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distinet discontinuity as was found at 4°.19 K in the electrical con-
duetivity, although the thermal conductivity becomes much larger,
when the temperature decreases. As there do not exist direct deter-
minations for solid mercury, we only can make a rough estimation
with the aid of Wirbemany and Fraxz's law.

At the meliing point, the electrical conductivity of liquid mercury
amounts to 1.10. 10* em. £2—-'and of solid mercury to about five times
as much, thus to 5.50. 10* em—* £-1. From this we tind by comparison
e.g. with lead about 0.075 for the fthermal conductivity. The values
here obtained in liquid helium are 3.5 and 5.5 times as large.

.

Chemistry. “Fquilibriu  in  ternary systems”. XVIL. By Prof.
SCHREINEMAKERS.

(Communicated in the meeting of Oct. 31, 1914).

Now we will consider the case, mentioned sub 3 (XVI), viz:
the solid substance is a binary compound of a volatile- and a
non-volatile component. A similar case occurs for instance In
the systemi Na,80, -+ water -+ alcohol, when the -solid phase is
Na,S30,. 10 H;0, or in the system FeCl; 4 HCI 4 H,0, when the
solid phase is one of the hydrates of ferric chloride, for instance
Fe,Cl, .12 H,0.

For fixing the ideas we shall assume that of the three compo-
nents A, B, and C (fig. 1) only 4 and (' are volatile, so that all
rapours consist cither of A or of C or of 44 (.

In fig. 1 CAde represents a heterogeneous region L—G; ed is
the liquid curve, CA the corresponding siraight vapour-line. The
liguid ¢, therefore, can be in equilibrium with the vapour 4, the
liquid ¢ with the vapour (' and each liquid of curve ¢d with a
definite vapour of AC.

Previously (XVI) we have seen that this helerogeneous region
L—G can arise in different ways on decrease of pressure, viz. either
in one of the anglepoints 4 and € or in a point of AC; also two
heterogeneous regions mway occur, the one in 4 and.the other in C,
which come together on further decrease of pressure somewhere in
a point of AC.

In fig. 1 we may imagine that the region L—G has arisen in these
different ways; curve e¢d may of course also turn its convex side
towards AC. Besides this heterogeneous region L—G we also find
in fig. 1 the saturationcurve under constant pressure of the binary
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substance F, represented by pg [we leave the curve rs, drawn in
the figure out of consideration for the present].

-

Ve

/7T,

Fig. 1.

In the same way as we have acted in the general case [fig. 11 (1)}
or in the peculiar case (XI), we may deduce also now the different
diagrams.

T Tp. At first we take a temperature 7' lower than the
minimummeltingpoint 7' of the binary compound /. Now we find
a diagram just as fig. 2 for the salurationcurve under its own vapour-
pressure of " and the corresponding straight vapour-line. In this
figure, in which the component-triangle is only partly drawn, hgn
is the saturationcurve under its own vapourpressure; we find the
corresponding straight vapour line Cy, on side (4.

Wihen we assume, as is supposed at the deduetion of fig. 2, that
neither a point of maximum-pressure, nor a point of minimum-
pressure occurs, the pressure increases from n towards /4; conse-
guently it is lowest in » and highest in /, without being, however,
a minimum in » or a maximum in 4. It follows from the deduction
that the sides solid-gas and solid-liquid of the threephasetriangles
must be situated with respect to one another and to the side CB
just as is drawn in fig. 2.

It is apparent from the figure that the binary liquids 4 and n can

be in equilibrium with the unary vapour C and that the ternary

liguids a, ¢ and 6 can be in equilibrium with the binary vapours
a,, ¢, and b, . It is apparent that somewhere between the liquids ¢
and & a liquid g must be situated, the corresponding vapour g, of
which represents the extreme point of the straight vapour line Cy,.

When a liquid follows eurve An, first from 4 towards ¢ and after-
wards from g towards n, the corresponding vapour g, follows conse-




guently ‘first Cy, from € towards g, and afterwards again thi§
same line, but in opposite direction, consequently from ¢, toewards (.

b~

Each vapour of this straight vapour line Cy, can, therefore, be in
equilibrium with two different hqulds the one of branch Ay and the
= other of branch gn.

We may express this also in the following way: when we have
an equilibrinm 4 L + &, then there exists under another pressure,
also an equilibriom /4~ L, + (/,, in which L and I, have a
different composition; (¢ and (,, however, have the same composition,

It is apparent from the deduction of fig. 2 that in curve hn also a
point of maximumpressure can occur. This case is drawn in fig. 3;
hn represents again the saturationcurve under its own Vapourplessure
and (g, represents the corresponding straight vapourline; M is the
point of maximumpressure, M, the corresponding vapour. The points
M,, M, and F must of course be situated on a straight line.

While under the pressure P, there occurs only one equilibrium,
- viz. I+ L+ (r3,, under each pressure, somewhat lower than
‘ P,y there exist two equilibria, for instance P+ Lo+ Gy and

F4+ L. + G.,; we can imagine these to be represented by the

threephasetriangles Fana, and Fee,, when we imagine both trxanﬂles

in the vieinity of the line FMM,. Tt follows from the deduction

[ of the diagram that both these triangles tarn their sides solid-gas
towards one another, consequently also towards the line FMM,

Suppose, we want the carves ed and pg to move in fig. 1 with

respect to -one another in such a way that a point of minimum-

pressure occurs on the saturationcurve under its own  vapourpressure,

51%*
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then we see that this is impossible. Yet we can imagine a saturation-
curve with a point of maximum- and a point of minimumpressure.

Fig. 3.

When we trace curve An starting from n, we arrive first in the
point of maximus- afterwards in the point of minimumpressure.
We will refer to this later.

Ty < T. Now e take atemperature 7 a little above the minimum
meltingpoint Tz of the solid substance F. Then we must distinguish
two cases, according as the solid substance expands or contracts on
melting. We take the first case only.

Then we find a diagram like tig. 4 (XI); herein, however, the
same as in figs. 2 and 3, we must imagine that the vapourcurve
han, is replaced by a straight vapourline (y, on side (4. We
will refer later to the possibility of the occurrence of a point of
maximum- and a point of minimumpressure.

We can, however, also get curves of a form as curve /n and the
curves sitnated inside this in fig. 6 (XI); these curves show as well
a point of maximum- as a point of minimumpressure. _

When we draw the saturationcurves under their own vapour-
pressure for different temperalures, we can distinguish two principal
types; we can imagine those to be represented by figs. 5 (XI) and
6 (XI). At temperatures below 7'z these curves are circumphased,
above I’y they are exphased. In tig. 5 (XI) they disappear in a point
H on side BC, in tig. 6 (XI) in a point R within the triangle. The
corresponding straight vapourlines disappear in fig. 5 (XI) at T in
the point C; in figure 6 (XI) they disappear at T in a point R,,
the intersecting point of the line /R with the side CA.

B e,
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Now we will consider some points more in detail. In order to
get the conditions of equilibrium for the system F -4 L -+ (7, when
I is a binary compound of B and C and when the vapour consists
only of 4 and €. we must equate «=0 and y, = 0. The conditions
(1) (II) pass then into:

z id ( B) o 9
- & — —(y —B) — =
0w T Py 0z _ 9z, ) 0
07 Z 0w Ow,
PRSP L do o ﬂ
0w, 0y
Now we put:
Z=U+4 RTeloga and Z, =U,+ RTz logz, . . (2)
Hence the conditions (1) pass into:
3 o
2—4(y—B) <~ +Rle—U+8&&=0. . . . (3)
Oz Oy
oU,

U
_(géy_+RTwl—Ul+§=o. e @

:2316—:;1—
U, '
- + RTlogz, . . . . . (5)
1

When we keep the temperature constant, we may deduce from
(3)—(5):

[ar + (§ — ) s + BT ) do + [as + (s — )l dy = AdP . (5)

[w — 8+ % RT] dz + (2,8 — Bt] dy = (4 + C)dP. . (7)

RT RT oV, oV )
('r + 7) do + sdy — (1‘1 -+ — de, = Py v ar . (8)

1
Here we must equate of course in 4 and € e=0 and y, = 0.

In order 1o let the pressure be a maximum or a minimum, dP
must he = 0. From (6) and (7) it follows that then must be satisfied :

e+ s y—F=0 . . . . . . .9

This means that the point of maximum- or of minimumpressure

M (x,y) and the corresponding vapourpoint M, (z;y,) are situated
with F on a straight line (fig. 3).

In ovder to examine the change of pressure along a saturation-

oU 0
— -+ RT log & —
5 -+ log @ p

' curve under its own vapourpressure in its ends /£ and n (figs. 2 and 3)
L we equate in (6) and (7) 2 =0 and 2, = 0. Then we find:
‘ oV
! [(y—B) s + RT) dz + (y—B) tdy = [V— v+ (B—y) 5;] apP  (10)
[_53 +ﬁRT:ldw—5tdy= [V, —u B%Lrj P . (11)
z Y




172

The ratio @, :2 has a definite value herein, as it follows from (5.
When we eliminate «y from (10) and (11), then we tind:

[ﬁ+¢wﬂﬂ%]RTm::WV+wy—mv2~y4dP-- (12)

The quantities in the coefficient of P relate all to the binary
equilibvivm F 4+ L 4+ G. When we call 417 the change of volume,
when between the three phases of this binary equilibrium a reaction
takes place, at which the unity of quantity of vapour avises, then is:

=B LV, =3V + =B Vi—ye . . . . (13)

Consequently we may write for (12):

ap=(" 4 P EL 14)
= — — e e . o .
& y—3/ LV, (

Now we introduce again, as in (XI) the perspective concentrations
of the substance A in liguid and gas; it 1s evident that the per-
spective concentration S, is equal to the real concentration », of -
in the vapour; we find for the perspective concentration of A in
the liquid: ’

B
S=- 15
3y (15)

so that we can write for (14):

ap @, S\ RT
| Sl B (T e 1)
t d-’&' r=:0 & Ty L\ I,1

When the vapour contains the three components, then. as we have
seen previously (14) (XI) is true; when we replace herein .S, by 2,

this passes into (16).
; It follows from (16) that the sign of the change of pressure in
the ends 2 and n of a saturationcurve under its own vapourpressure,
‘ depends on the sign of 417, Now AT is almost always positive
for the binary equilibrium /- L--(;/ and itis only negative between
the points /' and H [fig. 5 (XI) and fig. 6 (XI)]. Consequently AV,
is positive in the points 2 and = of figs. 2 and 3, also in the point
hoof fig. 5(XI) and 6 (XI); AV, is negative in the point n of the
two last figures. Further it follows that the sign of the change of
pressure is not determined by the ratio 2, :a (the partition of the
third substance between gas and liquid) but by the ratio S:a, (the
perspective partition of the third substance between gas and liquid).
Let us take mnow a liguid of the saturationcurve under its
own vapourpressure in the vicinity of the point 4 of fig. 2, for this
we imagine triangle Fua, in the vicinity of the side BC. From the
position of Fa and Fa, with respect to one anothqr, follows
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S>a,. As AV, is positive in /4, it follows from (16) that the
pressure must decrease on addition of a third substance. We see
that this is in accordance with the direction of the arrow in the
vicinity of /.

In the vicinity of point 4 of tig. 3 is @, > S as follows from the
position of triangle Faa,. As AV, is positive, it follows from (16)
that the pressure must increase on addition of a third substance.
This is in accordance with the direction of the arrow in the vicinity
of h.

In the vieinity of point n of the figs. 2 and 3 S is negative (we
imagine for instance in tig. 2 triangle Fbl, in the vicinity of side
BCy; as AV, is positive, it follows from (16) that in both figures
the pressure must increase, starting from n.

Consequently we find: in a terminatingpoint of a saturationcurve
under its own vapourpressure, situated between ('and H, the pressure
decreases on addition of a third substance, when the threephace-
triangle turns its side solid-gas towards B( (fig. 2) and the pressure
increases when the threephasetriangle turns its side solid-liquid
towards BC.

As, therefore, at temperatures lower than 7' (figs. 2 and 3) the
pressure always increases, starting from n, and increases or decreases
starting from /A, we find the following. When we trace curve nfh,
the pressure increases continually starting from » towards 7 (fig. 2),
or we come starting from n first in a point of maximumpressure,
after which the pressure decreases as faras in /& (fig. 3) or we come,
starting from n first in a point of maximum- and afterwards in a
point of minimumpressure. after which the pressure inereases up to /.

As in point & of fig. 5 (XI) the pressure decreases starting from
h, consequent it is assumed here, that the threephasetriangle turns
its "side solid-gas towards BC. (Cf. fig. 2 and fig. 4 (XI); in this
last figure we imagine however curve /,n, on side CA). In the point
h of fig. 6 (XI) is assumed that the threephasetriangle turns its side
solid-liquid towards BC.

Let us consider now the terminatingpoint n of the saturationcurve
in fig. 5 (XI) and fig. 6 (XI). As n is situated between £ and H,
AV, is negative, when the threephasetriangle turns its side solid-
gas towards BC, then is S>>, and it follows from (16) that the
pressure increases on addition of a third substance. We then have
the case of fig. 5 (XI). When, however, the threephasetriangle turns
its side solid-liquid towards BC, then S<Cw, and it follows from
(16) that the pressure decreases on addition of a third substance.
We then have the case represented in fig. 6 (XI).
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When we consider the saturationcurve going through the point
Fin fig. 5 (X1) and fig. 6 (XI), then for this point y = 3, couse-
quently. according to (15) S= . From (13) follows also & 1", = =.
Therefore we take (12); from this follows for y =3

dpP RT
= R ¢ 1))

de =0 V—u

As fig. 5 (XI) and fig. 6 (XI) are drawn for 77>, the pressure
must increase starting from F along the saturationcurve going
through £.

As the pressure increases starting from /' along the saturation-
curves under their own vapourpressure of fig. 6 (XI) and decreases
starting from a point n, situated in the vicinity of H, somewhere
between F and n mnst consequently be situated a point, starting
from which the pressure neither increases nor decreases. This point
is, therefore, the point of maximum- or of minimumpressure of a
saturationcurve, and is not situated within the componentitriangle,
but accidentally it falls on side BC. It follows from the figure that
this point is a point of minimumpressure; we shall call this the
point m.

The limitcurve (viz. the geometrical position of the points of
maximume- and minimumpressure) goes consequently through the
points m and R; it represents from m to £ points of minimum-
pressure; starting from /[ further within the triangle, it represents
points of maximumpressure. This latter branch can end anywhere
between  and C on side BC.

The terminatingpoint of a limitcurve on side BY’ ean be situated
between Fand C, but cannot be sitnated between # and B. A similar
terminatingpoint 1s viz. a poinlt of maximum- or a point of minimum-
pressure of the saturationcurve, going through this point. Consequently
in this point along this saturationcurve ¢f?=0; from (16) it follows
that then must be satisfied :

S=ua or fo+ (y—Hz,=0. . . . . (18)

Herein x and &, are infinitely small; their limit-ratio is determined
by (5)..As .z and 2, are both positive, it follows from (18): y < 3.
The terizinatingpoint of a limitecurve must, therefore, be situated
between /7 and (' (fig. 6) and it cannot be situated beiween F and
B. In accordance with this we found above that one of the ends
of the limitcurve is situated in fig. 6 (XI) between n and F.

Now we must still consider the case mentioned sub 4 (XIV), viz.
that the solid substance is one of the components, A similar case
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occurs for instance in the systems: Z - water 4 alcohol, wherein
Z represents an anhydric single, salt, which is not-volatile.

For fixing the ideas we assuwe that B is the component, which is
not-volatile (fig. 1), so that 4 and ( represent the volatile components.

Now we imagine in fig. 1 curve pg to be omitted, so that the
curves ed and rs rest only, ed is the liquidcurve of the region L — (¢,
rs is the saturationcurve under a constant pressure of the substance /5.

We can, in order to obtain the different diagrams, act in the same
way as we did before in the general case, or as in communication
XIII. For this we consider the movement of the curves ed and rs
with respect to one another on decrease of pressure.

As we assume that B is not volatile, these considerations are
not true, therefore, for points situated in the vicinity of 5. Equilibria
sitnated in the immediate vicinity of B have viz. also always the
substance A in their vapour, so that the considerations of com-
munication XIII apply to these.

When we decrease the pressure, the liquideurve ed (fig. 1) shifts
further into the triangle towards the point 5, so that under a definite
pressure the curves ed and rs meet one another. Now we distinguish
three cases. ‘

1. We assume (hat the curves ed and s meet one another first
in a point on one of the sides of the triangle; when this takes place
on side BC, then consequently the points ¢ and » coincide in fig. 1,
while the two curves have no other point in common further. On
further decrease of /P’ this intersecting point shifts within the triangle
and it disappears at last on the side A5, when in fig. 1 the points
s and « coincide. Curve ed is situated then inside the sector Brs
and curve rs inside the region CedA.

From this follows that the saturationcurve of B under its own
vapourpressure can be represented by curve habn in fig. 4, in which
the arrows indicate the direction, in which the vapourpressure increases.
The corresponding vapourcurve is the side CA; the liquid 4 viz. is
in equilibrium with the vapour C, liquid n with the vapour 4 and
with each liquid (@ and &) of /n a definite vapour (a, and b,) of CA
is in equilibrium. It follows from the deduction that the threephase-
triangles (Baa,, Bbb,) turn their sides solid-gas towards the point /4
and their sides solid-liquid towards the point n.

This fig. 4 is a peculiar case of fig. 2 (XIIlI); when we suppose
viz. that the substance B does not occur in the vapour, curve 4,a,b,n,
of fig. 2 (XIII) must coincide with the side C4 of the triangle and
fig. 4 arises,

-10 -




Fig. 4.

2. Now we assume again that the curves ed and rs (fig. 1) meet
one another first in a point of the side B(C'; this point of inter-
section” shifts then on further decrease of P into the triangle. Under
a definite pressure we want a secoud point of intersection to be
formed by the coincidence of d and s (fig. 1). The two points of

o]

Fig.

intersection approach one another on further decrease of pressure,
in order to coincide at lasl in a point m. It is evident that m is a
point of minimumpressure of the saturationcurve under its own
vapourpressure; it is represented in fig. 3 by curve wambe, the
corresponding vapourcurve is the side C.l. It is evident that the
vapour m,, which can be in equilibrium with the liquid m, is
sitnated on the line Bin.

3. We can assume also that the curves ed and rs (fig. 1) meet
on decrease of pressure first in a point .}/, which is situated within
the triangle. On further decrease of pressure then two points of

-11 -
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intersection arise; the one disappears on BC by the coincidence of
¢ and r, the other on BA by the coincidence of ¢ and s (fig. 1).
It is evident that M is then the point of maximum-pressure of the
saturationcurve of B under its own vapourpressure, the corresponding
vapourpoint M, is situated of course on the line BM.

One can understand the occurring diagram with the aid of fig. 5 ;
herein we have to give an opposite direction to the arrows and we
have to replace the points of minimumpressure m and m, by the
points of maximumpressure M and M, ; farther the triangles Baa,
and Bbb, are to be drawn, in such a way that they turn their
sides solid—gas towards the line BMM,.

We shall consider some points in another way now. In order to
find the conditions of equilibrium for the equilibrivm B4 L + @,
when the vapour consists of .4 and C only, we equate in the
relations (1)—(8) p=1; in the general values of 4 and C (II)
we put « =0, 3 =1 and y, = 0. The condition for the occurrence
of a point of maximum- or of minimumpressure (= 0) becomes then:

s=U -y, . . . . . . . . (19

This relation also follows from (9), when we put g =1. This
means: the point of maximum- or of minimumpressure of the saturation-
curve of B under its own vapourpressure and the corresponding
vapourpoint are situated with point 5 on a straight line (fig. 5).

In order to determine the change of pressure along a saturation-
curve under its own vapourpressure in its ends on the sides BC and
BA (ligs. 4 and 5) we put in (16) 3=1. We then find

dr @ ! SN\ RT 20
d—a; l:O_I ——::C‘; AVI . . . . . (u )

In this S and AV, are determined by (13) and (15), when we
put herein 3=1. Consequently S is always positive. When we
apply (20) to the figures (4) and (3), then we see that the change
of pressure is in accordance with the position of the sides solid-gas

“and solid-liguid of the threephasetriangles.

Now we have treated the case that either the binary compound
F (figs. 2 and 3) or the component /3 (figs. 4 and 5)occurs as solid
phase. When JF and B oceur both as solid phases, then the two
saturationcnrves under their own vapourpressure can either intersect
one another or not. We only consider the case, drawn in fig. 6, that
the two curves intersect one another in a point; the vapour, being
in equilibrium with the liquid s, is represented by s, (s, or s,).

A similar case may occur for instance in the system Na,S0,

water -+ aleohol, then curve cs is the saturationcurve under its own

-12 -
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vapourpressure of Na,SO, .10 H,0 (F), sa the saturationcurve of the
anhydric Na,SO, (B). Then there exists a series of solutions, saturated
under their own vapourpressure with Na,SO,.10 H,O (curve cs)
and one series saturated with Na,SO, (curve sa); the equilibrium
Na,S0, . 10 H,0 + Na,S0, + L + G, occurs only under a definite
pressure Ps. The solution L, has then a detinite composition s and
the vapour, which consists only of water and alcohol has a definite
composition s, .

In the binary system Na,SO, 4 water, the equilibrium Na,S0O, . 10
H,O -4 Na,SO, 4 vapour exists only under one definite pressure; we
shall - call this pressure /7. In the ternary system Na,SO, -} water
alcohol the equilibrium Na,SO, . 10 H;0+4Na,SO,+ L.+ G, exists also
only under a definite vapourpressure P;. This pressure P is influenced

B

C

Fig. 6.
by the watervapour and the alcohol-vapour together; now we may
show that the partialpressure of the watervapour herein is also equal

to P, and that the pressure of the alcohol vapour is consequently’

P, —P,.

In order to show this, we consider the general case that in the
system A 4+ B 4 C (figs. 1—6) the substances 4 and C are volatile
and that a compound F of B and C occurs.

The binary equilibrium B -+ F 4 ,, wherein the vapour consists
of C only, occurs under a single pressure 7, only.

The ternary equilibrium B - F' 4 (7, wherein consequently the
vapour consists of A and C, can occur at a whole series of vapour-
pressures.

When we represent the § of B and F by § and §,, then the
condition of equilibrium 1s true:

L == (1—p) Zl——mlazl). ... @ey

52,

-13 -
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Hence follows :
oV,
o= B — (L =3)| V=g )] AP+ (1 — By, rde, = 0. (22)
wl
When we assume that the gas-laws hold for the vapour G, then:
v, RT
=0 and r = Y E)
oz,

——‘7"1(1""731)
From (22) now follows:

(1 —8) V, — v, + go] dP:l.l-feRT,dxl Co..(24)
1
The coefficient of P represents the change of volume when 1 Mol.
F is decomposed into 3 Mol B+ (1 — §) quantities of ; this is
very nearly (1—p3) V.. As at the same time P}, = RT, we can
write for (24);

(1 —e)dP=Pde, . . . - . . . (25)

From this follows:

P
P=_—"_. . . . . . . . . (26

1—a,

When we call the partial pressures of A4 and C in the vapour P4
and P, then Py=a,” and Pc=1—a,) P; from (26) now
follows :

Py = &,

l—a,

P, and Pr=PFP, . . . . . (27

- This means that in the ternary equilibrium B-F-}(' the partial
pressure Pc of the substance ' is equal to the vapourpressure of
the binary equilibriom B+ F -4 (.

When we bear in mind now that in a system the pressure and
the composition of the vapour do not change, when we add to this
system stili a liquid, which is in equilibrium with all phases of this
system, then follows:

In the ternary equilibria B 4 F -+ G and B+ I'4 L, 4 G, the
partialpressure of the substance (' in the vapour is equal to the
vapourpressure of the binary equilibrium 5+ F 4 G,.

The first equilibrium (viz. B -+ F + (7) exists at a whole series
of prescures; both the others occur under a definite pressure only.

The binary equilibrivin Na,SO .10 H,0 4 Na,50, 4 watervapour
has at 25° a vapourpressurc of 18.1 m.m. when we add alcohol,
then, whben the gas laws hold in the vapour, in the equilibrium
Na,S0, .10H,0 + Na,SO, -+ G and Na,S0, .10H,0 4 Na,S0, + L4 G
the partialpressure of the watervapour will also be equal to 18.1 m.m.

Now we will put the question, whether we can also deduce some-

-14 -
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thing abont the change of pressure starting from s ‘along the curves
sa and se (fig. 6). In communication V we have deduced the following
rule. When the equilibrium solid 4- L can be converted with increase
of volume into solid 4+ L’ -+ (7 (in which L’ differs extremely little
from L) then of a threephasetriangle solid—Iliquid—gas the side
solid—liguid turns on increase of pressure towards the vapourpoint
and it tarns away from the vapourpoint on decrease of pressure.

When we assume now that s (fig. 6) is not situated in the vicinity
of B or F (the equilibrium B 4 L and F -+ L converts itself into
B+ L + G and F4 L' -4 G’ with increase of volume) we can
apply the above-mentioned rule. We distinguish now according as
the vapour is represented by s,,s, or s, three cases.

1. The vapour is represented by s,.

First we consider the threephasetriangle Fss,. When the side Fy
turns towards ¢, then consequently it turns towards its vapourpoint
s,; the vapourpressure increases, therefore, starting from s along sc
towards c. :

Let us consider now the threephasetriangle Bss,. When the side
Bs turns towards a, it turns, therefore, away from its vapourpoint
s, ; consequently the vapourpressure decreases starting from s along
s towards .

Consequently we find that the vapourpressure starting from s
increases along sc and (hat it decreases along sa. It is evident that
this is only true for points in the vieinity of s; the ocenrrence at
a greater distance of s of a point of maximumpressure on sc and a
point of minimumpressure on sa, is viz. not excluded.

2. The vapour is represented by s,. _

It follows from a consideration of the threephasetriangles Flss,
and Bss, that the vapourpressure starting from s increases as well
along sc¢ as along «a.

3. The vapour is represented by s,.

It follows from a consideration of threephasetriangles Fss, and
Bss, that the vapourpressure starting from s decreases along sc and
increases along sn. .

We can obtain the previous results also in the following way.
Between the four phases of the equilibrium B 4+ F 4 L+ vapour
(s,, 8, or s;) a phasereaction occurs on change of volume. We choose
this reaction in such a direction that vapour is formed, we eall the
change of volume AV.

The point s (fig. 6) is a point of the quadruplecurve B -+ F -
+ L4 G; AV is positive for each point of this curve. When,
However, a point of maximumtemperature H occurs on this curve,
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then AV is negative between this point H and the terminatingpoint
of the curve on side BC. It is apparent from the position of the
curves sc and so (fig. 6) that point s is chosen on that part of the
gquadruplecurve, where 417 is positive. We distinguish now again
the same three cases as above.

15, The vapour e represented by s,.

It is apparent from the position of the points I, /3, s and s, with
respect to one another that the fourphase-reaction:

F4 L2 B+ G (LT >0)

'+ L+ G (Carve s¢) | B4 L+ G (Curve sa)

F+B+ L . F4+ B4+
takes place; it proceeds from left to right with increase of volume
Hence it follows that the equilibria written at the right of the
verfical line occur under lower pressures, the equilibria at the left
occur under higher pressures. In accordance with the above we find,
therefore, that starting from s (fig. 6) the pressure increases along
s¢ (equilibrium F 4 L + ) and decreases along sa (equilibrium
B+ L+ G

2" and 3. Also in these cases we find agreement with the
previous considerations.

When a point of maximumtemperature // occurs on the quadruple-
curve B+ F - L -+ (4, then two points of intersection s occur at
temperatures a little below 7. When we consider now a point
of intersection s between // and the terminatingpoint of the qua-
druplecurve on side BC, then A is negative. This involves that
above in 1%—3 increase of /[’ is replaced by decrease of P and
reversally. We find also the same when we consider the threephase-
triangles solid-liquid-vapour. To be continucd.)

Chemistry. — “Onthe quaternary system: K Cl—CuCl,—Ba Cl—H,0.”
By Prof. ScrreiNEMakers and Miss W. C. pr Baar.

(Communicated in the meeting of October 31, 1914).

In a previous communication') we have already discussed the
equilibria occurring in this system at 40° and at 60°; the results of
the analysis on which these considerations are based, we have hitherto
not yet communicated. Now we will communicate the results of the
analysis; all the points, curves etc. quoted in this communication
apply to the two tigures of the previous communication (1. c.). We
want to draw the attention to the fact that fig. 1 represents the
equilibria at 40° and tig. 2 the equilibria at 60°.

1) These Communications (1912} 326.
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