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Physics. -- .. ()u th.t' i/wor,l! of the .o;tl'ing galcanollleter /~f EINTHOVEN." 

By Dr. L. S. ORNSTEfN. (Communieat.ed oy Prof. H. A. LOIUiNTZ.) 

(Communicatrd in the meeting of September 26, 1914). 

~ 1. Mr. A. C. CREHORI<: has developed same considerations in 
tbc Phil. Mag. of Aug. 1914 '), 011 the motion of the string galvano
meter, which eause me to make some remarks on tllis subject. 

Fol' a string, immersed in a magnetic field H, and earl'ying a 
eUl'rent of the strength J, the differential equation fol' the elongation 
in the motion of the string is 

iJ'y iJH • iJ"y HJ 
-+x-=a -+-
at' at a.~· Q 

(1) 

T 
m whieh x is the ronstant damping faetor, a' = _1, Tl is the tension 

Q 

and Q is tlle density. The dil'ection of the stretched string has been 
chosen as the .'?;-axis. Fol' ,t' = 0 and .'1: = I the string is fixed, so 
y = O. ln dedueing the equatioll the ponderomoti"e force is supposed 
to be eontinually parelJel to the elongation .11, which is only approxi
mately true, since the force is at eyery moment perpendieulat' to 
the elements of the string (perpendieular to J and H); but if ;ti 

may be taken sm all. then the equation (1) is valid. The approxi
mation rauses a parabola to be found for the state of equilibrium 
with eonstant Hand .T, instead of the arc of a cirele, as it ought 
to be; ho wever, the parabola is identical with a cirele to the degree 
of approximation used. 

Dr. OREHORI<: now observes, that fhe eqllation (1) may be treated 
aftel' the method of normal coör'dinates by putting 

(2) 

Besides the equation 1, he deduces a set of equations, the "eir'cuit 
equatiolls", whieh give a second relation between (t~' and J (from 
(1) there originates in the well-known way an equation for ever'Y 
coordinate ((iS)' The obtained solutions will be independent, when 
the circuit equation is true, and again their sum is a solution of the 
problem. However, from the dedlu.'tion of the circuit equation it cannot 
weIl be seen whethel' this is the case, since not entirely exact 
energetic considerations unàerlie this deduction. Now supposing the 
Atring to be linked in a circuit with resistance R, and self-induction 
L, the eircuit-equation may be easily found by applying MAXWELI:S 

1) Throl'y ofthe String Galvanometer ofEINTHOVEN. Phil. Mag. Vol. 28, 1914, p, 207. 
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induction-equation. Fot' in consequence of the motion of the string 
in the magnetic field the number of lines of force passing through 
the circuit changes to an amount pl'oportional 10 

I 

JiJy 
-dm 
iJt 

o 

Expressed in the units nsed by Dr. CREHORE, the induction-equation 
I10W takes the form: 

I 

dJ JiJy E=RJ+L- + H -a d,v. 
dt t 

(3) 

o 

where E is an exterual elertromotive for~e acting on the circuit. 
§ 2. The pl'ûblem of tinding the vibmtiolls governed by the 

equatiolls (1), (3) and tbe condition y = ° fot' ,r: = ° and [IJ = I, 
can oe easily solved. First, Iet E be 0, and so the question of free 
(damped) vibrations may be put. Suppose that 

y = cp ei"'t J= I eiwt 

whel'e (p is a function of (I) and 1 is a constant. Then the equations 
change into 

Hence 

I . 0 iJ'(P HI 
- w cp + ~wxq:> - a" - =_.-

iJm 2 Q 

I 

o = Rl + UwI + iHw J q:> dm • 

o 

H'iw 
Putting w' - iw'K in the first member n" and = p we 

Q(R tLiw) 
have 

This equation may be satisfied by 

11 n 
cp = A cos - m + B sin - .'1: + C 

a a 

pl'ovided th at 

52* 
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1/' C=p (~A"ill~~ + ~ n(1- COs~) + Cl). (4) 
n a It a 

whereas, becallse of the bounual'y conditiolIs, wc must have 

A+C=Û 

or 

Ol' 

nl nl 
A cos . + B sin ~ + C = O. 

a a 

This gin:-s for the frequeney the transeendental eljuation 

ti' = l' (_ " .,;" ,,/ _ a (1 - ,o;~)' + I ) 
n a 11 nl 

stn 
a 

1/' sin '!!.. = P (I silt '!!. - 2 (~ (1 _ (.os I~l)). 
(/ a 11 a 

FrOlll this it appears immediately that we must have 

ul 
sin - = O. 

2a 

/i 2 ('os _.1'_~ = P (z COl! .. !'~ __ ~~ sin nl) 
2a ia 11 2a 

(5) can be satisfied by 

or, hellce 

lil 
~=kT 
2a 

w~ - iw'Y. = (2kZ.1rfl)". 

(5) 

(6) 

(7) 

As is immediately to be seen. these are the dampcd vibrations of 
even order, whieh the stl'ing call perfoJ'lIl in thc absence of the 
clIrrent. It is evident that Ihe pl'esence of CUlTen! and field have 
IlO intI uenee on t he dbratiol1s of eyell order. rf the resistall('C is 
infinitely great, the constant]J in the equation (6) is zero. In this 
case the equations call be satistied bS n. = 0, or w = 0, i. e. the 
string is at rest; and further by 

Hence 

Ol' 

nl 
c08~ = O. 

2a 

nl .1r - = (2k + 1)-
2a 2 

(8) 



- 5 -

! 
'I 
I 

7'd7 

w 2 -lWX= . . (2k + 1) :ra ')' 
l 

The frequencies arrived at are those of odd order, alt~red by 
CUl'l'ent and field. For large values of R an approximate value of 

n can easily be expl'essed in the form noc;; + 1. From (6) follows 
R 

- 1]2w, 4a 2 

ns = ns + ---'- ~. ~a~ i 
QR lis I 

s being au odd number, I heing taken zero, while for wand lts their 
val nes for Tl = 00 must be put. Taking x = 0, i.e. neglecting the 
air-damping in comparisoll with the electrical damping, we find 

n sa 4H2il 
W s == - + (9) 

l Rf! S2
H

2 

In the solution, therefol'e,there is a damping factor of the form 
4H'/ 

---t 
e Rps'lrr2 • 

The influence of the dam ping is tbe less, the greater the value of 
sis. This is directly evident, fol' if s is great, thc string vitn'ates in 
a great nllmber of par Is wilh opposÏte motion. The electl'omotive 
fOl'ce gellcrated by those parts ihel'efol'e is annlllled. 

In case R is smaJI, the roots of the eql1ation (6) arc those of the 
tl'anscendental equation 

nl 2a nl 
lcos---sin- = 0 

2a n 2a 
or 

2a nl 
-tg -=1. 
nl 2a 

~ :r 
The quantity approaches to odd multiples of - . For sm all values 

~ 2 
of R all appl'oximate form no + aR can be easily indicated. Taking 
again L= 0 aud x = 0, we find 

- 2a RQ. 
ns = ns + 12~1. 

where ns is an arhitrary root of (10). In case the resistance is smalI, 
all vibra.tions suffer the same damping. 

Fot' (p we find 
. nl . n (l-a;) . na: 

stn--szn -Sln-
2 a a 

f{! = -----------
nl 

Stn -
a 

1) Compare for instanee RIEMANN-WEBER, Partielle-Differential Gleichungen, 11, 
p, 129, 
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hence for y 
. nl . n (I-iV) . na; 

stn--stn -Stn-
a a a 

. (11) 
ir))l 

y = e ---------:--------
nl 

Stn-
a 

The real and imaginary part of this expression satisfy the eqllutions 
and the bOllndary conditions. A sum of sollltions for different values 

f . fi I . If d dy . f' ° o w satJs JeS t le equatlOn. yan - are glVen or t = ,we ean 
dt 

with tbe aid of the given functions find the solution. The found 
proper functions are not orthogonal, but by an appropriate linear 
substitution orthogonal functions ean be obtained. If y is known, I 
ean be calculated from C3). 

~ 3. It is useful to work out the problem. Using the assumption 
(2) of CRImoRE, we obtain fol' fis the followil1g set of equations 
(taking k and I zero): 

and 

where 

.. 4HJ 
CPB + n.' cps =--

8n(! 

8:JTa 

ns =-Z-· 

. (12) 

(13) 

Here s is an odd number; for even values the seeond mem bel' 
of (12) is zero, and the even vibrations are therefol'e unehanged. 

Now putting 

and 

we find 

J = I eÏ'''I, 

4HI 1 
a s =-----, 

8:JT(! ns'-w2 

2Z H'iw a. 
RI+ 2-=0. 

::rr s 

The frequeney-equation therefore is 

8Z H 2iw 1 
R+--2 =0. 

(!:r 2 s' (ns'-w') 
(6a) 

'I'his freqnency-equation has the same roots as equation (6), which 
if u étnd 1 have been taken 0, takes the form . 
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wl iH'l ( wl 2a Wl) 
w C08 2a = R(! cos 2a - lw sin 2a . 

The identity of these frequency-equations can be easily shown. 
St IJ' 

Put --- i = k, th en (6a) takes the form 
Rf! 

8 1 8 ~·w 
l-k.-:E- + k.-:E---- =0 

",' s· ",' 8 2 (us' - ( 2
) 

,1t' 

Tlte sum of inverse squares of odd numbers is Further, 
8 

""0' 
ns' = --, thel'efore the th'st member amounts to 

c' 

k a' 1 
1 - - + 8k - :s ---= O. 

W 12w ns'-w' 
For tg z we have 

2z 00 ____ _ 

tg z = -::E , (s:rt) , 
1 Z - -

2 

where s is again an odd number, therefore we obtain 
k 2a wl 

1--+-ktg-=O 
w wOl 2a 

The equation (6) takes the form 

(14) 

wc08WI(1_~ + 2a ktgWI)=o (15) 
2a w lw' 2a 

The equations (14) and (15) have the same roots, for the vectors 
wl 

wand cos - do not contribute roots to (15). 
2a 

Having found the roots of (14), we can determine y. Each root 
. s"'x 

yields a FOURIER series. In the case that (R = (0), sm - must be 
e 

combined with one frequency only. Fot' our case we have 

Ax iWxt . smJJ 
,l/ = :Ss :s x (. • ') • e sm -

{I ns -wx . I 

1 &:!'rx Ax iWxt 
::Es-sin -:ER--- e 

8 I n/-wx" 
(16) 

iWxt 
The FouRmR series which is the vector of A e . must be equal 

to the functiou which in § 2 appears as the vector of the same 
exponentiaL This call be shown hy dir'eet development. It is apparent 
that by a given fl'equency all the original normal coordinates are 

J!!I 
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set into motion, For \'el'," great and very small \'alnes of R, tbe 
constallIS A in the expressioll (16) can easiI.r be determined. 

We can also nse (H) aIllI (11). Let lIS write (11) in the form 

2a a 

( 

cos [~- ,'vnJ) 
y = ei"! 1-~~--

nl 
cos --

2a 

and let us introduce the \'alne of n from (~)), we then find 

4IJ'Z 
nit - --- t ( R) " Ro.~' 7/:' ns·v.. lIs.-1; y = e " " 1 ~ cos -- - '/ .- SUl ---

a d's a 

2Hzl' 
'where Ós = ---. Sellaratin2: the real and imagillal'Y parts, we find 

Rus'.n-' ~ ~ • , 
4H'l 

Y = :2 se - RQs';7l't I (~ (1 - cos n:r) cos 118 t + sin n::1; sin nst) As 

(
ds (n"1:) ns.'lJ) + .-: 1 - cos -'- sin ns t - sin -'- cos ll st Bs 
R a a 

For the time t == 0 

and 

- = :E s lls sm --As + - 1 - C08- Bs + --- Bs (
dY) , I' ns,1; d's ( ns.v) HPl t 
dt 0 a R a Rf!s2ns 

I I 

. J" . s:r.V fY s:rr.x Puttmg • ,110 Slll-
Z
-. d.v = as and. ~l- d.1J = bs we have 

o 0 

2d' l 
bs = :28 -R-C~ As - -- Bs 

2 

1 
For R=w we get bs= -'- "2 Bs, 

n.,z Z 
(13 =-- As. Therefore Bs = -- - bs 2 2 

2 
and As = - as, Putting 

nsl 

2 as 
As=- as +-

Zns R 

B =-~b +~ 
s 1 S R 

'S 
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we have 
4 'S>~ o,a6 I (3s 

0=-_-----
Rl ns 2 R 

as 4 SH'bo< o = - - - ;E lIs Os b, ---- . 
R lR . R(;S'lIs 

These series are convergent, if the conditions fol' tbe ordinary 
FOURIER series are fllltilled. We ean therefore calculate as and t/s with 
the help of the given fOl'mulae. 

~ 4. In tbe case E is a given function of the time, OUl' eqnalion . 
can also easily be solved. 

a. Fil'st if E is constant, we ha\'e 

o'y oy 10'Y HJ 
- +x-=a -+-
ot' ot O.v' f! 

I 

E=R7+HjYdiIJ. 

o 

The CUlTent J and y can he divided into two parts, the one 
depending on t, the olher not; we indicate those parts by the indices 
1 and 2. 1"01' the til'st part wc have 

therefore 

o"Yt . fIJ, 
O=a'-+--

o.v' f! 

E=RJl 

o'y EH 
• 1 a --" =--, a.V· Rf! 

from which .111 can be determined if we take into account that .111 
vallishes fol';u = 0 and :c = Z. The detel'lnining of the second part 
leads to the problem treated in ~ 3. The solutioll cau be used in 
order 10 fulfill givell initial conditions. If all initial value of J is 
gi veIl, titen y rn LIst fulfill at t = ° acondition following from (3). 

ó. Furthel', we ean consider the case E = E cus pt. 
Putting L = 0, we can try the solution 

y = cp cos (l't + (3) 

J = 1 cos (pt + (3) 

whel'e cp is a function of x. The first equation gives 
Oa(f' 

- p' r -'- a'- =Hl. o.'/)· 
This eqnation can be solved by 
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cp = A cos l!.- {IJ + B sin 'fJ.- {IJ + C 
a a 

or according to the abo\'e 

q;= _._ Hl (_ cosE. {IJ 

p' a 

Illtroducing this result into the second equation, we obtain 

H'l 
E cos pt =-= RI cos (pt +~) + - sin (pt +~) 

QP 

a l-co8~ 

(17) 

(
- ~8inr!.-

p a 

( Pt)' ) 
--~ +l .(18) 
p , pt 

Now take 

Stn
a 

H'1 (_ ~ sin 'f!. 
(!pR p a 

(1-W'~)' + I) = tg a 
. pl 

8ln
r 

then we find 

V Hi ( a p 
E cos pt = 1 R' + - - - sin - l 

Q'P' P a 

a 

From th is we finel fOl' the retarelation of phase. ~ = a.; alld 1'01' 

the amplitude of 1 

l' 

where r represents the square root in the secOTld rnember. The 
cun'ent· 1 being fOU/ld in this wa)', ,1/ can be determined from (17). 

When L does not vanish, we can suppose y and 1 to depend on 
eipt; and finalI)' taking the real part, and following the above method 
we find the values of JI and I. 

lf we exp~ess y by (2), the solution can also easily be found. We 
then have 

4HJ 
rps=----. 

83l(ns'-p') 

Substituting th is into the second equation of § 3 (where zero has 
been replared by E cos pt) we find 

I ..... 
f 
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~' 1 1 
E cos pt = RI cos (pt + ~) - -- l sin (pt + ~) ~ - ---

p8H2 I s' (n/_p2) 

from which I can be found. The sum in the second mem bel' ean 
be put in a way analogons to that of ~ 3, into a form identical 
with (18). Our result does not agree with that of CREHORE (compare 
p. 214). In our soilltion the retardation of phase is the same for all 
vibrations, which is not the case in CREHORE'S paper. 

It may be observed th at in our problem we have to do with a 
system of an intlnite nnmber of variables in whidl a dissipation
function couplet: the variables ; for eliminating J from (12) and (13), 
we obtain 

.. • SH';P 
(ps + ns- rp = - -- :::E_s • 

snQR s 

The dissipation P takes the form 

F=-- ~- . 
SH' ( ({s) , 

:t'f!R 8 

Groningell, Sept. .1914. 

Physics. - "Accidental deviatiuns of density and opalescence at 
t!te critica! point of a sin,qle substance." By Dr. L. S. ORNSTEIN 
and F. ZERNIKE. (Communicated by Prof. H. A. LORENTZ.) 

(Communicated in the meeting of September 26, 1914). 

J. The aecidental deviations for a f:'ingle substance as weIl as 
fol' mixtures have been treated by SMOLVCHOWSKl 1

) and ErNSTEIN") 
with the aid of BOLTZMANN'S principle; by ORNSTEIN 3) with the aid 
of statistica! mechanics. It appears as if the considerations used and 
the resu!ts obtained remain valid in the critica! point. S~lOL{,CHO"SKI 
has applied the formula found for the probability of a deviation 
to the critical point itself, and has found for the average deyiation 
of density 

1.13 
ó= JY

v 
. 

He has used this formula to express in terms of the mean density 

l) M. SMOLUCHOWSKI, Theorie Cinétique de l'opaJescence. Bull. Cr ac 1907 p.1057. 
Ann. der Phys. Bd. 25, 1908, p. 205. Phil. Mag. 1912. On opalescence of gases in 
the critical state. W. H. KEESOM, Ann. der Pbys. 1911 p. 591. 

2) A. EINSTEIN. Ann. der Phys. Bd. 33, 1910, p. 1276. 
3) ORNSTEIN, These Proc., 15, p. 54 (1912). 


