Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

F.M.Jaeger & Smit, M.J., The temperature-coefficients of the free surface-energy of liquids at temperatures from -80° to 1650°C II. Measurements of some aliphatic derivatives, in: KNAW, Proceedings, 17 I, 1914, Amsterdam, 1914, pp. 365-385

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl) > 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

§ 20. In the case of POTASSIUMCHLORATE: $KClO_3$, the maximum pressure H was 3,573 mm. mercury at 413°.5 C; at 443°.5 C. it was: 3,540 mm. The radius of the here used silver-capillary tube being: = 0.03460 cm., the free surface-energy is calculated:

At 413°.5 C. $\chi = 82.4$ Erg. pro cm².

At 443°.5 C. $\chi = 81,6$ Erg. pro cm².

At the last mentioned temperature the salt commenced to decompose already distinctly, while O_2 was split off; at higher temperatures therefore the values of χ appeared to *increase* gradually by the generation of $KClO_4$ and KCl.

It was not possible therefore to investigate the values of the temperature-coefficients at higher temperatures; in every case however they seem to be rather small.

With SILVERNITRATE: $AgNO_{a}$, the value of χ is about 164 Erg. pro cm². at 280° C; at 410° C. it is about 153.8 Erg In this case the temperature-coefficient is also in the neighbourhood of 0.6 or 0.9, — this being a rather small value too.

§ 21. It is not my intention, to discuss now already the here mentioned data, nor to add the remarks, which are suggested thereby. It is better to postpone that task, until the complete experimental material now available will be published. The given instances may however prove, that the question: how to measure the surface-tensions of liquids with great accuracy within a temperature-interval, from -80° C. to 1650° C., may be considered now as completely solved.

Groningen, May 1914. Laboratory of Inorganic Chemistry of the University.

Chemistry. — "The Temperature-coefficients of the free Surfaceenergy of Liquids, at Temperatures from —80° to 1650° C".
II. Measurements of Some Aliphatic Derivatives. By Prof. Dr. F. M. JAEGER and M. J. SMIT. (Communicated by Prof. P. v. ROMBURGH).

§ 1. In what follows the data are reviewed, which were obtained by us in the study of a series of aliphatic derivatives after the method formerly described by one of us 1).

With respect to the liquids here used, we can make the following general remarks. No product of commerce, not even the purest ob-

1 }

¹⁾ F. M. JAEGER, These Proceedings (1914).

tainable, can be esteemed suitable for this kind of measurements: the small traces of humidity already, which even the best chemicals always contain, are sufficient to make the results unreliable. Most of the organical liquids of commerce however seem to contain several admixtures, in small quantities or even larger quantities of water. We often obtained a first purification by distilling a small fraction from it, whose boiling point remained constant between 1° or 2° C. In several cases even this appeared not to be possible: in such case the preparation was dried during some days by means of anhydrous sodiumsulphate; then, if the special character of the substance did not forbid this, it was dried again during a long time by means of freshly sublimed phosphorpentoxide, after which the fractional distillation was tried again. Commonly it appeared to be possible, to separate from it a fraction, whose boiling point remained constant between 1° or 2° C. With some preparations we succeeded in drying them by means of metallic sodium. After very dry fractions, boiling within a few degrees, had been obtained in this way, they were once more distilled with a small flame only, or on the water-bath, under atmospheric or reduced (12-20 mm.) pressure; in this operation only the fraction, boiling within an interval of $1 C^{\circ}$, was used for further treatment. The liquid was then cooled during several hours in a closed vessel, by means of a mixture of salt and ice, or by a bath of solid carbondioxide and alcohol. If it crystallized, a further purification was often possible by repeated freezing and decanting. Often a very thin layer of a solid substance (eventually of ice) was deposed at the walls of the vessel, the rest remaining liquid and transparent; the liquid portion was poured into a dry, clean vessel then, and the said operation repeated, till no solid layer any more appeared. If however the phenomenon continued to appear, the liquid was treated again at least during a week with fresh phosphorpentoxide, and the freezing repeated again and again. Finally the purified liquid was distilled once more under atmospheric or reduced pressure; only the fraction, boiling within half a degree was collected then for the measurements. It is hardlynecessary to mention, that hygroscopical liquids were preserved and treated in a suitable manner. The thus obtained liquid was commonly only a very small fraction $(10^{\circ}/_{\circ} \text{ or } 20^{\circ}/_{\circ})$ of the original commercial preparation; it must be remarked, that the observed boilingtemperatures often differed appreciably from the data, given in the literature, and in several cases appeared to be *lower* than those; - which perhaps can be explained by the fact, that in the distillations, described in the literature, the liquid was heated too rapidly.

367

In our experiments the speed of distillation often did not exceed about six drops every minute. In some cases, e.g. with toluene, it was impossible to distil from the product of commerce a fraction, fulfilling, all conditions; in such cases the substance was prepared in some other way, e.g. the mentioned toluene by dry distillation of purified calciumphenylacetate; etc. In the series of compounds described, several were taken from the collection of scientific preparations of this laboratory; from these also only the small, constantly boiling fraction was used for our purpose.

§ 2. Notwithstanding the by no means negligible differences of the boilingpoints observed, the specific gravities of the liquids in most cases differed only slightly or not at all from the data, given in the literature. If this was the case, - and we always controlled this by some pycnometrical determinations at 25° C., — the specific gravities at other temperatures were calculated from the expansionformulae eventually already determined. If the direct determination of d_{10}^{250} did not agree with the number, given in literature, or if the expansion-formula was not known accurately enough, three specific gravities, e.g. at 25°, 50°, and 75° C. or at a higher temperature, were determined pycnometrically, and from these determinations an empirical equation of the second degree with respect to t, was calculated. This is completely sufficient here, because the specific gravities were all abbreviated with three decimals: an account of the densities in more than three decimals, must be esteemed valueless here, with respect to the obtained accuracy of the measurements. With most liquids, the mean decrease of the specific weight for 1° C. does not differ largely from 0,001. For temperatures of -70° and above 100° C. it was often necessary to extrapolate by the aid of the established empirical formulae; although conscious of the uncertainties, which are always connected with such extrapolations, we are of opinion that we have not introduced here in this way errors of appreciable amount, because for these values such an error could manifest itself only in the third decimal place, and dilatation of the liquids occurs ordinarily in so regular a way, that the probability of heavy errors is thus highly diminished by this circumstance.

Moreover another way was not available at this moment, if not with large sacrifice of time and labour.

§ 3. In the following the obtained results are collected in tables. For the value of 1 mm. mercury at 0° C., 1333,2 Dynes (45°), was calculated, and this value was used in all further calculations; in the tables all numbers for χ and μ are adjusted by the necessary corrections. The graphical diagrams relate to the variation of the so-called "molecular" surface-energy μ with the temperature; in the same diagram analogous, homologous compounds or such, related by simple substitutions, are put together; this will be of practical use for the comparative considerations later to be given, and allows a rapid review of the behaviour. For the construction of the diagrams, not the numbers of the tables, but those following directly from CANTOR's formula, are used; therefore the correction, necessary to derive the absolute value of μ from these readings by diminution, are indicated on each curve in the diagrams.

§ 4. Aliphatic Derivatives.

This series of measurements relates to the following aliphatic Molecular Surface

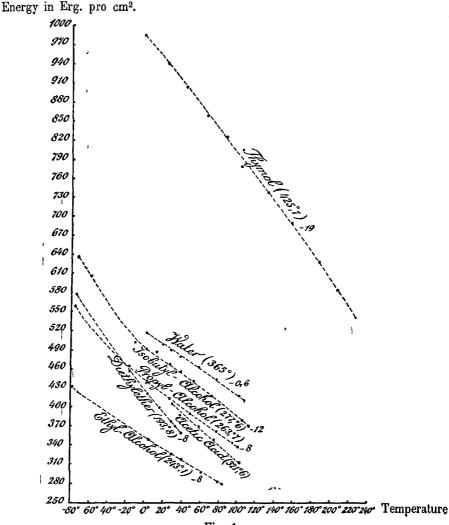


Fig. 1.

substances: norm. Propylalcohol; Isobutylalcohol; Diethylether; Ethylformiate; Ethylchloroformiate; Ethylacetate, Methyl-, Ethyl-, and ŧ

369

!

~

4

eture C.	Maximum Pressure H Surface-		Specific	Molecular	
Temperature in ° C.	in mm. mer- cury of 0° C.	in Dynes:	tension ½ in Erg. per cm³.	gravityd ₄₀	Surface- energy p in Erg. pro cm ²
-76° -21 0 25.5 45 74.5 90.6	0.755	1559.8 1245.4 1167.3 1075.4 1006.4 905.3 850.2	33 4 26 6 24.9 22.9 21.4 19.2 18.0	0.881 0.837 0.820 0.800 0 784 0.759 0.746	557.4 459.3 435.9 407.5 386.0 353.9 335.6
	cular weight: substance boil	Dep	lius of the Ca th: : 0.1 mm		0.04352 cm.

I.

II.

ature C.	Maximum Pressure H		Surface tension 2	Specific	Molecular Surface-
Temperature in ° C.	in mm. mer- cury of 0° C.	in Dynes	in Erg. pro cm².	gravity d ₄ 0	
-71.5 -12 0.3 10.4 25.1 35.1 49.7 69.6 101	$1.149 \\ 0.890 \\ 0.853 \\ 0.825 \\ 0.783 \\ 0.756 \\ 0.723 \\ 0.670 \\ 0.594$	1531.8 1186.5 1137.2 1099.9 1044.5 1008.0 963.9 893 8 791 9	$\begin{array}{c} 33.0\\ 25.5\\ 24.4\\ 23.6\\ 22.4\\ 21.6\\ 20\ 6\\ 19\ 1\\ 16\ 9\end{array}$	0.885 0.828 0.817 0.807 0.794 0.785 0.771 0.753 0.731	631.5 510.1 492.5 483.9 460 9 447.7 432.2 407.0 367.4
Mole	cular weight:		lius of the Ca pth: 0.1 mm.	apillary tube:	0.04385 cm.

ature C.	Maximum 1	Pressure H	Surface- tension z	Specific	Molecular Surface-
Temperature in ° C.	in mm. mercury of 0° C.	in Dynes	in Erg. pro cm ² .	gravity d ₄₀	energy p in Erg. pro cm ²
$-75^{\circ} \\ -20.5 \\ 0.2 \\ 10.9 \\ 25 \\ 3 \\ 29.5$	0.990 0.748 0.670 0.628 0.584 0.574	1319.9 997.2 893.8 837.2 778.6 766.2	28.5 21.5 19.2 17.9 16.7 16.4	0.818 0.758 0.735 0.723 0.707 0.707	574.7 456.2 415.8 392.0 , 371.2 365.9
Mole	cular weight:		ius of the Ca th: 0.1 mm.	pillary tube:	0.04385 cm.

Isobutyl-Isobutyrates; Acetone; Methylpropylcetone; Ethyl-Acetyloacetałż; Methyl-Methylacetyloacetate; Ethyl-Propylacetyloacetate; Methyl-, Ethyl-,

III.

1	v	
	ν.	

ıre	Maximum I	Pressure H	Surface-		Molecular
-Temperature in ° C.	in mm. mercury of 0° C.	in Dynes	tension _x in Erg. pro cm ² .	Specific gravity d ₄₀	Surface- energy μ in Erg. pro cm ⁵
$-73^{\circ} \\ -19.5 \\ 0.1 \\ 11.4 \\ 25.5 \\ 35 \\ 50.1 \\ $	1.236 0.971 0.886 0.838 0.786 0.740 0.695	1647.8 1295.6 1181.3 1117.4 1047.9 285.6 926.6	35.6 27.9 25.4 24.0 22.5 21.1 19.8	0.917 0.845 0.818 0.803 0.785 0.772 0.757	565.5 468.0 435.4 416.5, 396.4 375.9 357.4
	cular weight: e boilingpoin cm ² .	Dept	ius of the Caj th: 0.1 mm. the value c		

۱

370

Propyl-, Butyl-, Isobutyl-, and Amyl-Cyanoacetates; Tri-, and Tetra-chloro-methane; and Isobutylbromide.

V.	

ature C.	Maximum 1	Pressure H	essure <i>H</i> Surface- tension <i>x</i>		Molecular Surface-
Temperature in ° C.	in mm. mercury of 0° C.	in Dynes	in Erg. pro cm ² .	gravity d_{4^0}	energy p in Erg. pro cm ²
-74.2 -20.5 0.3 25.5 45 74.3 90.8 99.6	0.996 0.913 0.831 0.762	1653.2 1327.9 1217.8 1107.6 1015.7 896.1 818.1 785.8	35.4 28.3 26.0 23.6 21.6 19.0 17.3 16.6	0.936 0.872 0.852 0.826 0.806 0.777 0.761 0.753	721.4 604.6 564.1 522.7 486.3 438.3 404.7 391.1

Depth: 0.1 mm. ~r

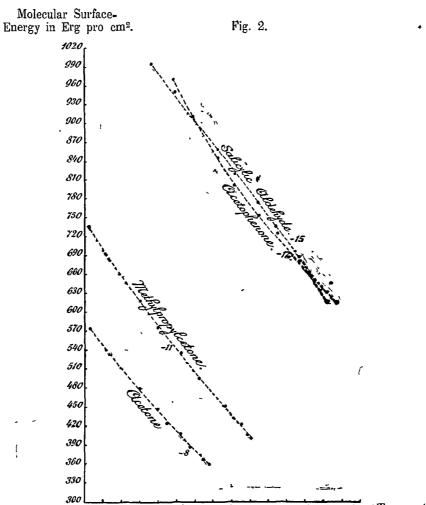
The substance boils at 101.°3 C. constantly.

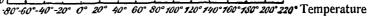
٠,

,

} 4

VI.


Ethylformiate: $HCO \cdot O(C_2H_5)$.						
ature C.	Maximum Pressure H		Surface-	Specific	Molecular Surface-	
Temperature in ° C.	in mm. mercury of 0° C.	in Dynes	in Erg. pro cm ² .	gravity d ₄₀	energy μ in Erg. pro cm ² .	
*-76 [°] .5 *-16.2 * 2.2 24.9 35.2 49.2	1.239 0.945 0.864 0.802 0.757 0.718	1661.2 1259.9 1151.9 1069.2 1009.6 957.2	37.8 28.5 26.0 22.9 21.9 20.5	1.032 0.958 0.938 0.910 0.899 0.879	502.7 398.3 368.5 331.2 319.3 303.4	
Moleci	Molecular weight: 50.0.5 Radius of the Capillary tube: 0.04408 cm.; in the observations, indicated by *, this radius was: $R = 0.04638$ cm. Depth: 0.1 mm.					
remair	r carefully d is a relativel χ is 19.9 Erg.	y thin liquid	ther boils at 1 as far as -	54.°3 C. co - 79° C. At 1	nstantly; it the boiling-	


۰

- 8 -

-

1

372

The second second second second

'n	$\tilde{7}$	ă
Ð	1	o

.

.

r			V II.		······································
	Eth	ylchloroform	niate: Cl.CO	. O (C ₂ H ₅).	
ature C.	Maximum Pressure H		Surface tension z	Specific	Molecular Surface
Temperature in ° C.	in mm. mer- cury of 0° C.	in Dynes	in Erg. pro cm ² .	gravity d ₄ c	energy µ in Erg. pro cm².
- 75.5 - 21 0 25 45.3 70.2 84.8	$1.353 \\ 1.046 \\ 0.951 \\ 0.847 \\ 0.774 \\ 0.692 \\ 0.643$	1803 8 1395.0 1269.2 1129.2 1031.8 922.6 857.8	42.4 32.6 29.6 26.2 23.9 21.2 19.8	1.278 1.186 1.160 1.127 1.095 1.050 1.022	819.0 661.9 609.9 550.3 511.7 466.8 443.9
Th	cular weight: e compound t 3 Erg. pro cn	Dept ooils at 91.°5	us of the Cap h: 0.1 mm. C. constanti	-	

,
VIII.

	Ethylacetate : CH_3 . CO . $O(C_2H_5)$.						
ature C.	Maximum	Pressure H	Surface- tension x	Specific	Molecular Surface•		
Temperature in ^c C.	in mm. mer- cury of 0° C.	in Dynes	in Erg. pro cm ² .	gravity d ₄ .	energy μ in Erg. pro cm ² .		
$-74^{\circ} -74^{\circ} -20_{\circ} 0_{\circ} 25.5_{\circ} 34.7_{\circ} 55_{\circ} 70_{\circ} -70_{\circ} -70_{\circ$	$1.274 \\ 0.994 \\ 0.892 \\ 0.780 \\ 0.744 \\ 0.679 \\ 0.623$	1698.5 1325.2 1189.2 1039.9 992.5 897.2 838.5	36.6 28.4 25.5 22.2 21.2 19.1 17.8	$1.016 \\ 0.949 \\ 0.924 \\ 0.893 \\ 0.881 \\ 0.856 \\ 0.829$	$716.8 \\ 582.1 \\ 532.1 \\ 473.8 \\ 456.6 \\ 419.3 \\ 399.2$		
Molecular weight: 88.06. Radius of the Capillary tube: 0.04385 cm. Depth: 0.1 mm. After very carefully drying and repeated distillation, this ether boils at 77.°1 C. constantly. It remains a thin liquid as far as -80° C. At the boilingpoint the value of χ is: 17.2 Erg. pro cm ² .							

Proceedings Royal Acad. Amsterdam. Vol. XVII.

-

•

-

 $\mathbf{25}$

ł

J

.

~

574	
374	

Methyl-Isobutyrate: $(CH_3)_2 CH \cdot CO \cdot O (CH_3)$.								
ature C.	Maximum	Pressure H	Surface- tension	Specific	Molecular Surface-			
Temperature 1n ° C.	in mm. mer- `cury of 0 C.	ın Dynes	in Erg. pro cm ² .	gravity d ₄ ,	energy "'in Èrg. pro cm².			
- 73 [°] - 21.5 0.5 25.3 45 74.7 91.3	$1.296 \\ 1.006 \\ 0.903 \\ 0.805 \\ 0.727 \\ 0.631 \\ 0.589$	1728.0 1341.9 1204.0 1073.2 969.7 840.9 785.8	$37.1 \\ 28.7 \\ 25.7 \\ 22.8 \\ 20.6 \\ 17.8 \\ 16.6$	0 995 0.936 0.911 0.882 0.859 0.825 0.806	$\begin{array}{c} 813.1\\ 655.1\\ 597.3\\ 541.5\\ 497.9\\ 442.0\\ 418.6\end{array}$			
Molecular weight: 102.08. Radius of the Capillary tube: 0.04352 cm. Depth: 0.1 mm. The substance boils constantly at 91°.8 C.								

137	
IX.	

.

Ethyl-Isobutyrate: $(CH_3)_2 CH \cdot CO \cdot O (C_2H_5)$.							
ature C.	Maximum I	Pressure H	Surface- tension z	Specific	Molecular Surface-		
Temperature 1n ° C.	in mm. mer- cury of 0 ' C.	in Dynes	in Erg. pro cm ² .	gravity d ₄₀	energy # in Erg. pro cm ² .		
-78.1 -21 25.2 45 74.3 90.8 109.5	$\begin{array}{c} 1.165\\ 0.940\\ 0.867\\ 0.779\\ 0.717\\ 0.624\\ 0.572\\ 0.507\\ \end{array}$	$\begin{array}{c} 1553.2\\ 1253.2\\ 1155.9\\ 1038.6\\ 955.9\\ 831.8\\ 762.9\\ 675.5\end{array}$	33 3 26.8 24.6 22.1 20.3 17.6 16.1 `14.2	$\begin{array}{c} 0.976 \\ 0.913 \\ 0.891 \\ 0.859 \\ 0.837 \\ 0.809 \\ 0.791 \\ 0.769 \end{array}$	$\begin{array}{c} 805.4 \\ 677.7 \\ 632.3 \\ 582.0 \\ 544.0 \\ 482.4 \\ 448.0 \\ 412.6 \end{array}$		
Molecular weight: 116.1 Radius of the Capillary tube: 0.04352 cm. Depth: 0.1 mm. The substance boils at 110.°2 C. constantly. At76 C., it is again a thin liquid; it was only slightly turbid, probably by extremely fine crystals.							

,

~

,

			XI.				
	Isobutyl-Isobutyrate: $(CH_3)_2CH \cdot CO \cdot O(CH_2 \cdot (CH \cdot (CH_3)_2))$.						
Maximum Pressure H Surface-							
Temperature in ° C.	in mm. mer- cury of 0° C.	ın Dynes	tension / in Erg. pro cm².	gravity d ₄₀	Surface- energy ν in Erg. pro cm ² .		
76.5 21.3 0 25.4 45 74.7 91.1 109 2 134.5	$\begin{array}{c} 1.182.\\ 0.927\\ 0.865\\ 0.785\\ 0.731\\ 0.638\\ 0.596\\ 0.545\\ 0.469\end{array}$	$\begin{array}{c} 1576.3\\ 1236.2\\ 1153.5\\ 1047.8\\ 974.3\\ 850\ 2\\ 795.0\\ 726.1\\ 625\ 0 \end{array}$	$\begin{array}{c} 33.8\\ 26.4\\ 24.6\\ 22.3\\ 20.7\\ 18.0\\ 16.8\\ 15.3\\ 13.1\\ \end{array}$	$\begin{array}{c} 0.951 \\ 0.896 \\ 0.875 \\ 0.850 \\ 0.830 \\ 0.801 \\ 0.784 \\ 0.766 \\ 0.740 \end{array}$	960 6 780.8 739.2 683.1 644 2 573.6 543 1 502.3 440.1		
Molecular weight: 144.11. Radius of the Capillary tube: 0.04352 cm. Depth : 0.1 mm. The compound boils at 147.°2 C. constantly.							

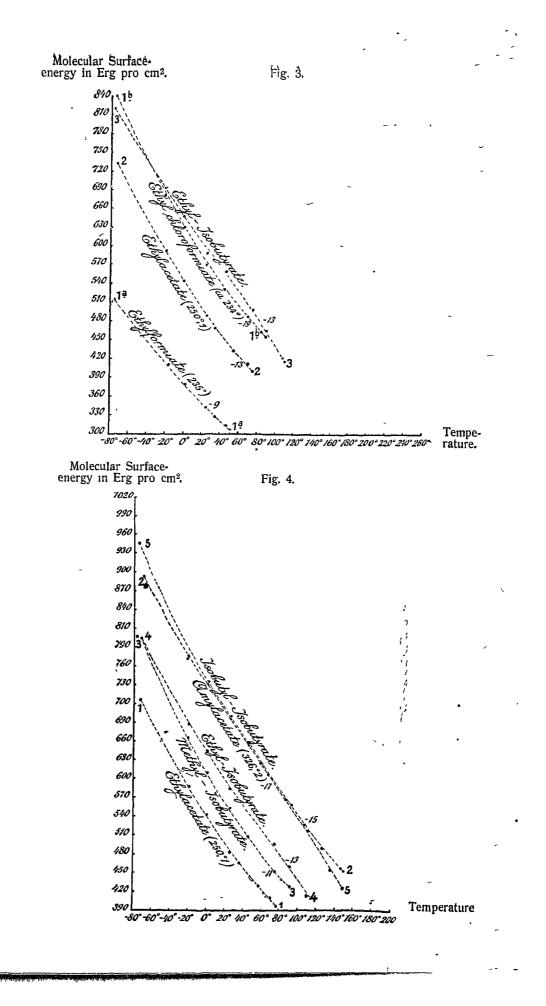
XII	
1711 *	

Ethyl-Acetyloacetate: $CH_3CO \cdot CH_2 \cdot CO \cdot O(C_2H_5)$.						
ature C	Maximum	Pressure H	Surface- tension 2	Specific	Molecular Surface- energy p in Erg. pro cm ² .	
Temperature In ° C	in mm. mer- cury of 0° C.	ın Dynes	in Erg. pro cm ² .	gravity $d_{4^{\circ}}$		
-20° 1 * 25 * 35.5 * 49.5 71 * 89 **125 **153 **176	$\begin{array}{c} 1.210\\ 1.133\\ 1 113\\ 1.069\\ 1.024\\ 0.906\\ 0 841\\ 0 774\\ 0 675\\ 0.596\end{array}$	1612.8 1510.5 1483.6 1424 7 1365.8 1207.4 1121.2 1031.9 900.2 794.9	$\begin{array}{c} 36.7\\ 34.3\\ 32.0\\ 30.7\\ 29.4\\ 27.3\\ 25.3\\ 21.7\\ 18.9\\ 16.6\end{array}$	$\begin{array}{c} 1.070 \\ 1.048 \\ 1 023 \\ 1.013 \\ 0.999 \\ 0.976 \\ 0.958 \\ 0.923 \\ 0 896 \\ 0 869 \end{array}$	$\begin{array}{r} 900.7\\ 853.5\\ 809.2\\ 781.4\\ 755.3\\ 712.3\\ 668.4\\ 587.7\\ 522.1\\ 468.0\\ \end{array}$	
Molecular weight: 130.08 Radius of the Capillary tube: 0.04638 cm.; in the observations indicated by *, it was 0.04405 cm.; in those by **: 0.04352 cm. Depth: 0.1 mm. _ The substance boils at 179.°6 C. constantly.						

•

£

.


 25^{*}

1

.

÷

,

-3	7	7
Ų	•	•

,

۰ ۲

$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Methyl-Acetylomethylacetate: $CH_3CO \cdot CH(CH_3) \cdot CO \cdot O(CH_3)$. H <t< td=""></t<>							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Temper in ?	cury of	in Dynes	in Erg. pro	gravity d ₄₀	energy µ in		
	71 21 0 25.3 45.5 70.2 85.2 117 138.2	$\begin{array}{c} 1.218\\ 1.137\\ 1.046\\ 0.985\\ 0.901\\ 0.856\\ 0.768\\ 0.709\end{array}$	1623.8 1515.7 1395.0 1313.2 1201.2 1141.2 1024.4 945.2	38.3 35.7 32.8 30.8 28.1 26.7 23.9 22.0	$1.071 \\ 1.050 \\ 1.024 \\ 1.003 \\ 0.977 \\ 0.962 \\ 0.930 \\ 0.908 $	939.3 887.2 828.9 789.2 732.7 703.4 644.0 602.3		

apillary tube: 0.04803 cm. Molecular weight: 130.08. Depth:0.1 mm.

Under a pressure of 18 mm., the substance boils at 75.°5 C.; in the at -71° C. very viscous liquid, the growing of the gas-bubbles took more than 60 seconds. The specific gravity at 25° C. is: $d_{4^{\circ}} = 1.0247$; at 50° C.: 0.9991; at 75° C : 0.9732. At t° C.: $d_{4^{\circ}} = 1.0500 - 0.001006t$ $-0.00000024 t^{2}$. .

XIV.

~

-

Ethyl-Propylacetyloacetate : $CH_3CO \cdot CH(C_3H_7)CO \cdot O(C_2H_5)$.						
ature C.	Maximum	Pressure H	Surface- tension z	Specific	Molecular Surface-	
Temperature in ° C.	in mm. mer- cury of 0° C.	in Dynes	in Erg pro cm².	gravity d ₄ ,	energy # in Erg. pro cm².	
	1.430	1906 0	43,6	1.082	1280.1	
20	1.142	1522.2	34.8	1.007	1070.2	
2.5	1.058	1410.1	32.2	0.978	1011.3	
** 25	1.018 👦	1356.6	29.4	0.948	942.7	
** 35	0.977	1302.2	28.2	0.934	913.2	
** 49	0.929	1238.7	26.8	0.916	879.2	
70	0.818	1091 0	24 8	0.889	831.3	
90.5	0.763	1017.7	23.1	0.866	786.8	
*125	0.714	951.5	20.2	0.833	706.0	
*143	0.669	891.5	18.9	0.816	669.7	
*152.9	0.641	, 854.8	18.1	0.806	646.7	
* 177	0.576	767.5	16.2	0.785	589.1	
*200 5	0.507	676.4	14.2	0.764	525.8	
Molecular weight: 172.13. Radius of the Capillary tube: 0.04638 cm.; in the observations indicated by *, R was 0.04352 cm.; in those indicated by **, it was 0.04408 cm. Depth: 0.1 mm. Under ordinary pressure the boiling point is 223.°6 C. constantly; notwithstanding the great viscosity of the liquid at76° C., it was yet possible here to determine the value of χ evidently very exactly, if the time of grow of the bubbles was sufficiently long (ca. 40 seconds).						

ر ،

1

ł

		XV		
Methyl-	Cyanoacetat	e: $CN.CH_2$. CO . O(CH ₃).	
Maximum Pressure H		Surface-	- Specific	Molecular Surface-
in mm. mercury of 0° C.	in Dynes	in Erg. pro cm ² .	gravity d ₄ 0	
(2.424) 1.443 1.362 1.337 1.184 1.116 1.043 0.987 0.877 0.789 0.713 alar weight: 9	the 0.043	observations 352 cm., in	indicated by	*, <i>R</i> was:
	Maximum 1 in mm. mercury of 0° C. (2.424) 1.443 1.362 1.337 1.184 1.116 1.043 0.987 0.877 0.789 0.713	Methyl-Cyanoacetat Maximum Pressure H in mm. mercury of 0° C. (2.424) (3231.6) 1.443 1923.2 1.362 1815.4 1.337 1.184 1578.3 1.116 1487.7 1.043 0.987 1315.8 0.877 1169.2 0.713 951.3 alar weight: 99.05. Radius the 0.042	Maximum Pressure H Surface- tension χ in Erg. pro cm2in mm. mercury of 0° C.in Dynesin Erg. pro cm2 (2.424) (3231.6) $(74.1)^{-}$ 1.443 1923.2 43.9 1.362 1815.4 41.4 1.337 1783.0 38.6 1.184 1578.3 35.9 1.116 1487.7 33.8 1.043 1390.8 31.7 0.987 1315.8 28.0 0.877 1169.2 24.8 0.789 1052.4 22.3 0.713 951.3 20.1 ular weight: 99.05 .Radius of the Capill the observations	Methyl-Cyanoacetate: $CN. CH_2. CO. O(CH_3).$ Maximum Pressure HSurface- tension χ in Erg. pro cm².Specificin mm. mercury of 0° C.in Dynesgravity d_{4^0} (2.424)(3231.6) $(74.1)^-$ 1.2221.4431923.243.91.1401.3621815.441.41.1221.3371783.038.61.0961.1841578.335.91.0701.1161487.733.81.0391.0431390.831.71.0280.9871315.828.00.9940.8771169.224.80.9650.7891052.422.30.9420.713951.320.10.921elar weight: 99.05. Radius of the Capillary tube: 0.04 the observations indicated by 0.04352 cm., in those with * 0.04408 cm.

~

-

-

- -

ţ

The carefully dried ether boils constantly at 203° C.; at -76 ° C. the
liquid is extremely viscous and gelatineous; although the time of
formation of the gasbubbles was about 100 seconds, the viscosity in
this case evidently diminishes the exactitude of the determinations of χ .
The specific gravity d_{AO} was at 25° C.: 1.0962; at 50° C.: 1.0698; at
75° C.: 1.0438; at t° : $d_{10} = 1.1231 - 0.001086 t + 0.0000004 t^{2}$.

XVI.

....

	Ethyl-Cyanoacetate: CN. CH ₂ . CO. O (C ₂ H ₅)							
ature C.	Maximum	Pressure H	Surface- tension z	Specific	Molecular Surface-			
Temperature in ° C.	in mm. mer- cury of 0° C.	in Dynes	in Erg. pro cm².	gravity d ₄₀	energy μ in Erg. pro cm ² .			
- 17° 0 ** 25 ** 35.5 49 71 90 * 125 * 153 * 176 * 201	$\begin{array}{c} 1.313\\ 1.245\\ 1.222\\ 1.188\\ 1.083\\ 1.016\\ 0.951\\ 0.896\\ 0.803\\ 0.727\\ 0.651\end{array}$	$\begin{array}{c} 1750.8\\ 1660.2\\ 1628.8\\ 1583.5\\ 1444.5\\ 1354.0\\ 1267.8\\ 1194.8\\ 1070.8\\ 969.7\\ 868.6 \end{array}$	$\begin{array}{c} 39.9\\ 37.8\\ 35.2\\ 34.2\\ 32.8\\ 30.7\\ 28.7\\ 25.4\\ 22.7\\ 20.5\\ 18.3 \end{array}$	$\begin{array}{c} 1.099\\ 1.082\\ 1.056\\ 1.046\\ 1.032\\ 1.009\\ 0.990\\ 0.955\\ 0.927\\ 0.904\\ 0.879\end{array}$	$\begin{array}{c} 876.1\\ 838.6\\ 793 7\\ 776.1\\ 751.5\\ 713.6\\ 675.6\\ 612.4\\ 558.3\\ 512.7\\ 466.3\end{array}$			
Notecular weight:113.07.Radius of the Capillary tube:0.04638 cm.;in the observations indicated by *, R was 0.04352 cm.; in those by **, it was: 0.04408 cm. Depth:0.04352 cm.; in those by **, it was: 0.04408 cm. Depth:The compound boils at 206° C. constantly; at $-76°$ C. it becomes glassy and crystallizes very slowly on heating. The crystals melt at about $-40°$ C. The specific gravity at 25° C. was: 1.0562 ; at 50° C.: 1.0307 ; at 75° C.: 1.0052 ; at $t: d_{40} = 1.0817-0.00102 t$, in general.								

- 15 -

f

379	9
-----	---

, [,]

-

ħ

Propyl-Cyanoacetate : CN . CH_2 . CO . O (C_3H_7).							
ature C.	Maximum Pressure H		Surface- tension /	Specific	Molecular Surface-		
Temperature in ° C.	in mm. mer- cury of 0° C.	in Dynes	in Erg. pro cm ² .	gravity $d_{4^{\circ}}$	energy ν in Erg. pro cm ² .		
	$\begin{array}{c} 1.236\\ 1.184\\ 1.164\\ 1.130\\ 1.075\\ 0.961\\ 0.834\\ 0.858\\ 0.780\\ 0.701\\ 0.624\end{array}$	$\begin{array}{c} 1647.3\\ 1578.3\\ 1551.7\\ 1506.5\\ 1433.8\\ 1280.7\\ 1112.5\\ 1144.4\\ 1039.9\\ 934.6\\ 831.8 \end{array}$	$\begin{array}{c} 37.5\\ 35.9\\ 33.5\\ 32.5\\ 31.0\\ 29.1\\ 25.2\\ 24.3\\ 22.0\\ 19.7\\ 17.5\\ \end{array}$	$\begin{array}{c}1.058\\1.042\\1.021\\1.021\\0.996\\0.976\\0.933\\0.923\\0.896\\0.872\\0.847\end{array}$	$\begin{array}{c} 912.9\\ 882.9\\ 835.1\\ 815.5\\ 786.0\\ 747.6\\ 667.1\\ 647.9\\ 598.3\\ 546.0\\ 494.1\end{array}$		

XVII.

Molecular weight: 127.08. Radius of the Capillary tube: 0.04638 cm.; in the observations, indicated by *, the radius was: 0.04352 cm.; in those with **, it was: 0.04408 cm. Depth: 0.1 mm.

The substance boils at 216° C. constantly; at -79° it solidifies slowly to a crystal-aggregate, which melts at about -39° C. The density $d_{4^{\circ}}$ was at 25° C.: 1.0214; at 50° C.: 0.9973; at 75° C.: 0.9717. at t° C.: $d_{4^{\circ}} = 1.0424 - 0.000962 t + 0.0000012 t^{\circ}$.

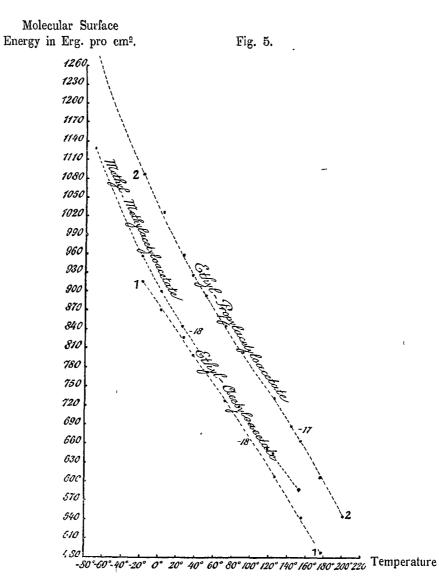
XVIII.

[Butyl-Cyanoacetate: $CN \cdot CH_2 \cdot CO \cdot O(C_4H_9)$.						
ature C.	Maximum	Pressure H	Surface- tension χ	Specific	Molecular Surface-		
Temperature in °'C.	in mm. mer- cury of 0° C.	in Dynes	in Erg. pro cm².	gravity $d_{4^{\circ}}$	energy µ in Erg. pro cm².		
21.3 0 * 25.2 * 45.2 * 74.5 * 94.1 114.5 135 161.1 192.1 213.1	$ \begin{array}{r} 1.159\\ 1.117\\ 1.055\\ 0.975\\ 0.924\\ 0.852\\ 0.797\\ 0.729 \end{array} $	$\begin{array}{c} 1617.5\\ 1545.2\\ 1489.0\\ 1406.2\\ 1300.6\\ 1231.6\\ 1135.3\\ 1063.3\\ 971.9\\ 883.1\\ 820.0\\ \end{array}$	$\begin{array}{c} 35.2\\ 33.6\\ 31.7\\ 29.9\\ 27.7\\ 26.2\\ 24.6\\ 23.0\\ 21.0\\ 19.0\\ 17.6\end{array}$	$\begin{array}{c} 1.041 \\ 1.020 \\ 0.998 \\ 0.978 \\ 0.952 \\ 0.934 \\ 0.915 \\ 0.895 \\ 0.870 \\ 0.840 \\ 0.820 \end{array}$	$\begin{array}{r} 928.8\\ 898.7\\ 860.3\\ 822.5\\ 775.8\\ 743.2\\ 707.4\\ 671.2\\ 626.3\\ 578.4\\ 544.5\end{array}$		
Molecular weight: 141.1. Radius of the Capillary tube: 0.04439 cm.; in the observations indicated by * it was: 0.04352 cm. Depth: 0.1 mm. The ether boils at 230°.5 C. constantly; it can be cooled as far as -80° C., without crystallisation setting in. The specific gravity d_{40} is at 25° C.: 0.9978; at 50° C.: 0.9749; at 75° C.: 0.9518; at t° it is: $d_{40} = 1.0204-0.000904 t + 0.00000016 t^{\circ}$.							

,

ł

ΣΙΧ.						
l	sobutyl-Cyar	oacetate: C	$N.CH_2.CO.$	0(CH ₂ .CH.($(2H_3)_2$).	
ature C.	Maximum Pressure H		Surface- tension ₂	Specific	Molecular Surface-	
Temperature in ° C.	in mm. mer- cury of 0° C.	in Dynes	in Erg. pro cm².	gravity d ₄₀	energy µ in Erg. pro cm².	
-20°.5 0.3 * 25 * 45 * 74.8 * 94.5 f15 135.1 161 191.8 213	1.122 1.069 1.013 0.934	$\begin{array}{c} 1572.4\\ 1495.9\\ 1424.6\\ 1351.1\\ 1245.4\\ 1174.6\\ 1081.3\\ 1009.2\\ 914.6\\ 792.9\\ 720.9\end{array}$	$\begin{array}{r} 34.2 \\ 32.5 \\ 30.3 \\ 28.7 \\ 26.4 \\ 24.9 \\ 23 \\ 4 \\ 21.8 \\ 19.7 \\ 17.0 \\ 15.4 \end{array}$	$\begin{array}{c} 1.033\\ 1.014\\ 0.990\\ 0.971\\ 0.944\\ 0.925\\ 0.905\\ 0.886\\ 0.862\\ 0.834\\ 0.815\\ \end{array}$	$\begin{array}{c} 907.1\\ 872.7\\ 826.7\\ 793.3\\ 743.6\\ 710.9\\ 677.9\\ 640.5\\ 589.5\\ 520.0\\ 478.4 \end{array}$	
Molecular weight: 141.1. Radius of the Capillary tube: 0.04439 cm.; in the observations indicated by *, R was: 0.04352 cm. Depth: 0.1 mm. The compound boils at 223° C. constantly; it can be undercooled as far as -76° C., and crystallizes then slowly into a crystalline aggregate, melting at about -26° C. The specific gravity at 25° C. was $d_{4^{\circ}} = 0.9903$; at 50° C.: 0.9669; at 75° C.: 0.9441. At t° it is generally: $d_{4^{\circ}} = 1.0138$ -0.000952 t + 0.00000032 t ³ .						


-

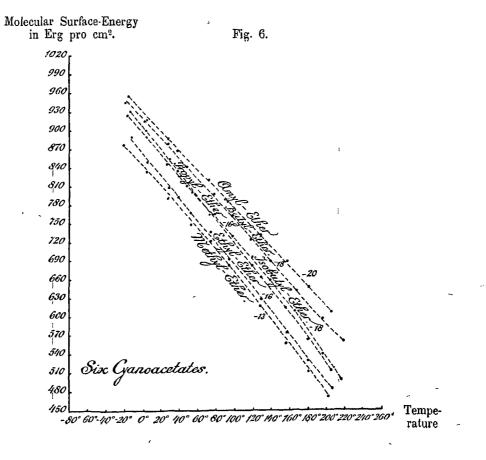
VV	
A A	۱.

	Amyl-Cyanoacetate : $CN \cdot CH_2 \cdot CO \cdot O(C_5H_{11})$.						
Temperature 111 ° C.	Maximum Pressure H		Surface-	Specific	Molecular Surface-		
	in mm. mercury of 0° C.	in Dynes	tension _X in Erg pro cm².	gravity d ₄₀	energy µ in Erg pro cm².		
-17.5 1.5 ** 25.5 ** 35 69 89 * 125 * 153 * 176 * 201	$\begin{array}{c} 1.080\\ 1.029\\ 1.028\\ 1.000\\ 0.880\\ 0.831\\ 0.807\\ 0.744\\ 0.689\\ 0.634\end{array}$	$1440.3 \\ 1371.3 \\ 1370.2 \\ 1333.2 \\ 1172.9 \\ 1108.3 \\ 1075.4 \\ 992.6 \\ 919.1 \\ 845.6$	$\begin{array}{c} 32.7\\ 31.1\\ 29.5\\ 28.7\\ 26.5\\ 25.0\\ 22.7\\ 21.0\\ 19.4\\ 17.8 \end{array}$	$\begin{array}{c} 1.017\\ 1\ 001\\ 0.976\\ 0.966\\ 0.939\\ 0.920\\ 0.891\\ 0.864\\ 0.843\\ 0\ 821 \end{array}$	933.5 897.2 865.5 847.9 797.8 763.0 707.7 668.3 627.6 586.1		
Molecular weight: 155.11 . Radius of the Capillary tube: 0.04638 cm.; in the observations indicated by*, <i>R</i> was 0.04352 cm; in those with ** it was: 0.04408 cm. Depth: 0.1 mm.							
at 50				C. it is a jell C. was: d_2 $d_{4^0} = 1.0019$			

2

٦

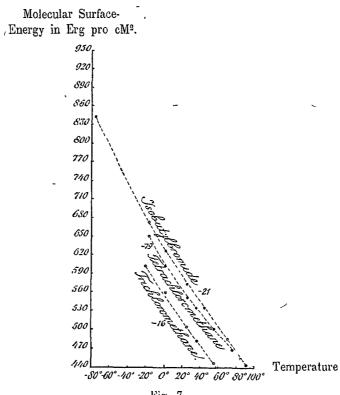
37 37 1
X X F


	<u> </u>	Trichloron	nethane: CH	Cl ₃ .	
Temperature in ° C	Maximum Pressure H		Surface-	Specific	Molecular Surface-
	in mm. mercury of 0° C.	in Dynes	tension x in Erg. pro cm².	gravity d_{4°	energy <i>µ</i> in Erg. pro cm².
22° 0 25 35 55	1.142 1.050 0.927 0.881 0.798	1523.4 1394.3 1236.0 1174.5 1063.9	32.5 29.7 26.2 24.8 22.4	1.555 1.519 1.476 1.459 1.425	587.5 545.3 490.4 467.8 429.2
Th dried distil	cular weight: e trichlorome l, at -79° C lation. It boi e of χ is: 21,8	Dept thane was pr several tim ls constantly	h; 0.1 mm. repared from les frozen, a at 61°.2 C.;	purest chlora nd purified b	l, carefully

l

382

Tetrachloromethane : CCl ₄ .					
Temperature in ° C.	Maximum Pressure H		Surface- tension z	Specific	Molecular Surface-
	in mm. mer- cury of 0° C.	in Dynes	in Erg. pro cm ² .	gravity $d_{4^{\circ}}$	
	1.087 1.905 0.899 0.862 0.793	1450.4 1340.9 1199.5 1149.4 1058.1	30.9 28.5 25.4 24.3 22.3	$\begin{array}{r} 1.659 \\ 1.632 \\ 1.585 \\ 1.560 \\ 1.525 \end{array}$	633.0 590.2 536.4 518.6 483.2
 Molecular weight: 153.80. Radius of the Capillary tube: 0.04385 cm. Depth: 0.1 mm. Under reduced pressure (ca. 90 mm.) it boils at 26° C., and solidifies at - 60° C. to a white crystalline mass. Under ordinary pressure, it boils constantly at 76°.4 C. At this temperature the value of x is about: 20.2 Erg. pro cm². 					


7

383

Temperature in ° C.	Maximum Pressure H		Surface- tension z	Specific	Molecular Surface-
	in mm. mer- cury of 0 C.	in Dynes	in Erg. pro cm².	gravity d_{4^r}	energy µ in Erg. pro cmº.
75 [°] 19.5 0 25 4 44.4 69.9 85.3	0.728 0 646	1636.5 1265.9 1166.0 1053.5 970.2 861.9 799.5	38.4 29 5 27.1 24 4 22.4 19.8 18.3	$\begin{array}{c} 1.385\\ 1.314\\ 1.291\\ 1.259\\ 1.236\\ 1.205\\ 1.186\end{array}$	$\begin{array}{c} 821.6\\ 653.7\\ 607.6\\ 556.3\\ 517.1\\ 464.8\\ 439.2 \end{array}$
Molecular weight: 137.07. Radius of the Capillary tube: 0.04803 cm. Depth: 0.1 mm. The carefully dried compound boils very constantly at $90.^{\circ}5$ C.; at this temperature χ is about 17.9 Erg. pro cm ² .					

`

_ Fig. 7.

norm. Propylalcohol.	Isobutylalcohol.		
Temperature-interval: $\frac{\partial \mu}{\partial t}$ in Erg.	Temperature-interval: $\frac{\partial \mu}{\partial t}$ in Erg.		
between	between -71° and -12° 2,3		
-21° , $+25^{\circ}$ 1,11	-12° , $+101^{\circ}$ 1,1		
25° " 91° 1,10			
Diethylether.	Ethylf ormiate.		
between	between		
-20° , 0° 1,94			
0°, 29° 1,70	25° " 35° 1,29		
,	35° " 54° 1,12		
Ethylchloroformiate.	Ethylacetate.		
between -75° and -21° 2,86	between -74° and 0° 2,50		
	0° 050 0.27		
050 700 1.82	25° , 35° 1,86		
70° ,, 91° 1,32	35° ,, 55° 1,78		
	55° " 77° 1,30		
Methyl-Isobutyrate.	Ethyl-Isobutyrate.		
	between -78° and $+109^{\circ}$ 2,15		
	between -10 and -1-105 2,15		
050 450 21	•		
450 010 17			
40°,, 91° 1,1			
Isobutyl-Isobutyrate.	Acetone.		
between -76° and -21° 3.2	between —73° and —19°,5 1,81		
-21° " +135° 2,18	-19° , $+11^{\circ}$ 1,66		
	11° " 54° 1,57		
Methylpropylcetone.	Ethyl-Acetyloacetate.		
between -74° and 0° 2,13	between -20° and $+176^{\circ}$ 2,19		
0° " 99° 1,73	,		
Methyl-Methylacetyloacetate.	Ethyl-Propylacetyloacetate.		
between -71° and -21° 3,39	between -76° and -20° 3,74		
21° " 0° 2,47	-20° , $+20^{\circ}$ 2,84		
0° " 70° 2,18	25° "70° 2,36		
70° " 156° 1,94	70° , 125° 2,24		
	125°,, 153° 2,11 Then an increase: 2,37 to 2,68, occurs		
	as a consequence of beginning dissociation.		
Mathaul Carmonastata	Ethyl-Cyanoacetate.		
Methyl-Cyanoacetate.			
between	between -17° and $+201^{\circ}$ 1,88		
independently of viscosity.			
-16° , $+197^{\circ}$ 1,90			

,

.

-

§ 5.- Temperature-coefficients of μ of the here studied substances.

384

ς

Propyl-Cyanoacetate.	Butyl-Ćyanoacetate.
Temperature-interval: $\frac{\partial \rho}{\partial t}$ in Erg.	<i>Temperature-interval</i> : $\frac{\partial \mu}{\partial t}$ in Erg.
between – 16° and +152° 1,88 Then an <i>increase</i> . 2.13, under dissoci- ation and liberation of <i>HCN</i> .	between —21° and +213° 1,62
Isobutyl-Cyanoacetate.	Amyl-Cyanoacetate.
between20° and 0° 1,64 0° " 115° 1,70 115° " 213° 2,0 Gradual decomposition, under liberation of <i>HCN</i> .	between -17° and $+1^{\circ}2,0$ 1° , 201° ca. 1,6
Chloroform.	Carbontetrachloride.
between -22° and $+55^{\circ}$ 2,06	between 18° and 0° 2,6 0° ,, 25° 1,95 25° ,, 55° 1,75
Isobutylbromide.	
between75° and19° 3,0 19° ,, +-25° 2,15 25° ,, 69°,9 2,03 70° ,, 90° 1,91	
Evidently only in some cases the	the coefficient $\frac{\partial \mu}{\partial t}$ appears to be really

Evidently only in some cases the coefficient $\frac{\partial \mu}{\partial t}$ appears to be really constant; in most cases it *decreases* doubtless with a *rise* of temperature. Where the inverse behaviour was stated, a decomposition of the studied substance always seemed to occur. The value for $\frac{\partial \mu}{\partial t}$ is in the interval of ordinary temperatures relatively small for *propyl*and *isobutyl-alcohol* and for the *cetones*; however in these cases it appears to be variable with the temperature in no higher degree than in the cases, where the values of $\frac{\partial \mu}{\partial t}$ do not differ largely from 2.0 Erg.

Groningen, June 1914.

1

-

Laboratory for Inorganic Chemistry of the University.

I