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at infinity of the ,'l]-aXIS and baving the parabola 11f
1 as dll'eetrix 

(1 e. envelopmg the parabola 1PJ The parameter (of the perpen­
dicular tranSVel'se sectlOn) of tlus cy Imeler IS the reeiprocal yalue 
of the weight gx of the val'iable tI.'. 

The eqmpotenlial IUles In Z = ° ale the homotheüc eIhpses 
[PI Vz 2J = comt. Sueh all elhpse is the locus of the pomts of eql1al e. 

When the (rigorOllS) equa.tlOn of conchtton IS: !IJ = const.. the 
pa.rabola 'PI is parallel to the plane x = ° Tbe tangent cylinder is 
then infimtely narrow; lts pal ameter IS 0, the w81ght of a.: IS infinite. 

Chemistry. - "Equilzbl'ia i1l ternal'y systems. XVI By Prof. F. 
A. H SCHREINDMAU;RS. 

{Communicated in the meeling of May 30, 1914), 

Now we shall eOllSlder the case that the vapom eontains two 
components 

We assnme tbat of the eomponents A, B, and C only the com­
ponent B is exeeedingly Iittle volatlIe, sa that practieally we may 
say that the vapour conslsls onIy of A and C. TlllS is fol' mstance 
tbe case when B is a salt, WhlCh is not volatIle, and when A anel 
C are solvents, as water, alcohol, ete 

Theoretlcally the vapolll' CO:q.SlStS only of A + B + C, herein the 
quantity of B is however exceedmgly small in compal'lson wlth tbe 
quantity of A and C. so that the vapour eonsIsts practIcally totally 
of A and C. 

When, ho wever, we consieler eomplexes m the immedlate vicinity 
of the point B, the relations beeome otherwise. The sohd or hql1id 
snbstanee has VIZ. always a vapour-pl'essure, álthough tbis is some­
times immeasurably E>mall, therefore, a, vaponr eXlsts however, 
wbich consists only of B, witqOlÜ A and C. When we now take a 
liqnid or a complex in the lmmedlate vleinity of pomt B, the 
quantity of B in the vapour IS then stIll also large and is not to be 
neglected in comparison with that of A and C. 

Oonsequently, when we consider eql1lhbria, not sitnated 111 the 
vicinity of point B, then we may assume that the vaponr eonsists 
onlJ of A and C, when these eql1llIbrla être sltuated, however, in 
the immediate vieimty of point B, we must also take into consider­
ation the volatillty of Band we must consHIer tbe vapour all tel'nal'y, 

Whell we consldel' only the OCCUI'l'enCe of liquid anel gas, then, 
as we have formerly seen, three l'egions may occur, VIZ, the gas­
l'eglOn, the liquiel-reglOn and the reg ion L-G. ThiR last l'egion is 
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sE'pal'atec\ by the liqni<1-C'ul'\ 0 ft om the liquid-region and by the 
\'~1pOllt·(,l1l'VC fl'om tlle vapolll'-reg,ion. As long as the liql1idcllrve is 
llOt sitmttecl in tIlo vicinity of point 13, the cOl'l'esponding vapom­
Ctll'l'e will be siLuated in tho immediaie vicinitJT of the eide AC. 
COll&eql1ently the vaponr-region is exceedingly smaH and is rednced 
jllst as the vapourcurve, practically to a part of - Ol' to the whole 
side AC. Therefol'e we shal! cal! this vap0Ul'curve the straight 
vapoudine of the regian L - G in the following. Oonsequently we 
dlstingllisll' within t11e tl'Ïangle practically only two regions, which 
m'e sopal'ated by tho liqnidcUl've, \'Îz. the liqnidregion and the region 
L-G; the first reaclies to the point 13, the latter to the side AC. 
The conjllgation-lines liquid-gas end, thel'efol'e, all pl'actically on the_ 
side AC, -

When the liquidcl1l've comes, however, in the immediate vicinity 
of point 13, so that thcre are liqnids, which contain only ex<:eedingly 
litLle A and C, then the quantity of 13 in the corl'esponding vapours 
wil! 110 more be negligible with respect to A and C. The vapour­
Cl1l've wiJl tIJen also be sit~1[tted furtber ft'om the side AC, so that 
also tlle vapom-region becomes larger. At sllfficient decrease of 
pl'eS::illl'e Ol' incl'ease of temperature the vapoUl'-region wil! cover 
even thc ontil'e component-triangle. In tbat rase we must, t11e1'efo1'e, 
cCl'tainly disting,uish between the three l'egions, of which the movement, 
occmrenre and disappearance have been treated already previously. 

In order to deduce tile equilibrinm F + L + G, we may act now 
in the same way as we dicl before for a ternal'y vapou1'. We dis­
tingnisb the following cases. 

1. The solid substance is a ternary compound. 

2. The solid substance is a binary compound of two volatile 

components. 

3. The solid fll1bstance is a binary compound of one volatile and 
one non-volatile component. 

4. The solid substance is one of tbe components. 

1. We consider firstly the case sub 1, viz. that the solid substance 
is a tel'llal'y C'ompollud; tbis is fol' instance the case with the 
compound Fe201 0 ' 2HOI. 12H20. 

Now we imagine for instance in fig. 7, 11, 12, or 13 (I) the 
component-triangle ABC to - be dl'awn in sueh a way that the point 
]i' is sitnaied wühin this triangle. OUl've .!Vlm can tIJen again 
repl'esent the saturationcurve under Hs own vapompressure of FI 
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the cOlTesponding vapoUl'curve J.1[1 111 1 is then, howevel', no more a 
curve situated within the tl'iangle ABC, but it becomes a straight 
line, which is sitnated on one of the sides of the triangle. 'V-e shall 
rall this line the straight vapourline of the compound F. When A 
and Care .the two volatile compollents, then this straight VapOlll'line 
is sitllated on the side A C. As lIot a single liquid óf curve J1fm can 
be in equilibrium with a vapour, whieh consists of pure A or of 
pure C, the points A and C can never be sitllated on the straight 
vapoudine. lh'om this follows: the slraight \'apourline of the tel'llary 
compound F covers only partly the side AC and in such a way 
that it covers neither A nor B. 

2. The solid substance is a billal'y compound) of two volatile 
components. We take a binary compound F of Band C (fig', 1) 
so that Band C now represent the two volatile components and A 
the non-volatile component. 

In order to deduce the saturationcurve nnder its own vapour­
pressul'e we may act again in the same way as we did befol'e 
for the general case, For this we tllke a definire tempel'ature Tand 
a pressme P in sllch a way that no vapolll' can be formed and the 
il:lotherm consists only of the satUl'<l.tlOncurre of F. This is l'epresented 
in fig. 1 by pq. . 

At decrease of P the regioll L-G occurs; snch a region is 
l'epl'esented in fig. 1 by Cdeel with the liquid-cllrve de and the 
straight vapourline' Cel' The lIquid e is in equilibrium with the 
vapour el1 the liquid cl with the "apour C and with each liquid of 
cur\ e ed a definite vaponr of tbe straight vaponrline Cel is 'in 
equilibrium. 

We may distinguish three cases with respect to the OCCllrl'enCe 
of this region L-G. 

a. In the equili.brium L-G of the lJinary system BG a point of 
maximum,pl'essure occurs. The heterogeneous region L-G [tl'ises in 
a point of the side BC. 

b. In the equilibrium L-G of the binary system BC a point of 
minimnm-pressure occurs; one hetel'ogeneolls reg ion arises in Band­
one in C, which come tog~th81:- at decl'ease of P in a point of BG. 

c. In the equilibt'Ïum L-G of the binary system BG neithel' a 
point of maximum- nor a point of minimnmpressllre occnrs; the 
hetm'ogeneous l'egion arises in B or in C. 

Here we consid~l' only Ihe last case and we assume in th is rase 
that C is more volatile than B; aftel' this the reader can easily 
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dedllce the two other cases. At 
decrease of P the heterogeneolls 
region arises, t hel'efore, in tbe angll­
lap point C (fig. 1) and it expands, 
while curve pq changes of course 
its farm and pObition, over the 
tl'iangle. Onder a definite pressllre 
the tel'minatingpoint e of the liquid­
curve coincides with the tel'mina-
tilJgpoint p of tbe satllratiollcllrve, 
under a definite other pressllre e 
coincides with q. 

When e coincides with q, we 
A may imagine in fig. 1 that the 

C --~-'-!------~ liquidcurve is represented by qq'2 
or by gq' I; in the latter case it 
intersects the curve qp, in the first 

case it is situated olltside Ihis Cul"' e. 'Vhen e coinrides with p, we 
ma)' imagine that tbe liquiclcurve is l'epresented either by lJf(fig. 1) 
Ol' by a curve, not dl'awn in the fignre, which intersects pg. Now 
we sllalI examine which of these cases may OCCUl'. 

Fig. 1. 

To the equilibrium between a, ternary liquid ie, y, l-x-y, and 
a binary vapoul' YI' 1-YI the conditiollS ~re tl'Ue: 

az az az a~ 
z-,v -a - (Y-Yl) -a = Z\ and -a =-a . . . . (1) 

m Y Y Yl 

Let us firstly consicler the region L-G in the immediate dcinity 
of the point C. As x, y, and Yl are then infinitely smalI, we put: 

Z= U+RTxlo.rJ,v+RTylogy anel ZI= U1+RTYllogYI 

The two C'onditions (1) pass tben into: 

au au aUI 
U-m - - Y - - UI + YI - - RT (m + Y -YI) = 0 (2) a,v ay aYl 

au .' aUI , 

~ + RT log Y = -a + Rl log YI . . (3) 
uy YI ' 

U mier a presslll'e Pr the l'egion L-G in fig. 1 consibts only of 
thc point C, anel, tbet'efore, x = 0, Y = ° and YI = 0; then the 
unal'y equilibrium: liquid C + vaponr C occurs. This is fixcd by 

Z = ZI or U = UI> whel'ein x = 0, Y = ° and YI = 0. 
Let in fig. 1 the l'egion Cdee l make Hs appeal;ance under a pres­

Slll'~ Pc + dP i the points el> e, anel d are then situated in the imme-



- 6 -

173 

vicinitj of C, now we eqnate_,c - g,!/ = 1) anel YI = Ih. From 
ollows: 

1/1 = K1/ . . . ., ... (4) 

'ein J( is a constant fixed by (3). When we assum.e, as 
~. 1, tlHtt C is more volatlle thall B, l!lC point. el is situaied 
een C alld (1 anel J( is, thercfol'e, smallel' than 1. 
~w ';Ye equate tn (I) P = Pc + elP, ;v = t, V = 'I] and VI = "1, ; 

the point C U = UI is satisfied, it follows, that: 

- RT[ç + 1/ - 'Ih] +JV- VI] dP= 0 

the immediate vicinity of the angulal' point C (fig. 1) Cl1l've ed is, 
fore, a straight small li'ne. We find from (5) fOL' the length of 
~arts Cd and Ce: 

v-·v v-V 
Cd = - _I - dP and Ce = - 1 dP.... (6) 

RT RT (l-K) 

Vl - r > 0 anel l-J(> 0, it follows from (6) that Cd and Ce 
~0siti\'e, wJlen elP is negative. At deerease of pressul'e curve cd 
therefore, within the triangle. Fl'om (6) follows : Cd: Ce = (1--K): 
as J( = 'Ih : '11 = Gel: Ce, we find: Cd = eel' 
order to examine the lifJuielcurves going through the points 

I 

1 q (fig. 1) in the vicinity of these points, we put in (1): 

Z = U + Rl' te log .IJ . (7) 

1en find: 

au au" _ au az, 
U -.1J - - (y - Yl) - -Rl .v-Z1 = 0 and -=-. . (8) ate ay ay ~I 

the liquidclll'Ve of the region ' L-G we find fl'om this: 

[.V1' + (Y-Yl) 8 + RT] d.v + [.V8 + (Y-Yl) t] dy = O. (9) 

the dil'ection of th is liqnidcurve in its end on the side BG 
fore x = 0) we find:, 

dy 

d.:c 

(Y-Yl) 8 -I- Rl' 

(y-yJ t 
(10) 

len we call ffJ the angle, wh,eh this tangent forms with the 
~C (taken in the direction from B tuwaJ'ds C), we have, when 
nagine the componenttl'iangle l'ertangular in C: 

. . . (11) 
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For the satlll'ationcurve under a constant pressure of F, conseql1ently 
fol' curve pq, we find: 

uZ uZ 
Z-llJ - + (~-y) - -- ç = 0 . . • . . (12) 

ua: uy 

or aftel' &Uhstitlltion of tbe value of Z from 17): 

[lIJ1' + (y-~) S + RT] d,v + [,v~ + (y -tl) t] dy = 0 . . (13) 

When we call lP the angle which farms the tangent in p Ol' q 
with tbC' side BG (taken in the direction from B towards G) 
we tind: 1 

(y-~) t 
tg lJ' = ----­
. (y-~) S + RT 

. (14) 

Let us now ronsider these two tangents in the point p of fig'. 1. 
In t11i8 point y-.1 < 0 and Y--Yl > O. 

The denominators of (11) and (14) have, therefOl'e, eitlle1' opposite 
sign or they are bath positlve, sa that we may distinguish th ree 
cases. In each of these cases we find cp < lJ' i the liquidcurve of tbe 
region L-G and the saturationcurve of F under a constant pressure 
are, thel'efore, situated in ,.-fhe vlcwity of point p with respect to 
one Rnother in the same way as the curves pi and pq in fig 1. 

Curve pi can also na mOl'e intersect curve pq in its further 
course i we may see this also in the following way. 
- At decl'ease of P the two curves must touch one another under 
a definite pl'essure Ph somewhere in a point h within the component­
tl'iangle i therefol'e imagining the liquidcnl've of this pressure PI! 
to be repl'esented by ed (fig. 1), we must imagine ed to be drawn 

/ d 
in snch a way that it touches pq in h. For this point h J!.... from (9) 

da: 
dy 

must be equal to - from (13) i then holds: 
d,1J 

a:r + (y-yJ s + RT ,vr + (y-, 1) s + Rl' 

lUS -I-- (V -vJ t a:s + (V-tl) t 

or 

. . (15) 

Vl=(1 ......... (16) 

As Yl indicates the va,poul' conjugated with ltquid lt, (16) means: 
the hquid-curvt' of tbe l'egion L-G and the satnrationcurve nnder 
a constant pressure of' F touch one' another in a point ft, when the 
Yapour belonging to this liquid ft is repl'esented by ïhe point F. 

As all vapours belonging to curve ed (fig, 1) are represented by 
I 

, " 
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Cel, anel com.equently no vapolll' cxists of the composition F, the 
CUi'ves ed anel pq, thel'efol'e, cannot tOllch one another, 

Let us now consielel' the tangents to the liquiel-cul'Ye anel to the 
satllrationcnl've unele1' a constant pl'essure in the point q (fig, 1); 
as the Yapoll!', belonging to this 1iqmc1, may be l'epl'esE'nted eilhe1' 
by a point ql situate? between q and F Ol' by a puint q2 between 
F anel C, we must distinguish two cases. 

When the vapour IS lepresented by ql> then we have y- ,B >0 
anu V - V! > 0, As V - (1 > V - VI> the dcnominatol't> of (11) 
and (14) ha' e eithe1' the qame sign or the denominator of (11) IS 

Ï)(lsltive, wlllIe that of (14) IS negativc. In ench of these thl'ee cases 
we find cp < l/J; the hquid-Clll'Ve of the region L-G anel tbe 
satul'ationcurve under a constant pressure of F are, the1'el'o1'e, situated 
in lhe vicinity of point q with.l'espect to one anotber as the curves 
qp and qq'I' 

When the vapour C01'l'csponding with liquiu q i3 l'epresented by 
q2' then V - fJ < 0 and V - VI > 0, in ab'3ol11te valne (V- d) 8 is 
ahvays smaller than (V VI) 8. The denoml11atols of (11) and (14) 
have, the1'efoJ'e, either the same slgn or the uenomillat01' of (L1) IS 

negative, while tbat of (14) is posltl\'e. In each of these tlllee case'3 
we find (p> tr'; the liquid-curve' of the region L-G and the 
saturationcl1l've under a constant pl'eSSLll'e of F are, therefo1'e, sltuated 
in the vicinity of point q wjth respect to one another as tbe curves 
qp and qQ'2' 

'Vith the aid of the pl'eceding eonsH.!elatlOns we mJ.y easily deell1ce 
now the satür.ttioncnrves undel' their own vapoul'-pressure of F; 
fol' this wc shall at>sume tbat the solid sLlbstance melts with increase 

\ 

of volume. We distingUlsh th ree cases, 

1. The tempemtnl'e is 10wer thnn thc l~oint of maximum-subli­
matioll 7j( of the binary substance F. 

In a similaL' way as we have deduced the geneml case fig. 11 (I) 
we now find with the aid of fig. 1 1'01' the saturationcurve nnder 
its own ,'apompressure a diagram as is dmwn in fig, 2; in this 
fignre a part only of the componenttriangle is dl'awn. Curve 
II Cl C In b n is the satm'ationcurve nncler its own vaponrpreSSUl'e, 
hl (tI Cl FI bi n\ is the cOl"l'esponding straight vapoul'line.,. ln this 
figure are indicnted the equilIbria: F + Lh '+ GII1 , F + La + GUl' 
F+Lc+ Gel> F+ Lil! + GE, P+ Lb+ GÓ1 and P+ Lil +G/l I ; Lh 
and Ln are btnary liqlllds, As we luwe asslllued that the temperatule ' 
is 10wel' than the point of maximulll-sllbJirnation T,c of the solid 
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substnnce F, the ,apour n l must be sitnated 
between F and n. Oonsequently we have 
here the case that the vapour, corl'esponding 
in fig. 1 with the liquid q, is l'epresented 
by q]; the 1iquid-cu~'ve of the region L-G 
going thl'Ollgh the point q can, thel'efol'e, 

~ be l'epl'esented by qql' (tig. 1). It follows 
fl'om this pQsition of qql' that on fnrther 
elecrease of pl'eSSUl'e the liquidcur\'e of the 
region L-G must touch curve pq in a 
point m (fig. :1); in fig. 2 this point óf 
rontact is also l'epl'esented by m. Previously 
we have seen that the vapollr corresponding 
with snch a point of contact has the com­
posi.tion F; in fig. 2 m anel F are joined 
fol' ,this l'eason by a conjllgation-line. 

Fig. 2 It follows from this eledllction that the 
pressure IS a Il1lmmnm in the point m of fig. 2 a,nel inrreases ft'om 
1n in Ihe dil'ection of the al'l'OWS, conseqnently towal'ds n anel lt. 
Fm·ther it is evident that the vapoUl'pl'eSbUre in ft is highel' than in n. 

2. The lempemtme IS highel' than the point of maximum subh­
mation Tl( and 10wer than tlle minimum-meltingpoint TF of the 
substance F. 

In a similal' way as we have derluced the general case fig. 7 (I), 
wo now find with the ai.d of fig. 1 a diagram as fig. 3. Ourve 
lt a C b n is the satul'ationcurve under its 
own vapour-pt'esSlll'e, "'1 al Cl bi 12] is the 
conespolleling straight vapoul'-line. As 
we have assumed that the tempel'atul'e 
is higher than TK but 10we1' than TF, 
F must, as in fig. 3, be situateel bet ween 
n and nl' Thel'efol'e, here we have the 
case that the VapOlll', corresponding in 

I fig.:l with the liquid q, is l'epresented 
by q2; the liclUid-Clll'Ye of the region 
L-G going through the point q may, 
thel'efore, be l'epl'esented by Qq'2 (tig.:1). 
lt follows fl'Om this position of Qq'2 that 
on furthel' decl'ease of pressllre Ihe liquid­
curve of the l'egion L--G no more 
intersects curve pC]. Fig. 3. 



- 10 -

Fl'om thif:j deduction it follows that tbe pl'eSSUl'e lncl'enses along 
curve lm in the dil'ection of the al'l'OWS, thel'efol'e, from n towards 
hand that on tbis curve lm neither a point of maximum- nor a 
point of minimumpressul'e OCCUl'S. 

3. The tempéllatUl'e is higher than the minimum-meltingpoint 1'F 
anrl 10wer than the point of maxunull1-temperatlll'e TH of the binary 
equilibrium F + L + G. 

In a similar way as we have 
deduced the general case fig. 12 (I) 
we now find fOl' the saturationclll've 
nnder its own vapour-pressure an 
exphased curve, in tig. 4 a similal' 
curve is represented by the curve 
ltn mdicated by 5; the pressure 111-

creases in the direction of the arI'OW, 
consequently from n towards h. 

In tig. 4 the satul'ationcurves 
ll11del' theÎl' own, vapour-pressul'e of 
F are drawn for several tempera­
tm'es (T1-T6). When we take Tl 
and T2 lower than 'l.K., then a 
point of minimum-pressure must 
occnr on the curves, indlCated by 
1 and 2. When we take T4 between 
TK and T F and 1'6 between 'l.lt 
and TIl, then the saturationcul'ves Fig. 4. 
under their own vapourpressllre have a posrtion as the curves /m 
mdicated by 4 and 5, on winch no point of minimumpreS8Ul'e 
oecurs. At TH the saturatIOnrllrve dl'3appears in a point Hand 
the cOl'l'esponding straight vapourhne in a pomt Hl (not dmwn 
in the tigure). 

On the saturationeurv~ of the tempe~'atul'es 1'1 and 1'2 we tind 
a point of minimum-pressme nl, this pomt has dlSappeal'ed on the 
saturationcurve of the tempel'ature 1'4; belween these two temperatm'es 
we consequently find a tempel'atlll'e 1'3' at whirh the point In coin­
cid es wIth tlle tel'minatll1g point n of tbe satUl'atlonCUL'\ e undel' !tb 

own vapOUl'pressl1l'e . .As the vapollL' bclongll1g to a point of minimum­
pressure ltae:; always the compositIOn F, this case OC('Ul'S when the 
IftîUld n call he 111 eqUlhbl'iutn with a HtpOlll' P. As then tbe binary 
eqUlhbnum ]i' + L + vapoUl' P eall O('CUl' tlus temperature Ta 
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éonsequently 
sub&tance F. 

I 

is the rnaximnmternpemture of sllblimation Tl{ ot' thé 

Now we will dedll('e in another way the satumtioncul'ves uncler 
thell' own vapour pl'essnre of F. The ('onditions of equilibrium are: 

az ) az (J aZ l ./ az aZl Z -,v- - CIJ-I?) -=; Zl- !Jl-/i)-a =-; - -- . (17) 
a,v àp _ Yl ày - aYl 

These cOllditions follow also fl'om the equations 1 (H) vrhen we 
eqllate l1e1'ein a = 0 and ,'IJl = 0 and when we C'onsider 2 1 as inde­
pendent of tCI' We put 

Z = U + RTlIJ log lIJ 

The t11l'<:le t'onditions (17) pass then into: 

àU J au )" 
U-{IJ - - (Y-J I) - - l,J {IJ -; = 0 

à.1J ay 

Fl'om thi8 follows· 

aZl 
Zl-(YI -,'1)-a -;= 0 

Yl 
au aZ

I ---=0 
ay aYI 

. . . . . 

[.vr + (y-/?) s -I- RT] dm +- [ms + (Y-) tl dy = 
= [V-{/] av _ (Y_I") àV - v] dP a,1) ay 

I [V r:I aVl ] (YI-li)tldYl= I--(YI-,") àYl -v dP 

(18) 

, (19) 

. , (20) 

. (21) 

(22) 

(23) 

sd,v + tdy-t
l 

dYI = (a V! _ aV)dP 
cly! cly 

. . (24) 

With the I1ld of (23) we may al80 write 1'01' (24): 

(Yl- -) sd.v + (YI-'I~) t cly = VI - (YI-,'i) - - v dP [ ~ av ] 
dy 

(25) 

so that for the relation between dx, dy, d!h' and dP we shall considel' 
the equations (22), 23), and (25) .. 

In ordel' to examine if a point of rnaximum- or of minimum­
preS&llL'C is possibJe on the 8atUl'ationcul've under its own vapollr­
preSSlll'e, we take (23). From this follows elP = 0 when 

YI = (J . . • • • . . • . (26) 

In order 10 examine if the pre&Slll'e f'or this point is a maximum 
or a millimum, we develop (20) furthel' into a series; 'when we 
eqllate herein Yl = ('i, we find: 
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As VI-v and tI are both positive, it is apparent that the pressUl'e 
is a minimum. In accordance with our previous considerations (see 
fig. 2) we finu therefore: on the saturationcUt'"e under its own. 
vapourpJ'essure .of the solid substance F the pressure is a minimum 
in a point rn, when the va.pOUl' cOl'l'esponding with this liquid has 
the composi.tion F. 

In order to examine the cha.nge of pressure along the saturation­
curve in the vicinity of ita extreme ends hand n (fig. 2, 3, and 4) 
we equate x = 0; from (22) and (25) we then obtain: 

av 
Uy--(1) s + RT] d.v + (y -(J) t dy -= [V-(y-(1) a;; -v] dP (28) 

(J ) av 
(YI-,J) sda; + (yl-fj) t dy = [VI-(YI-(I) a;; -v] dP. . (29) 

From thi.s follows: 

(YI-f/) RTda; = [(YI-(1) V + ({J-y) VI + (Y-YI) v] dP . (30) 

When b. VI is tbe ('bange of volume, which OCCUl'S when between 
the three phases of the binary equilibrium F + L + G a l'eaction 
occurs, in wbich one qUa.I~tity of vapoUl' arises, then we may write 
for (30): 

dP_- _ {J-Yl RT 
. 6.V . dm. . . .. (31) 

{J-y I 

Now b. VI is always positivo in the binary system F + L + G, 
ex cept between the minimum-melting pomt Tp and the point of 
maximumtemperature 'l'H, where b. VI is negative. In fig. 4 b. VI 
is consequently uegative tor liquids between F and H, positive for 
all other liquids on the side BC. 
I~-y is positive, when the liquid is situated between F and C, 

negative when the liquid is sitllated between F and B (ligs. 2-4). 
/1-YI is p'ositive, when the vapour is situated betweell F and C, 

negath'e when the vo.pour is sitllated between F and B (figs 2-4). 
In the points h of figs. 2-4 is b. V1>0, ,:'-y>Oand (1-Yl>0; 

from (31) follows thel'efore elP < O. From each of the points lt 
the pre~sure must, therefore, decrea.se along the so.turtl.tioncUlTes, we 
see th at this is in o.ccordance with t.he direction of the o.rrows in 
the vicinity of the points h (figs. 2 -4). 

In the point n of fig. 2 is b. VI> 0, (1-y < ° o.nd /1-YI < 0; 
fl'om (31) follows, therefore elP < 0. Consequently we find that 
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the pI eSSlll'e in fig. 2 mllst decl'ease from 17, along tbe sn.turatlon'­
CUl"ve, which is in accordance IVith fJg. 2. 

In the point n of figul'e 3 is .6.V1 >0, /1-y<Oand/J-Yl>'0; 
from (31) follows, therefore dP> 0. Consequenily the pl'essure 
mllst inCl'ease from the point n in fig. 3 along the saturationcurve. 
which is in accorclanco with fig. 3. 

In tlle point n of curve 5 in fig. 4 is .6. V1 < 0, !i'-y> ° and 
fJ- Yl > 0; from (3J) follows, therefol'e dP> 0. Uonsequently 
the pl'essme must incl"ease from n along ('L1l've 5, which is in 
a('C'ordance with the direction of the arrolVs. 

We may summarise the above-mentioned results also in th,e 
foJlowing way: when to the bmary equilibrium F+L+G (in which 
F is a compound of two volatile components) at a constant tempera­
bll'e we add a 8ubstance, whieh is not volatile, -then the pressure 
incl'eases whel1 the binary eqUlllbrillll1 iE> bet ween the point of 
maximllm-sublimation TI( and the point of maximum temperature 
TH; in all olher cases the presslll'e decreases. 

In the consideration of the genel'al case, that the vapour contains 
the three eomponents (XI and XII) we have deduced that the 
satumtioncurves under Iheir own vapourpl'essure can disappeai' iil 
two ways at increase of pressnre. 

1. The saturationcli{'ve of the temperatm'e TH disappears in the 
point H on the sidE' BG [fig. 5 (XI)]. 

2. The satUl'alionClll've of the tempemtUl'e 111 touches the side BG 
in Ihe point H p,nd is fnrther sitnated within the tl'iangle ; at further 
incl'ease of T it forms a closed curve sitllated within the triangle, 
''I'hich disappeat·s at TR in a point within the tl'iangle [tig. 6 (XI)]. 

In the case now under consideratioll, that Ihe vapour C'ollsists only 
of Band G, only tlle case 1 OCCIll'S; this has already been discussed 
above and is I'epreseuted in fig. 4. It ~'ollows already immediately 
fl'om lhe following that the case 2 cannot occnr. On a closed 
saturntioneurve under its own vapOUl'pmSSllre a point of maximum~ 
and a. point of minimllmpressure OCCllL'S. On the curves now nnder 
considemtion onl.1', as we saw hefore, a point of minimumpressnre 
can occur, so that closed Sallll'atIOnC'lll'ves are im posE>ible. 

We may deduce I IJ is also i 11 1 he following wt"ty and we may 
prove at the same time t bese curves, just as in the general case, to 
be parabolas in the vicinity of H. 

When wc C'onsider the binary equilibdum Ji' + liquid H + 
vapoUl', Ihcn t/.: = 0; we equate Y = YOl y, = Yl'O and the pl'essure 
= Pjj. To tllis equilibrium applies: 
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, 
, au 
u - (Yo-(1) ay -;= 0 

turther we have: 

au 
dy 

181 

(YI'o-/1) V + «(~-Yo) VI + [YO-YI'O] v = 0 
whieh eondition we mayalso write: 

. (33) 

V-v Vl-v V - 'V 
--- I =(..L •••• (34) 

yo-{1 YI'o-f1 YI'O-YO 
Fot' a ternary eqqilibrium F + L + G, the liquid of whieh is 

situated in thc vieinity of point H, the pressure is equal to 
PlI+ J'C, x = g, Y = Yo + 1) and YI = !f1'O + lil· 

The three equations (17) pass, then, wheu we use the eonditions 
l22) into: 

(
aV 'av 

RTg+[v- V]J'C+l1·~2 +ttf]2+l ap - ap)J'C2 +.sg'11+' .+(y-fJ)L=O (35) 

[v- VI] :re + t tI '111 2 + t (~~ - aa; ) J'C2 + ... + (YI-fJ) LI = 0 (36) 

L= BI ..•.•..•. (37) 

Herein is: 

av as at a2 v ( 
L = s5 + t '11 + a:re + ~ aal g2 + ~ a '112 + i a ap:rt2 + 

V V Y (38) 
as a2 v a2 V 

+ -a ~ '11 + ~ g :re + -a 11 :re + ... 
Y ua:l1Y y2 I 

a VI at l a2 VI a2 VI 
LI = tI '1h + a:re + t a '111!1 + t a ap J'C2 + ~ ')11 J'C + .•. . (39) 

VI VI .1h YI , 
In (35) and (36) !lo and yl.O are l'eplaeed by y tthd Yl; we shall 

do the same in tlle following equations. When we multiply (35) 
by YI -~ and (36) by y-{:J, then it follows with the aid of (37) i,hat : 

(YI-~) RT ~ + ~ (YI-~) l' ~2 +, t (YI-ti) t't12-t (y-m tI ')1/ 

[ 
dV aVI av J 

+ t (~-YI) dP t (Y-~) ap + (YI-Y) ap J'C 2 +(YI-[3).sg'11=O.(40) 

From (36), (37), and (·iO) it follows that this ean be satisfied by: 
lh of the order :rr, '). of the order :re and ~ of the order J'C2, 

From (35), (36) and (37) then follows: 

(4l) 
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/ 

Substituting these valnes ill (40) wc find: 

2 (Yl-{:J) Rl' g = a n~ . (42) 
,"" 

wherein a has the same value as in (21) (XII). 
Frolll this it follows with the aid of the first relation (41) that: 

2 (y l-fJ) RT g = ( a V)2 '1)2 • 

f-t--ay 
. . . . (43) 

In the same way as in (XII) we find that we may write fol' this : 

d2l 
whel'ein - is fixed by (24) (XII0., From Ihis it follows that the 

dp2 

curve going in fig. 4 thl'ough the point H is parabolically cUl'ved 
in this point and touches t11e side BG in this point. 

d2l 
As in this point y--fJ < 0, Yl- y < 0, 1/1 - fJ < ° and dp2 > 0, 

~ is always llegative. From this it folJows that this parabola has 
only the point H in common with the triangle and il; fUl'thel' 
sHuated completely oulside the tl'iangle. Consequently onIy thè point 
H represents a liquid; Hs other points have no rneaning. 

-
(To be continued). 

Chemistry. - "The system Ammonia-water". By Prof. A. Sl\HTS 

and S. POSTMA. (Comrnunicated by Prof. J. D. v. D. WAALS). 

(Communicated in the meeting of May 30, 1914). 

Aftel' the preliminary communicalioll 1) on this subject the inves­
tigation of the system NH a-H 20 has been continued in different 
directions, and it lias rlOw been completed. 

The contiuued research was directed in the first place to the 
accumte detel'rnination of (he meltingpoint lines, corl'esponding 
wüh (he pl'eSSllre of oue atmosphel'e. These detel'rninations, which 
we re llOW cal'l'ied ont by rneans of a gauged L'esisü"l1('e thel'mo-

1) These Proc. XII, p. 186. 


