpendicular to £ and a
component parallel to the w-axis.

For such a point we have

oU'

Fo—= — 5T = [rja;"] — g,
U .
Fop=— W:Vjﬁj] -+ 0,
o ,
F;I :———-a?: l_?’j‘/j]' + O,
or
[p: Vi' @i} — [g5e5'} = -= [250'] + g:&,

[p:Vi'8:) — [958/ = — 78],
[piT_’z" 7i] — (g7 ] = — [7757s

or putting
T§ — 45 = 85
[pi i Vi'l+Lsje 1=g:8' piB: Vi'14[5;81=0, [piv. V'] 557, T'== 0, e,
whence )
[piei®] §' -+ [pieiB o + [picvi]§ + - oo + [0 = g:8),
pidici] § + (o) + [piBina 16 + . + [58/) =0,
[piv ]S + [poyiBid o + [pivi*] 8 + oo + [s751' =0,
or

12
Proccedings Royal Acad. Amslerdam. Vol. XVIL

-10 -
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e d 1 . b U L yeps ¢ 5 J ‘ 1=0 _
[g:a: ]%-—}-[gzaz ; o . alci],@+."+ 5;5"“” —1=0,
1 % g 85
[gibia;]— - [9:b:*] —], + [,f/ibici]—:, +... 4 [L;, /"j':l + 0 =0,
g¢ 9&s £s 9ss
1 g 85 "
thcmi]gf+[gmb]——+|m] ---‘I‘[;?g-Yj—J‘I'O:O:
S 3

the conditions
I gl ,
—+/7)9 §’ ’—’ -0, =0 (j=1...7).
G
also bemg satlsﬁed -
From the above IV -} » cquations with the N unknown quantities
174 & 1
] . and the » unknown quantities —:, , = can be solved.

g5 g5 gsE 9:8 " g
The method of solution of Hansen is found again by introducing
Za; 85
gi ’z& —k L:’ =k ;
948 9¢s
! 1 !
y— = 4 , A= =B J =C, )
!
9& g¢ 95 gks
whence p
k 2a;
2= f,b =% (=1, n)
9i g&s

Then the modified normal equations furnish
[9:0:°]1 A + [9:0:0:] B + [giaici] C + ... + [Kef'| =1,
[r:biai] A 4 [9.6:°) B + [9ibic;] C ... 4+ [&/8T = 0,
lgicai] 4 + [gicib] B+ 9] C 4 ..« + [&'y/T =0,

or
lgiai(Sa: A)] + [bayV = 1. [0.0(Sar )] + [A8)T =0,
[gi0i(Za; A)] + [k'y,] =0, ete.
or

[kiai] + [b'e)T =1, [kbi] + |&'8,/1 =0, [kiei] 4 [&'y)] =0 ete.,
and the (rigorous) equations of condition run )
Sa)A=0 (j=1,...)

From the set of cquations
EazA:ﬁ G=1,...n)
gi
ZajA=190 (G=1,...2)
[ IR ' Y'=1 | [h: b 1423,/ 1'=0 , [hi i 1+{;'v,;/1=0 , ete. (IVin number)
the .V variables 4, B, C,..., the n unknown quantities Z; and the
1 auxiliary quantities £;' can now be solved.

-11 -



- he weight of 2 is thus defined by
1
Jo =gt — a°

It may also be found Ly the following calculation

B‘] = [Thio d] = T4 [ka] = A [hiei] + B kb + C[hie] + ...
=A— Alk/a)T — B&/3,) 7 — C &'y, T —. ..
=A—[k'Se/A] =4 :1— .

9¢
so that g, is also determined by

e

1

==
L

By considering the quantity U as (N -+ 1)™ coordinate perpendi-

cular to the N-dimensional space (v,7, 2, ...), the equation

[pi Vi'*] — 2 [q, W41 = 20"
represents the quadratic space ¥. The origin of the coordinates
§2\8,..U" now lies at the point S, the projection of which on
U =— U, (U=0) is the required point. Now this point S is not
the summit of ¥. . )

The linear space of conditions /2 of N —» dimensions is now
joined to the point /' = w by an (N —v» -} 1)-dimensional space E,,
which passes through S and intersects the quadratic space ¥ in a
quadratic space ¥, having the same character as ¥, in that it
also has its centre in U’ =, but is of fewer dimensions, viz.
N 4+ (N—v+4+1) — (V41)= N —». The quadratic space ¥, has
its summit in S. ’

We now have to delermine the points @ in ¥,, at which the
({v+4-1)-dimensional) spaces of normals are parallel to the a-axis. In
such a point @ ¥, is also enveloped by a parabolic cylindric space,
the generator-spaces of which are parallel to the a-axis, and which
therefore has an-equation of the form

gz §*=2U"

1
Its parameter is — .
9z

In ‘other words: — is the parameter of the parabolic cylindric
g
space, which has its generator-spaces parallel to the z-axis and
envelops the quadratic space ¥,.

- V. We conclude this paper with a short summary of the results

for the case of fwo variables a and y.
) 12*

P

-12 -
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The equations of observation arve represented by the straight lines
Vi=ae+ By +wm=0 (weight p,) (=1,...n).
The pomnt P (z, y) 15 subjected to the force
§=[5)=—[pn]
in which v, represents, n amount and direction, the distance of the
line ¥,=0 to the pomt P.
The point P remains at rest, if 1ts coordinates satisfy the equations
[]-’h o, "‘J &+ [Z’z azﬁz]y + [pz a, l'z] =0,
(B8] @ + [p:B.%]y + [pfops] = 0.
Denoting here the potential U by 2z, we obtain
[Pz + By + )] = 22.
This equation represents an elhiptic paraboloid ¥, being the sum-
surface of the parabolic cylinders
plow + By 4 () = 2z,
which bave the plan z =0 as summit-tangent-plane along the gene-
rator e,& + B,y -+ =20, 2 =0, and which are obtained by (rans-

lating the parabola
2

= — &1
v

lying in the normal plane of V.=we,2 4 8,y + p.= 0, perpendicularly

v, 2

to V,= 0. The parameter of this parabola 1s pi
]

The summt 77 of the elliptic paraboloid ¥ ([p, V.*] = 22) is pro-
jected on z =0 mio the pomnt P, satisfying the normal equations.

By constructing the tangent cylinder, the vertex of which lies
upon the w-axis at 1nfinity, we oblain a parabolie cylinder, the
perpendicular transverse seclion of which has a parameter equal to
the reciprocal value of the weight g, of the vamable 2.

There being only two vaiiables, only one (rigorous) equation of
condition @ (z,4) =0 may be added; & (r,y)=0 represenis the
curve to which the point /2 1s constrained.

We now have to determine that particvlar ellipse of the homothetic
set [p, V.*] =const., which touches the curve @ The point of
contact is the pomt P required. ;

In @, near the probable position of P, the new origin O’ is
taken. We have thus only to operate with lincar functions of the
coordinates So we really 1eplace P by its tangent R at P.

fhe elliptie paraboloid ¥ 1s cut by the vertical of P m the
pomt S The vertical plane £, which intersects z =0 along R,
pierces the parabolod ¥ along the patabola ¥, baving Sas summit.

We now construct the cylinder baving 1its vertex at the point

-13 -
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at infinity of the a-axis and baving the parabola ¥, as directrix
(te. enveloping the parabola ¥,) The parameter (of the perpen-
dicular transverse section) of tlis eylinder 15 the reciprocal value
of the weight g, of the variable a.

The equipotential lmes m z=0 aie the homothetic ellipses
[p. V.*] = const. Such an ellipse is the locus of the points of equal «.

When the (vigorous) equation of condition 1s: @ = const. the
parabola ¥, is parallel to the plane £ =0 The tangent cylinder is
then infinitely narrow ; its parameter 1s 0, the weight of z 1s infinite.

Chemistry. — “Zguilibria i ternary systems. XVI By Prof. F.
A. H SCHREINDMAKERS.
(Communicated in the meeting of May 30, 1914).

Now we shall consider the case that the vapour contains two
components :

We assume that of the components 4, B, and C only the com-
ponent B is exceedingly little volatile, so that practically we may
say that the vapour consists only of 4 and C. Tlis is for mstance
the case when B is a salt, which is not volatle, and when A and
C are solvents, as water, alcohol, etc

Theoretically the vapour consists only of 4 4+ B+ C, herein the
quantity of B is however exceedingly small in comparison with the
quantity of 4 and C. so that the vapour consists practically totally
of 4 and C.

When, however, we consider complexes m the immediate vicinity
of the point B, the relations become otherwise. The sohd or lLquid
substance has viz. always a vapour-pressure, although this is some-
times immeasurably small, therefore, a vapour exists however,
which consists only of B, without 4 and C. When we now take a
liquid or a complex in the 1mmediate vicinity of powmt B, the
quantity of 5 in the vapour 1s then still also large and is not to be
neglected in comparison with that of 4 and C.

Consequently, when we consider equilibria, not situated mn the
vieinity of point B, then we may assume that the vapour consists
only of 4 and C, when these equilibrna are situvated, however, in
the immediate vicimty of point B, we must also take into consider-
ation the volatility of B and we must consider the vapour as ternary.

When we consider only the occurrence of liquid and gas, then,
as we have formerly seen, three regions may occur, viz. the gas-
region, the liquid-region and the region L—G. This last region is
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