Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

M.J. van Uven, The theory of the combination of observations and the determination of the preciscion, illustrated by means of vectors, in:
KNAW, Proceedings, 17 II, 1914, pp. 490-500

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'
of the mouth of the Nanga Koli A. F. H. Hersch collected in 1890 according to Pannerork ${ }^{1}$) quartzite and greywakke(?). On the southcoast at Nanga Mbawa I found granite (read quartz-diorite) and gabbro ${ }^{3}$) and finally in the valley of the river Ndona quartz-diorite. None of these rocks were ever found as rock, they are consequently at least "auf tertiärer Lagerstätte". They are the last remains of rockmasses that got into the conglomerates by washing from which they got afterwards free again.

The oldest formations of Flores belong to the effusive rocks of the character of dacites, labrador-andesites and hornblende-andesites with their tufas, on which those of the limestones of the Reo-formation and those of the tuffas of the Soa formation follow. They were uncovered by subsequent elevation. Afterwards the island was over its entire length the scene of violent volcanic eruptions, from which the only partly known crater mountains proceeded. The material produced by them consists - as far as our knowledge reaches - exclusively of pyroxene-andesites belonging to the Pacific type of rocks. The younger coral limestones occurring only sporadically have only been formed after the formation of the volcanoes.

Von Schelle's postulation that the bottom "to the north of Mount Rokka is very rich in tin-ore" appears to have been not only vain but also very expensive.

Mathematics. - "The theory of the combination of observations and the determination of the precision, illustrated by means of vectors." By Dr. M. J. van Uven. (Communicated by Prof. W. Kapteyn),"
(tommunicated in the meeting of June 27, 1914).
By L. von Schrutra ${ }^{3}$) and C. Rodriguez ${ }^{4}$) a method has been given of illustrating geometrically the theory of the combination of observations by the method of least squares, namely by means of vector operations. Rodrigurz however chooses in the case of rigorous equations of condition another way, whilst von Schretika, who consistently

[^0]operates with vectors, restricts himself to two variables and one rigorous equation of condition.

It is our purpose not only to extend their method to the case of an arbitrary number (N) of variables and an equally arbitrary number (\boldsymbol{v}) of conditions, but also to derive the weight of the unknown quantities in the same way.
I. There are given N quantities x, y, z, \ldots which are to be determined from n (approximate) equations of condition (equations of observation) :

$$
a_{i} x+b_{i} y+c_{i} z+\ldots+m_{i}=0 \quad i=1, \ldots n .
$$

These equations have the weights y_{i} resp., and so are equivalent to the equations
$a_{i} V g_{i} . x+b_{i} V g_{i} \cdot y+c_{i} V g_{i} \cdot z+\ldots+m_{i} V g_{i}=0 \quad i=1, \ldots n$, each of which has the weight unity.

We now introduce

$$
\begin{gathered}
\boldsymbol{a}_{i}=\frac{a_{i} V g_{i}}{V\left[g_{i} a_{i}^{2}\right]}, \quad \beta_{i}=\frac{b_{i} V g_{i}}{V\left[g_{i} b_{i}^{2}\right]}, \quad \gamma_{i}=\frac{c_{i} V g_{i}}{V\left[g_{i} i_{i}^{2}\right]}, \ldots \mu_{i}=\frac{m_{i} V g_{i}}{V\left[g_{i} m_{i}{ }^{2}\right]} ; \\
A=v V\left[g_{i} a_{i}^{2}\right], \quad B=y V\left[g_{i} b_{i}^{2}\right], \quad C=z V\left[g_{i} i_{i}^{2}\right], \ldots M=V\left[g_{i} m_{i}^{2}\right] \\
A_{i}=A a_{i}=a_{i} V g_{i}, x, \quad B_{i}=B \beta_{i}=b_{i} V g_{i} \cdot y, \quad C_{i}=C \gamma_{i}=c_{i} V g_{i} \cdot z, \ldots \\
\ldots M_{i}=M \mu_{i}=m_{i} V g_{i},
\end{gathered}
$$

[] denoting summation over i from 1 to n.
So the equations of observation run in the form

$$
A_{i}+B_{i}+C_{i}+\ldots M_{i}=0 \quad i=1, \ldots n
$$

We now consider $A_{i}, B_{i}, C_{i}, \ldots M_{i}$ as the components of the vectors $\mathfrak{H}, \mathfrak{B}, \mathfrak{C}, \ldots$, resolved parallel to the rectangular coordinate axes of an n-dimensional space. Thus the tensors are $A, B, C, \ldots M$, $\boldsymbol{\alpha}_{i}, \beta_{i}, \gamma_{i}, \ldots \mu_{i}$ representing the direction cosines.

The set of n equations of observation may now be condensed in the single vector-equation

$$
\mathfrak{A}+\mathfrak{B}+\mathfrak{E}+\ldots+\mathfrak{M}=0,
$$

which expresses, that the vectors $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \ldots \mathfrak{M}$ must form a closed polygon. The coefficients $a_{i}, b_{i}, c_{i}, \ldots$ and the weights g_{i} being given, the unit vectors $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}, \ldots$ of the vectors $\mathfrak{A}, \mathfrak{B}, \mathfrak{\mathfrak { G }}, \ldots$ are determinate. So the vector-equation requires that $M \gg$ may be resolved in the N directions $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}, \ldots$, in other words: that $\mathfrak{m l}$ lies in the N-dimensional space R_{N}, determined by the vectors a, b, c, \ldots and called the space of the variables (or unknown quantities).

In consequence of the errors of observation this condition is not fulfilled. The most probable corrected value of \mathfrak{M} is the projection of \Im on the space R_{N} of the variables.

Denoting the projecting vector by $\mathscr{\Re}$ (tensor K, direction cosines x_{i}, components K_{i}) we have really

$$
\mathfrak{A}+\mathfrak{B}+\mathfrak{C}+\ldots+\mathfrak{M}=\mathfrak{R} .
$$

As $\mathfrak{\Re}$ is perpendicular to $\mathfrak{M}, \mathfrak{B}, \mathfrak{G}, \ldots$, we have

$$
(\mathfrak{A}, \mathfrak{K})=0, \quad(\mathfrak{B}, \mathscr{\Re})=0, \quad(\mathfrak{B}, \mathfrak{R})=0, \text { ete }
$$

or

$$
\left[\alpha_{i} K_{i}\right]=0, \quad\left[\beta_{i} K_{i}\right]=0, \quad\left[\gamma_{i} K_{i}\right]=0, \text { etc. }
$$

or because

$$
\begin{gathered}
K_{i}=A_{i}+B_{i}+C_{i}+\ldots+M_{i}=\alpha_{i} A+\beta_{i} B+\gamma_{i} C+\ldots+M_{i}, \\
{\left[\alpha_{i}^{2}\right] A+\left[\alpha_{i} / \beta_{i}\right] B+\left[\alpha_{i} \gamma_{i}\right] C+\ldots+\left[\alpha_{i} M_{i}\right]=0,} \\
{\left[\beta_{i} a_{i}\right] A+\left[\beta_{i}^{2}\right] B+\left[\beta_{i} \gamma_{i}\right] C+\ldots+\left[\beta_{i} M_{i}\right]=0,} \\
{\left[\gamma_{i} \alpha_{i}\right] A+\left[\gamma_{i} \beta_{i}\right] B+\left[\gamma_{i}^{2}\right] C+\ldots+\left[\gamma_{i} M_{i}\right]=0,}
\end{gathered}
$$

By multiplying these equations by $V\left[g_{i} a_{i}{ }^{2}\right], V\left[g_{i} b_{i}{ }^{2}\right], V\left[g_{i} c_{i}{ }^{2}\right]$, ... resp., we obtain the "normal equations":

$$
\begin{array}{r}
{\left[g_{i} a_{i}^{2}\right] x+\left[g_{i} a_{i} b_{i}\right] y+\left[g_{i} a_{i} c_{i}\right] z+\cdots+\left[g_{i} a_{i} m_{i}\right]=0,} \\
{\left[g_{i} b_{i} a_{i}\right] x+\left[g_{i} b_{i}\right] y+\left[g_{i} b_{i} i_{i}\right] z+\ldots+\left[g_{i} b_{i} m_{i}\right]=0,} \\
{\left[g_{i} c_{i} a_{i}\right] x+\left[g_{i} c_{i} b_{i}\right] y+\left[g_{i} c_{i}^{2}\right] z+\ldots+\left[g_{i} c_{i} m_{i}\right]=0,}
\end{array}
$$

II. After these developments which also are given by von Schbertia and Rodriguez we proceed to determine the weights of the variables.

For this we notice that all the quantities M_{i} have the weight 1, and therefore have an equal mean error ε. From this ensues, that the projection of \mathfrak{M} in any direction has the same mean error ε.

We have to investigate the influence on \mathcal{A} due to the variation of \mathfrak{M}, if the other variables $\mathfrak{B}, \mathfrak{C}, \ldots$ do not undergo that influence.

A variation of \mathfrak{M} which does not displace the foot on R_{N} of the projecting vector $\mathfrak{\Re}$, does not act upon any vector $\mathfrak{M}, \mathfrak{B}, \mathfrak{C}, \ldots$ So we have only to do with a variation of the projection \mathfrak{R}^{\prime} of $\mathfrak{M}_{\text {on }} R_{N}$. In order to leave the vectors $\mathfrak{B}, \mathfrak{S}, \ldots$ intact, the foot is to be moved in a direction \mathfrak{z} perpendicular to $\mathfrak{B}, \mathfrak{C}, \ldots$, and, because it lies in R_{N}, also perpendicular to Ω.

Denoting by σ_{i} the direction cosines of \mathfrak{B}, we may put the equation

$$
(\mathfrak{A}, \mathfrak{z})+(\mathfrak{m}, \mathfrak{z})=0,
$$

obtained by multiplying the equation of observation scalarly with \mathfrak{B}, in the form

$$
A\left[\alpha_{i} \sigma_{i}\right]=-M_{s}
$$

M_{s} designating the projection of \mathfrak{M} on \mathfrak{B}.
As M_{s} has the mean error ε, the mean error ε_{A} of A equals

$$
\varepsilon_{A}=\frac{\varepsilon}{\left[\alpha_{i} \sigma_{i}\right]}
$$

whence

$$
g_{A}=\left[\alpha_{i} \sigma_{i}\right]^{2} .
$$

The vector \mathfrak{B}, lying in R_{N}, may be resolved in the directions $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}, \ldots$ Denoting its components in these directions by X, Y, Z, \ldots we find

$$
\mathfrak{s}=X \mathfrak{a}+Y \mathfrak{b}+Z \mathfrak{c}+\ldots
$$

or

$$
\sigma_{i}=X \alpha_{i}+Y \beta_{i}+Z_{\gamma_{i}}+\ldots
$$

Now, $\mathfrak{\&}$ being perpendicular to $\mathfrak{B}, \mathfrak{\hookleftarrow}, \ldots$, whence $\left[\beta_{i} \sigma_{i}\right]=0,\left[\gamma_{i} \sigma_{i}\right]=0, .$. , we have

$$
1=\left[\sigma_{i}^{2}\right]=X\left[\alpha_{i} \sigma_{i}\right]
$$

or

$$
X=\frac{1}{\left[\alpha_{i} \sigma_{i}\right]}
$$

From the equations

$$
\left[a_{i} \sigma_{i}\right]=\frac{1}{X}, \quad\left[/ \beta_{i} \sigma_{i}\right]=0, \quad\left[\gamma_{i} \sigma_{i}\right]=0, \ldots
$$

which may also be written

$$
\begin{gathered}
{\left[\alpha_{i}^{2}\right] X+\left[\alpha_{i} \beta_{i}\right] Y+\left[\alpha_{i} \gamma_{i}\right] Z+\ldots=\frac{1}{X},} \\
{\left[\beta_{i} \alpha_{i}\right] X+\left[\beta_{i}{ }^{2}\right] Y+\left[\beta_{i} \gamma_{i}\right] Z+\ldots=0,} \\
{\left[\gamma_{i} \alpha_{i}\right] X+\left[\gamma_{i} \beta_{i}\right] Y+\left[\gamma_{i}^{2}\right] Z+\ldots=0,}
\end{gathered}
$$

or

$$
\begin{aligned}
& {\left[\alpha_{i}{ }^{2}\right] X^{2}+\left[\alpha_{i} \beta_{i}\right] X Y+\left[\alpha_{i} \gamma_{i}\right] X Z+. .-1=0,} \\
& {\left[\beta_{i} \alpha_{i}\right] X^{2}+\left[/\left[\beta_{i}^{2}\right] X Y+\left[\beta_{i} \gamma_{i}\right] X Z+. .+0=0,\right.} \\
& {\left[\gamma_{i} \alpha_{i}\right] X^{3}+\left[\gamma_{i} \beta_{i}\right] X Y+\left[\gamma_{i}^{2}\right] \lambda Z+. .+0=0,}
\end{aligned}
$$

the first unknown quantity X^{2} takes the value

$$
X^{2}=\frac{1}{\left[\alpha_{i} \sigma_{i}\right]^{2}}=\frac{\varepsilon_{A}^{2}}{\varepsilon^{2}}=\frac{1}{g_{A}} .
$$

The reciprocal value of the weight of A is therefore found to be the tirst unknown of the "modified normal equations".

Putting further

$$
X=\xi V\left[g_{i} a_{i}^{8}\right], \quad Y=\eta V\left[g_{i} b_{i}^{2}\right], \quad Z=\zeta V\left[g_{i} c_{i}^{2}\right], \ldots
$$

the modified normal equations pass into
$\left[g_{i} a_{i}^{2}\right] \xi^{2}+\left[g_{i} a_{i} b_{i}\right] \xi \eta+\left[\eta_{i} a_{i} c_{i}\right] \xi 5+\ldots-1=0$,
$\left[g_{i} b_{i} a_{i}\right] \xi^{2}+\left[g_{i} b_{i}{ }^{2}\right] \xi \eta+\left[g_{i} b_{i} c_{i}\right] \xi 5+\ldots+0=0$,
$\left[g_{i} c_{i} a_{i}\right] \boldsymbol{\xi}^{2}+\left[g_{i} c_{i} b_{i}\right] \boldsymbol{\xi} \eta+\left[g_{i} c_{i}{ }^{2}\right] \boldsymbol{\xi} \boldsymbol{\xi}+\ldots+0=0$,

Now, from $A=x V\left[g_{i} a_{i}{ }^{2}\right]$ ensues

$$
\varepsilon_{A}=\varepsilon_{x} V\left[g_{i} a_{i}^{3}\right]
$$

hence

$$
\frac{1}{g_{x}}=\frac{\varepsilon_{x}^{2}}{\varepsilon^{2}}=\frac{1}{\left[g_{i} a_{i}^{2}\right]} \times \frac{\varepsilon_{A}^{2}}{\varepsilon^{8}}=\frac{X^{2}}{\left[g_{i} a_{i}^{2}\right]}=\xi^{2}
$$

which is the well-known theorem on the weights of the variables. Example: 3 equations of observation with 2 variables.

Fig. 1.

The unit-vectors \mathfrak{a} and \mathfrak{b} determine a plan R_{1}. The extremity \dot{M} of $-\mathbb{M}=O M$ is projected on this plane in the point $M^{\prime} . O M^{\prime}$ is resolved parallel to \mathfrak{a} and \mathfrak{b} into the components $O A=\mathfrak{A}$ and $O B=\mathfrak{b}$. In the plane $R_{2}(\mathfrak{i l}, \mathfrak{B})$ the vector \mathfrak{B} is erected perpendicular to \mathfrak{B}. On this vector $O M=-\mathscr{M}$ and $O A=\mathfrak{U}$ have the same projection $O A_{s}=M_{s}$. This segment M_{s} bas the mean error ε; the variable A, i.e. the segment $O A$ therefore has the mean error $\varepsilon_{A}=\frac{\varepsilon}{\cos A O A_{s}}$.
III. We now suppose that besides the n approximate equations of condition (equations of observation) \boldsymbol{v} rigorous equations of condition are given, viz.:
$a_{n+j} x+b_{n+j} y+c_{n+j} z+\ldots+m_{n+j}=0 \quad(j=1, \ldots v)$.
For the sake of regularity in the notation, we will also provide these equations with factors g_{n+j} (which afterwards disappear from the calculation). Thus we really operate with
$a_{n+j} V g_{n+j} \cdot x+b_{n+j} V g_{n+j} \cdot y+c_{n+j} V g_{n+j} \cdot z+\ldots+m_{n+j} V g_{n+j}=0(j=1, . v)$.
Agreeing, that $[i]$ now means a summation over i from 1 to $n+v$, we may, retaining the notation used above, consider $\mathfrak{A}, \mathfrak{\infty}$, $\mathfrak{G}, \ldots, \mathfrak{M}$ as vectors in a space of $n+v$ dimensions.

The vector-equation

$$
\mathfrak{s}+\mathfrak{b}+\mathfrak{c}+\ldots+\mathfrak{m}=0
$$

is again not fulfilled on account of the errors of observation. The last r component-equations $(n+1) \ldots(n+v)$ however hold exactly* this time.

Putting again

$$
\mathfrak{A}+\mathfrak{B}+\mathfrak{E}+\cdots+\mathfrak{M}=\mathfrak{R}
$$

the v projections $K_{n+1}, \ldots K_{n+}$, of Ω must be zero, whence $x_{n+j}=0(j=1, \ldots v)$.

So the vector Ω is perpendicular to the space R_{ν} "of condition" determined by the coordinate-axes x_{n+j} and therefore cannot generally be any longer assumed to be perpendicular to the space $R_{N}(\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, .$. of the variables. Ω lies in the n-dimensional space $R_{n}^{\prime} x_{n+j}=M_{n+j}$ ($j=1, v$), which is parallel to the space R_{n} "of observation" determined by the axes $x_{h}(h=1, \ldots n)$.

The parallel-space R_{n}^{\prime} cuts the space R_{N} of the variables in a linear space of $N+n-(n+\boldsymbol{v})=N-v$ dimensions, which we shall denote by $\varrho_{N-,}^{\prime}$. This latter is parallel to the space $\rho_{N_{-},}$of intersection of the space R_{n} of observation with the space R_{N}.

We now project the extremity of $\mathfrak{m l}$ lying in R_{n}^{\prime} in this space on the space $\varrho^{\prime}{ }_{N-v}$ of intersection. The projecting vector will now be the "correction-vector" Ω.

Translating Ω to the origin into the vector $O P, O P$ will be perpendicular to the space ϱ_{V-v} common to R_{N} and R_{r}.

Next we construct the normal space of $Q_{N-\nu}$ which passes through the origin O. This space has $n+v-(N-v)=n+2 v-N$ dimensions. It contains the space R, of condition (as normal space of R_{n}), further the line $O P$, and also the normal space of $n+v-N$ dimensions which can be drawn from P perpendicular to R_{N}. This latter space therefore lies together with R, in a space of $n+2 v-N$ dimensions and thus cuts $R \geqslant$ in a space of $(n+v-N)+$ $+v-(n+2 v-N)=0$ dimensions, consequently in a point. As for this point Q, it thus lies both in R, and in the normal space drawn from P perpendicular to R_{N}, from which among other things follows, that $P Q$ makes right angles with each line of R_{N}, more particularly with the vectors $\mathfrak{M}, \mathfrak{B}, \mathfrak{C}, \ldots$ So, projecting $O P$ and $O Q$ on \mathfrak{M}, these projections are equal. The same holds for the projections on $\mathfrak{B}, \mathfrak{C}, \ldots$

Representing $O Q$ by the vector $\Omega^{\prime}\left(K^{\prime}, x_{i}^{\prime}, K_{i}^{\prime}\right)$, we have, as Ω^{\prime} lies in $R v$,

$$
K_{h^{\prime}}^{\prime}=0 \text { and } \varkappa_{h}^{\prime}=0 .(h=1, \ldots n)
$$

From

$$
(\mathbb{R}, \mathfrak{M})=\left(\mathbb{R}^{\prime}, \mathfrak{Z l}\right),(\mathfrak{N}, \mathfrak{W})=\left(\mathbb{R}^{\prime}, \mathfrak{W}\right),(\mathfrak{R}, \mathfrak{C})=\left(\mathfrak{N}^{\prime}, \mathfrak{C}\right), \ldots
$$

follows

$$
K\left[x_{i} \alpha_{i}\right]=K^{\prime}\left[x_{i}^{\prime} \alpha_{i}\right], K\left[x_{i} \beta_{i}\right]=K^{\prime}\left[x_{i}^{\prime} \beta_{i}\right], K\left[x_{i} \gamma_{i}\right]=K^{\prime}\left[x_{i}^{\prime} \gamma_{i}\right], \ldots
$$

As $x_{n+j}=0$ for $j=1, \ldots v$, the sum $\left[x_{i} a_{i}\right]$ is only to be extended from 1 to n; hence $\left[x_{i} \alpha_{i}\right]=\sum_{1}^{n} x_{h} \alpha_{h}=\left[x_{h} \alpha_{h}\right]^{\prime}$; and since $x_{h^{\prime}}^{\prime}=0$ for $h=1, \ldots n$, the sum $\left[x_{i}^{\prime} \alpha_{i}\right]$ is to be extended from $n+1$
to $n+v$, so that $\left[x_{i}^{\prime} \alpha_{i}\right]=\sum_{1}^{\nu} x_{n+j} \alpha_{n+j}=\left[x_{n+j}{ }^{\prime} \alpha_{n+j}\right]^{\prime \prime}$. Here and in what follows $[h]^{\prime}$ will denote a sum over h from 1 to n, and $[n+j]^{\prime \prime}$ a sum over j from 1 to v.

We may therefore write

$$
\left[\alpha_{h} K_{b}\right]^{\prime}=\left[\alpha_{n+j} K_{n+j}\right]^{\prime \prime},
$$

or, because

$$
\begin{gathered}
K_{h}=A_{h}+B_{h}+C_{h}+\ldots+M_{h}=\alpha_{h} A+\beta_{h} B+\gamma_{h} C+\ldots+M_{h} \\
{\left[\pi_{h}^{2}\right]^{\prime} A+\left[\alpha_{h} \beta_{h}\right]^{\prime} B+\left[\kappa_{h} \gamma_{h}\right]^{\prime} C+\ldots+\left[\alpha_{h} M_{h}\right]^{\prime}=\left[\alpha_{n+j} K_{n+j}^{\prime}\right]^{\prime \prime},} \\
{\left[/ \beta_{h} \alpha_{h}\right]^{\prime} A+\left[\beta_{h}\right]^{\prime} B+\left[\beta_{h} \gamma_{h}\right]^{\prime} C+\ldots+\left[\beta_{h} M_{h}\right]^{\prime}=\left[\beta_{n+j} K_{n+j}^{\prime}\right]^{\prime \prime}} \\
{\left[\gamma_{h} \alpha_{h}\right]^{\prime} A+\left[\gamma_{h} \beta_{h}\right]^{\prime} B+\left[\gamma_{h}^{2}\right]^{\prime} C+\ldots+\left[\gamma_{h} M_{h}\right]^{\prime}=\left[\gamma_{n+j} K_{n+j}\right]^{\prime \prime}}
\end{gathered}
$$

Putting
$\boldsymbol{a}_{n+j}=\alpha_{j}^{\prime}, \beta_{n+j}=\beta_{j^{\prime}}, \gamma_{n+j}=\gamma_{j}^{\prime}, \ldots K_{n+j}=-Q_{j}, M_{n+j}=M_{j}^{\prime}, m_{n+j}=m_{j}^{\prime}$, we have

$$
\begin{array}{r}
{\left[\alpha_{h}{ }^{2}\right]^{\prime} A+\left[\alpha_{h} \beta_{h}{ }^{\prime} B+\left[\alpha_{h} \gamma_{h}\right]^{\prime} C+\ldots+\left[\alpha_{h} M_{h}\right]^{\prime}+\left[\alpha_{j}^{\prime} Q_{j}\right]^{\prime \prime}=0,\right.} \\
{\left[\beta_{h} \alpha_{h}\right]^{\prime} A+\left[\beta_{h}{ }^{h}\right]^{\prime} B+\left[\beta_{h} \gamma_{h}\right]^{\prime} C+\ldots+\left[\beta_{h} M_{h}\right]^{\prime}+\left[\beta_{j}^{\prime} Q_{j}\right]^{\prime \prime}=0,} \\
{\left[\gamma_{h} \alpha_{h}\right]^{\prime} A+\left[\gamma_{h} \beta_{h}\right]^{\prime} B+\left[\gamma_{h}^{\prime}\right]^{\prime} C+\ldots+\left[\gamma_{h} M_{h}\right]^{\prime}+\left[\gamma_{j}^{\prime} Q_{j}\right]^{\prime \prime}=0,}
\end{array}
$$

Introducing

$$
\begin{aligned}
& a_{j}^{\prime}=a_{n+j}=\frac{\alpha_{j}^{\prime} V\left[g_{i} a_{i}^{2}\right]}{V g_{n+j}}, b_{j}^{\prime}=b_{n+j}=\frac{\beta_{j}^{\prime} V\left[g_{i} b_{i}^{2}\right]}{V g_{n+j}}, \\
& c_{j}^{\prime}=c_{n+j}=\frac{\gamma_{j}^{\prime} V\left[g_{i} c_{i}^{2}\right]}{V g_{n+j}}, . ., q_{j}=Q_{j} V g_{n+j} .
\end{aligned}
$$

we obtain, after multiplying successively by $V\left[g_{i} a_{i}{ }^{2}\right], V\left[g_{i} b_{i}{ }^{2}\right]$, $V\left[g_{i} c_{i}{ }^{2}\right], \ldots$
$\left[g_{h} a_{h}^{2}\right]^{\prime} x+\left[g_{h} a_{h} b_{h}\right]^{\prime} y+\left[g_{h} a_{h} c_{h}\right]^{\prime} z+\ldots+\left[g_{h} a_{h} m_{h}\right]^{\prime}+\left[a_{j}^{\prime} q_{j}\right]^{\prime \prime}=0$,
$\left[g_{h} b_{h} a_{h}\right]^{\prime} x+\left[g_{h} b_{h}{ }^{2}\right]^{\prime} y+\left[g_{h} b_{h} c_{h}\right]^{\prime} z+\ldots+\left[g_{h} b_{k} m_{h}\right]^{\prime}+\left[b_{j}{ }^{\prime} q_{j}\right]^{\prime \prime}=0$,
$\left[g_{h} c_{h} a_{h}\right]^{\prime} x+\left[g_{h} c_{h} b_{h}\right]^{\prime} y+\left[g_{h} c_{h}^{2}\right]^{\prime} z+\ldots+\left[g_{h} c_{h} m_{h}\right]^{\prime}+\left[c_{j} q_{j} q^{\prime \prime}\right]^{\prime \prime}=0$,
N equations, which together with the v conditions

$$
a_{j}{ }^{\prime} x+\dot{b}_{j}{ }^{\prime} y+c_{j}^{\prime} z+\ldots+m_{j}^{\prime}=0
$$

serve to determine the N variables x, y, z, \ldots and the v auxiliary quantities q_{j}.
IV. In order to determine the weights of x, y, z, \ldots, i. e. of A, B, C, \ldots, we must examine the influence undergone by $\&$ from a variation of \mathfrak{M}, the vectors $\mathfrak{F}, \mathfrak{C}, \ldots$ remaining unaltered.

A variation of \mathfrak{M} only acts upon $\mathfrak{A}, \mathfrak{K}, \mathfrak{C}, \ldots$ when the foot of \mathfrak{R} on the space $\varrho^{\prime}{ }_{N-\nu}$ of intersection moves. If the foot is fixed, \mathfrak{l} may freely
move in the space S, common to the normal space of $\varrho^{\prime} N-v$ (of $n+2 v$ $-N$ dimensions) and the space R_{n}^{\prime} parallel to R_{n}. The space S obviously has $(n+2 v-N)+n-(n+v)=n+v-N$ dimensions. A component of \mathfrak{M} in this space has no effect on the vectors $\mathfrak{A}, \mathfrak{F}, \mathfrak{\mathfrak { C }}, \ldots$ A component of \mathfrak{M} will only have any effect on $\mathfrak{M}, \mathfrak{B}, \mathfrak{C}, \ldots$, when it lies in the normal space $S^{\prime} N$ of S, which has $n+v-(n+v-N)=N$ dimensions. By translating this normal space $S^{\prime}{ }_{N}$ to O, it contains both R_{ν} and $\varrho_{N \rightarrow,}$ (intersection of R_{N} and R_{n}).

The variation of $¥>$ will exclusively influence $\$$, when the component of \mathfrak{M} undergoing this variation is perpendicular to $\mathfrak{F}, \mathfrak{C}, \ldots$

These considerations lead to the result that we want that direction \mathfrak{G}, which lies in S_{N}^{\prime} and is perpendicular to $\mathfrak{B}, \mathfrak{C}, \ldots$ The vectors $\mathfrak{F}, \mathfrak{C}, \ldots$ determine together a space of $N-1$ dimensions. The vector \mathfrak{z} must lie in the normal space (of $n+v-N+1$ dimensions) of the space ($\mathfrak{B},\left(\mathfrak{G}, \ldots\right.$). This normal space cuts $S^{\prime} N$ in a space of $(n+v-N+1)+N-(n+v)=1$ dimension, hence in a straight line. So there is always one and only one line \mathfrak{E} fulfilling the imposed conditions.

Since \mathfrak{E} lies in S_{N}^{\prime}, i. e. in the space joining R, with $o_{N-,}$, the projection \mathfrak{t} of \mathfrak{z} on R_{n} will fall into $\varrho_{N-» .}$.

Now we have for the direction cosines r_{i} of the projection t of \& on R_{n} :

$$
\boldsymbol{\tau}_{h}=\frac{\sigma_{h}}{V\left[\sigma_{h}^{h^{2}}\right]^{\prime}}\left(h=1, \ldots, \quad ; \quad \tau_{n+j}=0 \quad(j=1, . ., \mathfrak{v}) .\right.
$$

As t , being a line of ρ_{N-v}, also lies in the space R_{N} and therefore may be resolved in the directions $\$ 1, \mathfrak{B}, \mathfrak{C}, \ldots$, we have

$$
\begin{array}{ll}
\boldsymbol{\tau}_{h}=P \alpha_{h}+Q \beta_{h}+R \gamma_{h}+\ldots, & (h=1, \ldots n) \\
\boldsymbol{\tau}_{n+j}=P \alpha_{n+j}+Q_{i} \xi_{n+j}+R_{\gamma_{n+j}}+\ldots=0 . & (j=1, \ldots v)
\end{array}
$$

Putting

$$
P V\left[\sigma_{h}^{3}\right]^{\prime}=P^{\prime} \quad, \quad Q V\left[\sigma_{h}^{2}\right]^{\prime}=Q^{\prime} \quad, \quad R V\left[\kappa_{h}^{2}\right]^{\prime}=R^{\prime}, \ldots
$$

we obtain :

$$
\begin{array}{ll}
\alpha_{h} P^{\prime}+\beta_{h} Q^{\prime}+\gamma_{h} R^{\prime}+\ldots & =\sigma_{h}, \\
\left.\alpha_{n+j} P^{\prime}+\beta_{n+j} Q^{\prime}+\gamma_{n+9} R^{\prime}+\ldots=1, \ldots n\right) \\
=0, & (j=1, \ldots v)
\end{array}
$$

and, \mathfrak{z} being perpendicular to $\mathfrak{B}, \mathfrak{C}, \ldots$,

$$
\left[\beta_{i} \sigma_{i}\right]=0, \quad\left[\gamma_{i} \sigma_{i}\right]=0 \ldots \quad\left[\sigma_{i}^{2}\right]=1
$$

In this way we have collected $n+v+N$ equations to determine the $n+v$ unknown quantities σ_{2} and the N unknown quantities $P^{\prime}, Q^{\prime}, R^{\prime}, \ldots$.
$S^{\prime} N$ being perpendicular to $\AA, \&$ is also perpendicular to Ω. By . multiplying the equation

$$
\mathfrak{M}+\mathfrak{B}+\mathfrak{c}+\ldots+\mathfrak{m}=\mathfrak{M}
$$

sealarly by ε, it reduces to

$$
(\mathfrak{A}, \mathfrak{k})+(\mathfrak{F}, \mathfrak{k})=0
$$

or

$$
A\left[a_{i} \sigma_{i}\right]=-M_{s}
$$

In order to determine the mean error of M_{s}, we remark that of all the lines through O in $R_{n} t$ is that which makes the smallest angle with s. The error of M_{s} therefore depends for the most part on the error in the components M_{t} of \mathfrak{m} in the direction t. We may consequently write

$$
\text { m. e. of } M_{s}=m \text {. e. of } M_{i} \times \cos (\mathfrak{z}, \mathfrak{t})=\varepsilon \cos (\mathfrak{z}, \mathrm{t})
$$

or

$$
\varepsilon_{s}=\varepsilon\left[\sigma_{i} i_{i}\right]=\varepsilon\left[\sigma_{h} \cdot \frac{\sigma_{h}}{V\left[\sigma_{h}^{2}\right]^{\prime}}\right]^{\prime}=\varepsilon V\left[\sigma_{h}^{2}\right]^{\prime}
$$

hence

$$
\varepsilon_{A}=\frac{\varepsilon_{s}}{\left[\alpha_{i} \sigma_{i}\right]}=\frac{V\left[\sigma_{h}^{2}\right]^{\prime}}{\left[\alpha_{i} \sigma_{i}\right]} \varepsilon .
$$

Since

$$
M_{s}=M_{i}\left[\sigma_{i} \tau_{i}\right]=\left[M_{h} \tau_{h}\right]^{\prime} \cdot\left[\sigma_{i} \tau_{i}\right]=\left[M_{h} \frac{\sigma_{h}}{V\left[\sigma_{h}^{2}\right]^{\prime}}\right]^{\prime} \cdot V\left[\sigma_{h}^{2}\right]^{\prime}=\left[M_{h} \sigma_{h}\right]^{\prime},
$$

we have

$$
A=-\frac{M_{s}}{\left[\alpha i \sigma_{i}\right]}=-\left[\frac{\sigma_{h}}{\left[\alpha i \sigma_{i}\right]} \cdot M_{h}\right]
$$

or, putting

$$
\begin{gathered}
\frac{\sigma_{h}}{\left[\alpha_{i} \sigma_{i}\right]}=p_{h} \\
A=-\left[p_{h} M_{h}\right]^{\prime} \\
\frac{1}{g_{A}}=\frac{\varepsilon_{A}}{\varepsilon^{2}}=\frac{\left[\sigma_{h}^{2}\right]^{\prime}}{\left[\sigma_{i} \sigma_{i}\right]^{2}}=\left[p_{h}^{2}\right]^{\prime}
\end{gathered}
$$

Introducing

$$
X=\frac{P^{\prime}}{\left[\alpha_{i} \sigma_{i}\right]}, Y=\frac{Q^{\prime}}{\left[\alpha_{i} \sigma_{i}\right]}, Z=\frac{R^{\prime}}{\left[\alpha_{i} \sigma_{i}\right]}, \ldots ; p_{n+j}=\frac{\sigma_{n+j}}{\left[\alpha_{i} \sigma_{i}\right]}(j=1, . . v)
$$

we arrive at

$$
\begin{array}{cc}
\alpha_{h} X+\beta_{h} Y+\gamma_{h} Z+\ldots, p_{h} \quad(h=1, \ldots n) \\
\alpha_{n-j} X+\beta_{n+j} Y+\gamma_{n+j} Z+\ldots=0 \quad(j=1, \ldots v) \\
{\left[\alpha_{i} p_{i}\right]=1,\left[\beta_{i} p_{i}\right]=0,\left[\gamma_{i} p_{i}\right]=0 \ldots}
\end{array}
$$

From these $n+v+N$ equations we can solve the $n+v$ unknown quantities $p_{i}(i=1 \ldots n+v)$ and the N auxiliary quantities X, Y, Z, \ldots

The quantity $\frac{1}{g_{A}}=\left[p h^{2}\right]^{\prime}$ in question is also found as follows

$$
\begin{aligned}
\frac{1}{g_{A}} & =\left[p_{h}^{2}\right]^{\prime}=\left[p_{h}\left(\alpha_{l} X+\dot{\beta}_{h} Y+\gamma_{h} Z+\ldots\right)\right]^{\prime}=X\left[p_{h} \alpha_{h}\right]^{\prime}+Y\left[p_{h} \rho_{h}\right]^{\prime}+Z\left[p_{h} \gamma_{h}\right]^{\prime}+\ldots= \\
& =X-X\left[p_{n+j} \alpha_{n+j}\right]^{\prime \prime}-Y\left[p_{n+j} \beta_{n+j}\right]^{\prime \prime}-Z\left[p_{n+j} \gamma_{n+j}\right]^{\prime \prime} \ldots \\
& =X-\left[p_{n+j}\left(\alpha_{n+j} X+\beta_{n+j} Y+\gamma_{n+j} Z+\ldots\right)\right]^{\prime \prime} \\
& =X .
\end{aligned}
$$

Returning to the original variables x, y, z, \ldots, we derive from

$$
x=\frac{A}{V\left[g_{i} a_{i}^{2}\right]}
$$

firstly

$$
\varepsilon_{x}=\frac{\varepsilon_{A}}{V\left[g_{i} a_{i}^{2}\right]}
$$

and

$$
\frac{1}{g_{x}}=\frac{\varepsilon_{x}^{2}}{\varepsilon^{2}}=\frac{\left[p_{h}^{2}\right]^{\prime}}{\left[g_{i} a_{i}^{2}\right]} .
$$

Further, putting

$$
\begin{gathered}
p_{h}=k_{h} \frac{V\left[g_{i} a_{i}^{2}\right]}{V g_{h}}, \quad p_{n+j}=k_{n+j} \frac{V\left[g_{i} a_{i}^{2}\right]}{V g_{n+j}} \\
\mathbf{X}=\boldsymbol{\xi}\left[g_{i} a_{i}^{2}\right], \quad Y=\eta\left[g_{i} b_{i}^{2}\right], \quad Z=\boldsymbol{\zeta}\left[g_{i} c_{i}^{2}\right], \ldots
\end{gathered}
$$

the $n+v+N$ equations pass into

$$
\begin{gathered}
a_{h} \boldsymbol{\xi}+b_{k} \eta+c_{h} \boldsymbol{\xi}+\ldots=\frac{k_{h}}{g_{h}}, \quad(h=1, \ldots n) \\
a_{n+j} \boldsymbol{\xi}+b_{n+j} \eta+c_{n+j} \xi+\ldots=0, \quad(j=1, \ldots v) \\
{\left[a_{i} k_{i}\right]=1, \quad\left[b_{i} k_{i}\right]=0, \quad\left[c_{i} k_{i}\right]=0, \ldots,}
\end{gathered}
$$

whence

$$
\frac{1}{g_{x}}=\left[\frac{k_{h}{ }^{2}}{g_{h}}\right]^{\prime}=\xi .
$$

Example: 2 equations of observation with 2 variables and 1 condition. The unit-vectors a and \mathfrak{b} determine a plane $R_{N}(N=2)$, the plane of the variables. This plane cuts the plane of observation $R_{n}(n=2)$ in the line $\varrho_{-\nu}(N-v=1)$, which thus coincides with the line t. The line $O P$ is drawn in the plane R_{n} perpendicular to $\rho_{N},(1)$. Through the extremity M of the vector \mathfrak{M} a line is drawn parallel to $O P$; this line cuts the plane R_{N} of the variables in M^{\prime}. The veetor $M M^{\prime}=\|=P O$ is the correction-vector $\Omega . O M^{\prime}$ is resolved in the directions \mathfrak{a} and \mathfrak{b} into the components $O A=\mathbb{M}$ and $O B=\mathfrak{B}$. The lengths of these lines represent the most probable values of the variables A and B.

The line $P Q$ is perpendicular to the plane R_{N} and meets the normal R, (line of condition), erected in O on R_{n}, in the point Q. The vector $O Q$ is called ${ }^{\prime}$ '.

The space joining ρ_{N-}, with R is here the plane S_{y}. The plane

Fig. 2.
erected in O perpendicular to \mathfrak{F}, intersects S_{N}^{\prime} in the line $\mathcal{\xi}$, which therefore is perpendicular to \mathfrak{B} and \mathfrak{K}. So A and \mathbb{X} are projected on $\mathfrak{\xi}$ in the same point A_{s}.

The normal plane $A A_{s} M$ of ε cuts t in a point T, the distance of which to O amounts to M_{t} (with mean error ε). The mean error ε_{s} of A_{s} thus has the value $\varepsilon_{s}=\varepsilon \cos (\mathbb{B}, \mathfrak{t})$, and that of A the value $\varepsilon_{A}=\frac{\varepsilon_{s}}{\cos (\hat{\mathrm{~B}}, \mathrm{a})}=\varepsilon \frac{\cos (\hat{\mathrm{B}}, \mathrm{t})}{\cos (\hat{\mathrm{g}, \mathrm{a}})}$.
V. The errors (residuals) of $M_{1}, M_{2}, \ldots M_{n}$ are $K_{1}, K_{2}, \ldots K_{n}$ resp. The sum of their squares is $\left[K_{h}{ }^{2}\right]=K^{2}$.

For the case that no equations of condition are given, Ω must be perpendicular to R_{N}. So Ω may dispose of a space of $n-N$ dimensions (the normal space of R_{N}). Hence \mathscr{R} has $n-N$ components, all with the same mean value ε. Consequently

$$
K^{2}=(n-N) \times \varepsilon^{2}
$$

hence

$$
\varepsilon=\int \quad \frac{\left[K_{i}^{2}\right]}{n-N} .
$$

In case v conditions are imposed, \mathscr{F} may dispose of the space S of $n+v-N$ dimensions. Consequently \mathfrak{S} now has $n+v-N$ components, all with a mean value ε. In this case we have therefore

$$
\varepsilon=\int \frac{\left[K_{h}^{2}\right]}{n+v-N} .
$$

[^0]: ${ }^{1}$) Overzicht der geographische en geologische gegevens l. c. p. 229.
 ${ }^{2}$) 1. c. p. 229.
 ${ }^{3}$) L. von Schrotia, Eine vektoranalytische Interpretation der Formeln der Ausgleichungsrechnung nach der Methode der kleinsten Quadrate. Archiv der Mathematik und Physik. 3, Reihe, Bd. 21, (1913), p. 293.
 ${ }^{4}$) C. Rodriguez, La compensacion de los Errores desde al punto de visto geo metrico. Mexico, Soc. Cient. "Antonio Alzate", vol. 33 (1913-1914), p. 57.

