Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

F.A.H. Schreinemakers, Equilibria in ternary systems. XVI, in:
KNAW, Proceedings, 17 |, 1914, Amsterdam, 1914, pp. 169-182

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'



169

at infinity of the a-axis and baving the parabola ¥, as directrix
(te. enveloping the parabola ¥,) The parameter (of the perpen-
dicular transverse section) of tlis eylinder 15 the reciprocal value
of the weight g, of the variable a.

The equipotential lmes m z=0 aie the homothetic ellipses
[p. V.*] = const. Such an ellipse is the locus of the points of equal «.

When the (vigorous) equation of condition 1s: @ = const. the
parabola ¥, is parallel to the plane £ =0 The tangent cylinder is
then infinitely narrow ; its parameter 1s 0, the weight of z 1s infinite.

Chemistry. — “Zguilibria i ternary systems. XVI By Prof. F.
A. H SCHREINDMAKERS.
(Communicated in the meeting of May 30, 1914).

Now we shall consider the case that the vapour contains two
components :

We assume that of the components 4, B, and C only the com-
ponent B is exceedingly little volatile, so that practically we may
say that the vapour consists only of 4 and C. Tlis is for mstance
the case when B is a salt, which is not volatle, and when A and
C are solvents, as water, alcohol, etc

Theoretically the vapour consists only of 4 4+ B+ C, herein the
quantity of B is however exceedingly small in comparison with the
quantity of 4 and C. so that the vapour consists practically totally
of 4 and C.

When, however, we consider complexes m the immediate vicinity
of the point B, the relations become otherwise. The sohd or lLquid
substance has viz. always a vapour-pressure, although this is some-
times immeasurably small, therefore, a vapour exists however,
which consists only of B, without 4 and C. When we now take a
liquid or a complex in the 1mmediate vicinity of powmt B, the
quantity of 5 in the vapour 1s then still also large and is not to be
neglected in comparison with that of 4 and C.

Consequently, when we consider equilibria, not situated mn the
vieinity of point B, then we may assume that the vapour consists
only of 4 and C, when these equilibrna are situvated, however, in
the immediate vicimty of point B, we must also take into consider-
ation the volatility of B and we must consider the vapour as ternary.

When we consider only the occurrence of liquid and gas, then,
as we have formerly seen, three regions may occur, viz. the gas-
region, the liquid-region and the region L—G. This last region is
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separated by the liguid-curse fiom the liquid-region and by the
vapourcurve from the vapour-region. As long as the liguidcurve is
not situated in the vicinity of point B, the corresponding vapour-
curve will be situated in the immediale vicinity of the side AC.
Cousequently the vapour-region is exceedingly small and is rednced
just as the vapourcurve, practically to a part of — or to the whole
sidle AC. Therefore we shall call this vapourcurve the straight
vapourline of the region L — G in the following. Consequently we
distinguish: within the triangle practically only two regions, which
are sepavated by the liguidcurve, viz. the liguidregion and the region
L—@; the first reaches to the point B, the latter to the side AC.
The conjugation-lines liquid-gas end, therefore, all practically on the.
side AC. o
When the liquidcurve comes, however, in the immediate vicinity
of point B, so that there are liquids, which contain only exceedingly
litlle 4 and C, then the quantity of B in the corresponding vapours
will no more be negligible with respect to 4 and C. The vapour-
curve will then also be situated further from the side AC, so that
also the wvapour-region becomes larger. At sufficient decrease of
pressure or increase of temperature the vapour-region will cover
even the entire component-triangle. In that case we must, therefore,
certainly distinguish between the three regions, of which the movement,
occurrence and disappearance have been treated already previously.

In order to deduce the equilibrinm F -+ L - (G, we may act now
in the same way as we did before for a ternary vapour. We dis-
tinguish the following cases.

1. The solid substance is a ternary compound.

2. The solid substance is a binary compound of two volatile
components.

3. The solid substance is a binary compound of one volatile and
one non-volatile component.

4. The solid substance is one of the components.

1. We consider firstly the case sub 1, viz. that the solid substance
is a ternary compound; this is for instance the case with the
compound Fe,Cl, . 2HCL. 1210,0.

Now we imagine for instance in fig. 7, 11, 12, or 13 (I) the
component-triangle ABC to-be drawn in such a way that the point
I is situated within this triangle. Curve Mm can then again
represent the saturationcurve under its own vapourpressure of F,

’
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the corresponding vapourcurve A/,m, is then, however, no more a
curve situated within the tiangle ABC, but it becomes a straight
line, which is situated on one of the sides of the triangle. We shall
call this line the straight vapourline of the compound F. When A4
and C are the two volatile components, then this straight vapourline
is situated on the side AC. As not a single liquid 6f curve A{/m can
be in equilibrium with a vapour, which consists of pure 4 or of
pure C, the points A and C can never be situated on the straight
vapourline. Irom this foilows: the siraight vapourline of the ternary
compound ' covers only partly the side AC and in such a way
that it covers neither 4 nor B.

2. The solid substance is a binary compound, of two volatile
components. We take a binary compound Z of B and C (fig. 1)
so that B and C now represent the two volatile componenls and 4
the non-volatile component.

In order to deduce the saturationcurve under its own vapour-
pressure we may act again in the same way as we did before
for the general case. For this we take a definite temperature 7'and
a pressure P in such a way {hat no vapour can be formed and the
isotherm consists only of the saturationcurve of £. This is represented
in fig. 1 by pg.

At decrease of P the region L—Cr occurs; sunch a region is
represented in fig. 1 by Cdee, with the liquid-curve de and the
straight vapourline Ce,. The lquid ¢ is in equilibrium with the
vapour ¢,, the liquid d with the vapour C and with each liquid of
curve ed a definite vapour of the straight vaponrline Ce, is‘in
equilibrium.

We may distinguish three cases with respect to the occurrence
of this region L—G.

a. In the equilibrvium L—@G of the binary system BC a point of
maximum-pressure occurs. The heterogeneous region L—G arises in
a point of the side BC.

b. In the equilibrium L—G of the binary system BC a point of

minimum-pressure occurs; one heterogeneous region arises in B and~

one in C, which come together at decrease of P in a point of BC.

¢. In the equilibvium L—G of the binary system B neither a
point of maximum- nor a point of minimumpressure occurs; the
heterogeneous region arises in B or in C.

Here we consider only the last case and we assume in this case
that C' is more volatile than B; after this the reader can easily



deduce the iwo other cases. At
decrease of I’ the heterogeneous
region arises, therefore, in the angu-
lar point C (fig. 1) and it expands,
while curve pq changes of course
its form and position, over the
triangle. Under a definite pressure
the terminatingpoint ¢ of the liquid-
curve coincides with the termina-
tingpoini p of the saturationcurve,
ander a definite other pressure ¢
coincides with g¢. -

When ¢ coincides with ¢, we
may imagine in fig. 1 tihat the
liquideurve is represented by gq¢',
or by g¢¢',; in the laiter case it
intersects the curve gp, in the first
case it is situated outside this curve. When e coincides with p, we
may imagine that the liquidcurve is vepresented either by pf (fig. 1)
or by a curve, not drawn in the figure, which intersects pg. Now
we shall examine which of these cases may occur.

To the equilibrium between a ternary liquid z, y, 1—a—y, and
a binary vapour y,, 1—y, the conditions are true:

0Z 0Z 0Z 07
7t — — (y—y ) ——=Z,and —=—. . . . (1

Fig. 1.

Let us firstly consider the region L—G in the immediate vicinity
of the point C. As @, y, and y, are then infinitely small, we put:

Z=U+ RTzlogx -+ RTylgy and Z, = U, 4 RTy, log y,
The two conditions (1) pass then into:

YAV, 20,
e Y s RT@ 4 y—y)=0 . @
U ?/aﬂ: yay U]_"} Y ayl ("'T?/ y) ()

a——U—l—RTZogy:aUl-{—R.’I‘logy1 T )]
Oy 0y, .

Under a pressure Pr the region L-G in fig. 1 consists only of
the point C, and, therefore, =0, y=0 and y, =0; then the
unary equilibrium: liquid C - vapour C occurs. This is fixed by
Z=2, or U= U, wherein t=0, y=0 and y, =0.

Let in fig. 1 the region Cdee, make its appearance under a pres-
sure Pg -+ dP; the points ¢, ¢, and d are then situated in the imme-
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vicinity of C, now we equate &= ¢, y = y and y, = y,. From
ollows:
m=Kqg . . . . . . ... #

ein K is a constant fixed by (3). When we assume, as
5. 1, that Cis more volatile than B, the point.e, is situaled
een C and ¢ and K is, therefore, smaller than 1.
w we equate in (1) P= P¢—+-dP, a=§& y=mn andy, = 5,;
the point C U= U, is satisfied, it follows, that:
— BT+ n—n]+ [V=V]dP=0

N

V,—V
§+ (1—-K)np=— ! dP. . . . . . (5

RT .

the immediate vicinity of the angular point C (fig. 1) curve ed is,

fore, a straight small line. We find from (5) for the length of

arts Cd and Ce:

V,-V V,—V
BT dP and Ce-_—md
Vi—¥V >0 and 1 —-K >0, it follows from (6) that Cd and Ce

wsitive, when P is negative. At decrease of pressure curve ¢d
therefore, within the triangle. From (6) follows:Cd: Ce = (1—K):
as K=m,:q=Ce,: Ce, we find: Cd = ee,.
order to examine the liquideurves going through the points

1 g (fig. 1) in the vicinily of these points, we put in (1):

Cd= — P. . . . (6

Z=U+Rlazlogs . . . . . . . (7)
1en find: '
oU oU oU oz
—— — (g ~y,) — —RTe—Z =0 — . . (8
U ’l’am (y yl)ay 4 1 a‘nday ayl ()

: the liquideurve of the region” L-G we find from this:

[or + (3—9,) s + BTV do + [as + G—y) ] dy =0 . . (9)

+ the direction of this liquideurve in its end on the side BC
fore 2 =0) we find:, B

dy___ W—y)s-+ BT

de - (y—y,)t (19)

ien we call ¢ the angle, wh.ch this tangent forms with the
BC (taken in the direction from B towards (), we have, when
nagine the componentiriangle rectangular in C:

) ¢ T 53

g ¢p =
Y=y s -+ BRI
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For the saturationcurve under a constant pressure of F, consequently
for curve pg, we find:

0Z 0Z
Tt - (B=p) 2 —L=0 . . . . . (12)
0 dy
or after substitution of the value of Z from (7):
[or + (y—B) s + RT]do + [os + (y—p) ] dy =0 . . (13)

When we call w the angle which forms the tangent in p or ¢
with the side BC (taken in_ the direction from B towards C,
we find: / y

—B)¢
(y—B) s + RT

Let us now consider these two tangents in the point p of fig. 1.
In this point y— 23 <C0 and y—y, > 0.

The denominators of (11) and (14) bave, therefore, either opposite
sign or they are both positive, so that we may distinguish three
cases. In each of these cases we find ¢ < w; the liquidcurve of the
region 1.-G and the saturationcurve of F under a constant pressure
are, therefore, situated in -the vicinity of point p with respect to
one another in the same way as the curves pf and pg in fig 1.

Curve pf can also no more intersect curve pg in its farther
course; we may see this also in the following way.

At decrease of P the two curves must touch one another under
a definite pressure P, somewhere in a point 2 within the component-
triangle; therefore imagining the liquideurve of this pressure P
to be represented by ed (fig. 1), we must imagine ed to be drawn

g =— (14)

d
in such a way that it touches pg in 4. For this point /zd—y from (9)
&
d
must be equal to c%from (13); then holds:
&

or + (y—y)s + BT _ar 4 (y—)s + RT
ws - (y—y)t  as -+ (y—/I)t

(1)

or
=7 . . . . . . . . . (16)

As y, indicates the vapour conjugated with lLiquid A, (16) means:
the hiquid-curve of the region L—G and the saturationcurve under
a constant pressure of F' touch one another in a point %, when the
vapour belonging to this liquid 4 is represented by “the point /.

As all vapours belonging to curve ed (fig. 1) are represented by
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Ce,, and consequently no vapour cxists of the composition F, the
curves ed and pg, therefore, cannot touch one another.

Let us now consider the tangents to the liquid-curve and to the
saturationcurve under a constant pressure in ihe point ¢ (fig. 1);
as the vapour, belonging to this ligmd, may be represented either
by a point ¢, siluated between ¢ and F or by a puint ¢, between
F and C, we must distinguish two cases.

When the vapour 1s 1epresented by ¢,, then we have y— /3 >0
and y— vy, >0. As y—f >y— v, the denominators of (I11)
and (14) have either the same sign or the denominator of (11) 1s
positive, winle that of (14) 1s negative. In each of these three cases
we find ¢ <w; the liquid-curve of the region L—G and the
saturationcurve under a constant pressure of [ are, therefore, situated
in the vicinity of point ¢ with.respect to one another as the curves
qp and g¢',. -

When the vapour corresponding with liquid ¢ is represented by
¢, then y — 3 <0 and y —y, >0, in absolute value (y— /) s is
always smaller than (y  #,)s. The denominators of (11) and (14)
have, therefore, either the same sign or the denominator of (11) 1s
negative, while that of (14) is positive. In each of these thiee cases
we find ¢ > ; the liquid-curve - of the region L—G and the
saturationcurve under a constant pressure of F are, therefore, situated
in the vicinity of point ¢ with respect to one another as the curves
gp and q¢',. :

With the aid of the preceding consideiations we may easily deduce
now the satarationcurves under their own vapour-pressure of F;
for this we shall assume that the solid substance melts with increase
of volume. We distingwsh three cases.

1. The temperature is lower than the point of maximum-subli-
mation 7% of the binary substance F.

In a similar way as we have deduced the general case fig. 11 (I)
we now find with the aid of fig. 1 for the saturationcurve under
its own vapourpressure a diagram as is drawn in fig. 2; in this
figure a part only of the componenttriangle is drawn. Curve
hacmbn is the saturationcurve under its own vapourpressure,
hya,c, I', b, n, is the corresponding stmlght vapourline. In this
figure ave indicated the equilibria: F 4 Ln'4 Gu, F—}—L + Gy,
[—l—L + G’a, I'-|— L,u —I— (IL‘, I —|— Lb+ (I(;l and [© + L,; +(I,,1, L/,‘
and L, are binavy liquids. As we have assumed that the temperature
is lower than the point of maximum-sublimation 773 of the solid

N



Fig. 2
pressure 15 a minimum in the point m of fig. 2 and increases from
m in the direction of the arrows, consequently towards n and A.
Further it is evident that the vapourpressure in /£ is higher than in n.
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substance #, the vapour n, must be sitnated
between 7 and n. Consequently we have
here the case that the vapour, corresponding
in fig. 1 with the liquid ¢, is represented
by ¢,; the liquid-curve of the region L—@G
going throngh the point ¢ can, therefore,
be represented by qg¢,” (fig. 1). It follows
from this position of gg,’ that on further
decrease of pressure the liquidcurve of the
region L—@G must touch curve pg in a
point m (fig. 1); in fig. 2 this point of
contact is also represented by m. Previously
we have seen that the vapour corresponding
with such a point of contact has the com-
position #; in fig. 2 m and F are joined
for this reason by a conjugation-line.

It follows from this deduction that the

2. The temperature 1s higher than the point of maximum subl-
mation 7% and lower than the minimum-meltingpoint 7% of the

substance 7.

In a similar way as we have deduced the general case fig. 7 (1),
we now find with the aid of fig. 1 a diagram as fig. 3. Curve

hacbn is the saturationcurve under its
own vapour-pressure, 4, a, ¢, b, n, is the
corresponding straight vapour-line. As
we have assumed that the temperature
is higher than 7Tz but lower than T,
F must, as in fig. 3, be situated between
n and n,. Therefore, here we have the
case that the vapour, corresponding in
fig. 1 with the liquid ¢, is represented
by ¢.; the liquid-curve of the region
L—G going through the point ¢ may,
therefore, be represented by g¢', (tig.1).
It follows from this position of ¢q¢', that
on further decrease of pressure the liquid-
curve of the region L-—G no more
intersects curve pg.
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From this deduction it follows that the pressure increases along
curve /in in the direction of the arrows, therefore, from n towards
h and that on this curve Zn neither a point of maximum- nor a
point of minimumpressure occurs.

3. The temparature is higher than the minimum-meltingpoint 7’7
and lower than the point of maxiunum-temperature 7'z of the binary
equilibrium #F -4 L + G.

In a similar way as we have
deduced the general case tig. 12 (I)
we now find for the saturationcurve
under its own vapour-pressure an
exphased curve, in fig. 4 a similar
curve is represented by the curve
hn 1ndicated by 5; the pressure in-
creases in the direction of the arrow,
consequently from n towards /.

In fig. 4 the saturationcurves
under their own vapour-pressure of
I are drawn for several tempera-
tures (7',—1T,). When we take T}
and T, lower than 7%, then a
point of minimum-pressure must
occur on the curves, indicated by
1 and 2. When we take 7', between
Tx and Ty and 7', between T'x
and 7', then the saturationcurves Fig. 4.
under their own vapourpressure have a position as the curves /n
mndicated by 4 and 5, on which no point of minimumpressure
occurs. At 7'y the saturationcurve disappears in a point H and
the corresponding straight vapourlne in a pomt H, (not drawn
in the figure). i

On the saturationcurve of the temperatures 7' and 7', we find
a point of minimum-pressure m, this pomt has disappeared on the
saturationcurve of the temperature 7’,; belween these two lemperatures
we consequently find a temperature 77, ai which the point m coin-
cides with the terminating point n of the saturationcurve under its
own vapourpressure. As the vapour belonging to a point of minimum-
pressure has always the composition [/, this case occurs when the
lifuid n can be n equihbrinm with a vapour F. As then the binary
equiibrium '+ L + vapour F can oceur tlus temperature I

-10 -
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H . . . . .t ¥ i
tonsequently is the maximumtemperature of sublimation 7% of the
substance J”. -

Now we will deduce in another way the saturationcurves under
thenr own vapour pressnre of F. The conditions of equilibrium are:
07 0Z 0z, - 0Z 072
Z—o——Wy—1~—=8 Z—(y~—")-—= — = . (17
a"v (‘l/ l‘) a‘l/ 1 (yl \/ ) ayl ay ayl ( )
These conditions follow also from the equations 1 (II) when we
equate herein ¢ =0 and 2, = 0 and when we consider Z, as inde-
pendent of z,. We put

Z=U+4RTzlog2 . . . . . . . (18)
The three conditions (17) pass then into:

3
e — (y— ) e — RTa—=0 . . . .
U —(y ’)ay RI'g—5=0 (19)

0Z.
Zl—(l——#—f—G:O . 11)
y /)ay . (20)

1

U3z, _ . N
’67‘_"6;1‘—— . . . . . 3 . . ( )

From this follows-
lor + (y—{) s 4+ RTYde + [as + (y—)t]dy =

oV oV
=| V—a— — (y—/)— — Coe e
[ s =y /) ” v:| arP (22)

oV,
(yl_“/7')t1dylz[v\“(yl'_.q)'a_y—l‘—‘”jldp ¢ et (23)

1
oV, oV
‘--)dP
dy,  dy

sda -+ tdy —t, dy, = ( (24)

With the ad of (23) we way also write tor (24,:
oV
(= ) sda + (y,— e dy = [Vl — =D = —v]dP (25)
Y

so that for the relation between dx, dy, dy., and dP we shall consider
the equations (22), 23), and (25). _

In order to examine if a point of maximum- or of minimum-
pressurc is possible on the saturationcurve under its own vapour-
pressure, we lake (23). From this follows d2 =0 when

N S 1))

In order to examine if the pressure for this point is a maximum

or a minimum, we develop (20) further into a series; “when we
equale herein y, = /7, we find:

-11 -
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(Vi—9ydP=ztdg. . . . . . . (@)

As V,—wv and ¢, are both positive, it is apparent that the pressure
is a minimum. I[n accordance with our previous considerations (see
fig. 2) we find therefore: on the saturationcurve under its own
vapourpressure of the solid substance £ the pressure is a minimum
in a point m, when the vapour corresponding with this liquid has
the composition F.

In order to examine the change of pressure along the saturation-
curve in the vicinity of its extreme ends % and n (fig. 2, 3, and 4)
we equate £ =0; from (22) and (25) we then obtain:

oV
[y—F)s + BT] de + (y—B) tdy = [V—(y—/) % —v]dP . . (28)

, L0V
(y,—%) sda + (y,—B) t dy = [Vl—(?/l—/")-a-y— —v]dP. . (29)

From this follows:
(y,—3) RTdz =[(y,— ) V + B—y) V, + y—y)) vl dP . (30)
When AV, is the change of volume, which occurs when between
the three phases of the binary equilibrium F -4 L -+ G a reaction

occurs, in which one quantity of vapour arises, then we may write
for (30):

dP =

{3_‘% RT

Ry A PR 2}

Now AV, is always positive in the binary system F - L -+ G,
except between the minimum-melting pomt 7 and the point of
maximumtemperature 7'z, where AV, is negalive. In fig. 4 AV,
is consequently negative for liquids between F and H, positive for
all other liquids on the side BC.

(3—7vy is positive, when the liquid is situated between £ and C,
negative when the liquid is situated between F and B (figs. 2—4).

fA—y, is pJositive, when the vapour is situated between F and C,
negative when the vapour is situated between F and B (figs 2—d).

In the points 4 of figs. 2—4 is AV, >0, ;/—y>0and 3—y,>0;
from (31) follows therefore dP < 0. From each of the points 7
the pressure must, therefore, decrease along the saturationcurves, we
see that this is in accordance with the direction of the arrows in
the vicinity of the points % (figs. 2 -4).

In the point n of fig. 2 is AT, >0, fi—y << 0 and ;7—y, < 0;
from (31) follows, therefore dP < 0. Consequently we find that

-12 -
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the pressire in fig. 2 must decrease from 7 along the saturation:
curve, which is in accordance with fig. 2.

In the point n of figure 3 is AV, >0, f—y < 0and f—y, >0;
from (31) follows, therefore dP>>0. Consequenily the pressure
must increase from the point n in fig. 3 along the saturationcurve.
which is in accordance with fig. 3.

In the point 7 of curve 5 in fig. 4 is AV <0, /—y>0 and
B—y, >0; from (31) follows, therefore dP>>0. Consequently
the pressure must increase from n along curve 5, which is in
accordance with the direction of the arrows.

We may summarise the above-mentioned results also in the
following way: when to the bmary equilibrium F--Z- G (in which
F is a compound of two volatile components) at a constant tempera-
ture we add a substance, which is not volatile, -then the pressure
increases when the binary equilibrium is between the point of
maximum-sublimation 7% and the point of maximom temperature
Tp; in all other cases the pressure decreases.

In the consideration of the general case, that the vapour contains
the three components (XI and XII) we have deduced that the
saturationcurves under their own vapourpressure can disappear in
two ways at increase of pressure.

1. The saturationcurve of the temperature 7'y dlsappeans in the
point A on the side BC [fig. 5 (XI)].

2. The saturationcurve of the temperature 7' touches the side BC
in the point A and is further situated within the triangle ; at further
increase of 7' it forms a closed curve sitnated within the triangle,
which disappears at T’z in a point within the triangle [tig. 6 (XI)1.

In the case now under consideration, that the vapour consists only
of B and C, only the case 1 oceurs; this has already been discussed
above and is represented in fig. 4. It follows already immediately
from the following that the case 2 cannot occur. On a closed
saturationcurve under its own vapourpressure a point of maximum-
and a point of minimumpressure occurs. On the curves now under
consideration only, as we saw hefore, a point of minimumpressure
can occur, so that closed saturationcurves arve impossible.

We may deduce this also in the following way and we may
prove at the same time these curves, just as in the general case, to
be parabolas in the vicinity of H.

When wec consider the binary equilibrium £ 4 liquid H -+
vapour, then z=0; we equate y = y,, ¥. = ¥,., and the pressure
= Py. To this equilibrium applies: .

-13 -
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, o az, ‘

U—'( _/')7—§—'0 Zl_(yl'o_) ay —&§=0 N
39z, 1 (52)
Ef‘/—— ay1 /

turther we have:
(yl'o_ﬂ) V+ (/9—"3/0) Vl + [yo'—f/l'o] v=10 v (33)
which condition we may also write:
yv_f; — V‘_”J: V‘_v —u . . .. (34
0o ¥ Yiro— /7 Y10 Yo
For a ternary equilibrium # - L -+ &, the liquid of which is
situated in the vicinity of point H, the pressure is equal to
Ppt+a=, 2=8 y=y,+n and y, =9, + ;.
The three equations (17) pass,then, when we use the conditions
(22) into:

%4
RIS+ [o- Vi +aor-+4 (3 — S )bk =0 65)
0 ov,
=t bt + 4 (55— 37) @+ AL =0 (66)
L=IL « « « « « « « . . 37
Herein is:
2 aa 2
3 3y v (59)
+o ,z+an§ 5
L=t oV, ot 0V, 02V, -
- "Zl+ay +zaynl+2.a apn+a 2"1“"}_ . ( )

In (35) and (36) y, and y1, are replaced by y and y,; we shall
do the same in the following equations. When we multiply (35)
by y,—8 and (36) by y—§8, then it follows with the aid of (37) that:

GBI BT E + 1 G & 4 (1—B) o —} (—B) &, 0,
N av v, ) £ 0.(40
+ 4] 0=0) 35 + U=8) 35 + 6m) 55 |7+ -S040

From (36), (37), and (40) it follows that this can be satisfied by:
n, of the order m, o of the order  and & of the order a’.
From (35), (36) and (37) then follows: :

ov v,
ty = “_W)” and tlahz(@c— ayl)“ ... (4D
p 1

} . 13
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Substituting these values in (40) we find:
2, —P)RIE=an>. . . . . . . (42)
wherein a has the same value as in (21) (XII).

Fromn this it follows with the aid of the first relation (41) that:

2

—_— . ... 43
a-[;7 2 "7 . ( )
oy
In the same way as in (XII) we find that we may write for this:
ail

& (y—8) (v.—y) P

avzn“ e
(yl—ﬁ)(.u—gy-) _

is fixed by (24) (XII). From this it follows that the

2(y—BRTS=

2 RT§—=

(44).

2
wherein
dP?

curve going in fig. 4 through the point H is parabolically curved
in this point and touches the side BC in this point.
d

As in this pOint y—'-ﬁ < O, Y—Yy < O: Y— ﬂ < 0 and apP? > 0’

§ is always negative. From this it follows that this parabola has
only the point A in common with the triangle and is further
situated completely ouiside the triangle. Consequently only the point
H represents a liquid; its other points have no meaning.

(To be continued).

Chemistry. — “The system Ammonia-water”. By Prof. A. Smirs
and S. Postya. (Communicated by Prof. J. D. v. . WaaLs).

(Communicated in the meeting of May 30, 1914).

After the preliminary communication') on this subject the inves-
tigation of the system NH,-H,O has been continued in different
directions, and it has now been completed.

The continued research was directed in the first place to the
accurate determination of the meltingpoint lines, corresponding
with the pressure of one atmosphere. These determinations, which
were now carried out by means of a gauged resistance thermo-

1) These Proc. XII, p. 186.
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