Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

W.C. de Baat \& F.A.H. Schreinemakers, Compounds of the Arsenious Oxide. I, in: KNAW, Proceedings, 17 III, 1914-1915, Amsterdam, 1915, pp. 1111-1115

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'
formed by the involutions (R_{1}, R_{2}, R_{3}) belonging to the conics of the 'pencil (β^{2}).

The curves σ^{5} belonging to two base-points $B_{1}, B_{2}(\$ 6)$ have in those points 12 intersections and 8 in \mathcal{B}_{3}, B_{4}; they further pass through the cyclic points on l_{∞} and through the point at infinity of $B_{2} B_{4}$. The two points S, which they have moreover in common are each the end of two chords of osculation $B_{1} S, B_{2} S$. Any two base-points belong therefore to two groups of T_{3}.

Let us now consider the locus of the points R_{2}, R_{3} belonging to $R_{1} \equiv B_{1}$. This singular curve, β_{1}, has nodes in B_{2}, B_{3}, B_{4}, but does not pass through B_{1}, T_{3} possessing no coincidences outside l_{∞}. As an arbitrary conic of (β^{2}) contains one pair \vec{R}_{2}, R_{3}, consequently has eight points in common with $\boldsymbol{\beta}_{1}$, each base-point determines a rational singular curve of order four.

The parabolae too are singular curves and as such associated to their points at infinity.

Any straight line $B_{k} B_{l}$ corresponds to itself in the transformation (R_{1}, R_{2}); for each of its points may be considered as point of contact of a γ_{3}, intersecting $B_{m} B_{n}$ on $l_{s s}$.

If R_{1} describes a β^{2}, β^{2} is deseribed twice by $R_{2}\left(R_{3}\right)$. So $\beta^{* \prime}$ is transformed by (R_{1}, R_{2}) into the figure composed of the four singular curves $\beta_{k}{ }^{4}$ and the conic β^{3} counted tivice, consequently iato a figure of order 20. From this it ensues that the transformation in question transforms a straight line into a curve of order ten.

This c^{10} has in each base-point a quadruple point.

Chemistry. - "Compounds of the arsenious oaride". I. By Prof. F. A. H. Schrelnemakers and Miss W. C. de Baat.

The system: $\mathrm{H}_{2} \mathrm{O}-\mathrm{As}_{2} \mathrm{O}_{3}-N H_{3}$ at 30°.
Or the different ammoninm arsenites which may be imagined to be deduced of the $\mathrm{H}_{3} \mathrm{AsO}_{3}, \mathrm{H}_{4} \mathrm{As}_{2} \mathrm{O}_{3}$ and $\mathrm{HAsO}_{2},\left(\mathrm{NH}_{4}\right)_{4} \mathrm{As}_{2} \mathrm{O}_{5}$ and $\mathrm{NH}_{4} \mathrm{AsO}_{2}$ are described as crystals and $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{AsO}_{3}$ as a thick-fluid yellow mass.

Now we have examined the system $\mathrm{H}_{2} \mathrm{O}-\mathrm{As}_{2} \mathrm{O}_{3}-\mathrm{NH}_{3}$ at 30°; from this it is apparent that the salt $\mathrm{NH}_{4} \mathrm{AsO}_{2}$ occurs at 30°, while the possibility that also still as salt of the composition $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{AsO}_{3}$ exists, is not excluded.
In lig. 1 we find a schematical representation of the equilibria occurring in this system at 30°; with the aid of table I we' can accurately draw the different curves.

The point $D_{2.11 .1}$ represents the $\mathrm{NH}_{4} \mathrm{AsO}_{2}$; in order to find the position of this point in the triangle, we must consider that:

$$
2 \mathrm{NH}_{4} \mathrm{AsO}_{2}=\left(\mathrm{NH}_{3}\right)_{2} \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{As}_{2} \mathrm{O}_{3}=D_{2.1 .1},
$$

the salt $\mathrm{NH}_{4} \mathrm{AsO}_{2}$ contains consequently $13,6 \% \mathrm{NH}_{3}, 7,2 \% \mathrm{H}_{2} \mathrm{O}$ and $79.2 \% \mathrm{As}_{8} \mathrm{O}_{3}$ so that the position of the point $D_{2.1 .1}$ is known.

The point $D_{2.3 .1}$ represents the $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{AsO}_{3}$; as

$$
2 \mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{AsO}_{3}=\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{As}_{2} \mathrm{O}_{3}=D_{2.3 .1}
$$

this salt contains $11.9 \% \mathrm{NH}_{3}, 18.9 \% \mathrm{H}_{2} \mathrm{O}$ and $69.2 \% \mathrm{As}_{2} \mathrm{O}_{3}$.
When we draw in the figure the points $D_{21.1}$ and $D_{23.1}$, then it is apparent that they are situated on a straight line with the anglepoint W. That this must really be the case, follows also from the equation

$$
\mathrm{NH}_{4} \mathrm{AsO}_{2}+\mathrm{H}_{2} \mathrm{O}=\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{AsO}_{3}
$$

from which it is apparent that the $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{AsO}_{3}$ may be considered as consisting of $\mathrm{NH}_{4} \mathrm{AsO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$.
Curve $a b$ represents the solutions saturated with solid $\mathrm{As}_{2} \mathrm{O}_{3}$; these complexes have been shaken during about a month at 30°. The $\mathrm{As}_{2} \mathrm{O}_{3}$ which we have used was an extremely fine flour-like powder; in each of the small bottles we brought a little sublimated $\mathrm{As}_{2} \mathrm{O}_{3}$ and a little $\mathrm{As}_{2} \mathrm{O}_{3}$ which was recrystallized from a strong, heat solution of chloric acid.

Point a represents the solubility of $\mathrm{As}_{2} \mathrm{O}_{3}$ in pure water; as it is apparent froin table I we find for this 2.26%; Broner and Totloczкo found that at 25° and $39,8^{\circ}$ in 100 Gr . water 2.03 and 2.93 Gr. $\mathrm{As}_{2} \mathrm{O}_{3}$ are dissolved. It appears from the analysis of the rests that the solid phase is not a hydrate, but that it is the anhydric $\mathrm{As}_{2} \mathrm{O}_{3}$.

Fig. 1.
Curve bcd represents the solutions with $D_{2.1,1}=\mathrm{NH}_{4} \mathrm{AsO}_{2} \ldots$ As the
line $W . D_{2.1 .1}$ intersects this curve $b d$ in the point c, the salt $\mathrm{NH}_{4} \mathrm{AsO}_{2}$. is soluble in water at 30° without decomposition. The saturated aqueous solution of this salt is represented by point c; it is apparent from the position of the points W, c and $D_{2.11}$ with respect to one another that this solution contains $\pm 19.2 \% \mathrm{NH}_{4} \mathrm{AsO}_{2}$.

We have deduced with the aid of the rest-method the composition of the solid phase, which is in equilibrium with the solutions of branch bcd. The conjagationlines liquid-rest are going viz. all through the point $D_{2_{11}}$. As the point $D_{2.3 .1}$, however, is situated close to $D_{1.1 .1}$, the conjugationlines for the solutions of branch bc go within the errors of analysis, also through the point D_{231}. Although it is, therefore; sure that the solutions of cel which are situated at some distance of c, are saturated with $D_{2.1,1 /}=\mathrm{NH}_{4} \mathrm{AsO}_{2}$, yet the possibility exists that the other solutions are saturated with $D_{23.1}=$ $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{AsO}_{3}$.

It is apparent from the table that branch bcd is determined no further than to a solution d, which contains $14,28 \% \mathrm{NH}_{3}$. In order to examine if with higher content of NH_{3} in the solution perhaps still a compound should occur with more NH_{3} than in the compound $\mathrm{NH}_{4} \mathrm{AsO}_{3}$, we have still examined a solution at 0°, which contained $36,05 \% \quad \mathrm{NH}_{3}$. It was apparent that also in this case the solid phase was still the $\mathrm{NH}_{4} \mathrm{AsO}_{2}$.
From the course of curve $a b$ and from table 1 it is apparent that the solubility of the $\mathrm{As}_{3} \mathrm{O}_{3}$ increases strongly with increasing content of ammonia, of the solution. The terminating point b, viz. the solution which is saturated with $\mathrm{As}_{2} \mathrm{O}_{3}+\mathrm{NH}_{4} \mathrm{AsO}_{2}$, is not determined. The solution of branch $a b$ which is experimentilly determined and which is situated the nearest to the point b contains (compare table) $21.17 \% \mathrm{As}_{2} \mathrm{O}_{3}$ and $2,86 \% \mathrm{NH}_{3}$. It is apparent from the course of the branches $a b$ and $b c d$ that the solution b will contain $\pm 22 \% \mathrm{As}_{3} \mathrm{O}_{3}$ and $\pm 2,87 \% \mathrm{NH}_{3}$. From this it appears, therefore, that small quantities of NH_{3} strongly increase the solubility of the $\mathrm{As}_{2} \mathrm{O}_{3}$.

We imagine in fig. 1 the line $\mathrm{NH}_{3}-b$ to be drawn; its point of intersection with the side W - $\mathrm{As}_{2} \mathrm{O}_{3}$ is represented in the figure by f; this point f indicates a complex which contains $\pm 22,5 \%$ $\mathrm{As}_{2} \mathrm{O}_{3}$ and consequently $\pm 77,5 \%$ water. Now we, take a complex e, situated between a and f; this contains, therefore, more than $2,26 \%$ and less than $22,5 \% \quad \mathrm{As}_{2} \mathrm{O}_{3}$ and consequently it consists of solution $a+$ solid $\mathrm{As}_{2} \mathrm{O}_{3}$. When we bring NH_{8}-gas into this complex, then it follows the line $e-\mathrm{NH}_{3}$; this line intersects, starting from e, firstly the region ab $\mathrm{As}_{2} \mathrm{O}_{3}$, afterwards the region Wabcd and further the region , $b c d D_{2,1.1}$. Hence it follows that by adding

1114

gaseous NH_{3} first the $\mathrm{As}_{2} \mathrm{O}_{3}$ is dissolved and an unsaturated solution occurs and that on further addition of NH_{3}, the solnd $\mathrm{NH}_{4} \mathrm{AsO}_{2}$ is separated; the solution follows the curre bcd in this case, starting fiom b and gets, therefore, gradually poorer in $\mathrm{As}_{2} \mathrm{O}_{3}$, which is deposited as $\mathrm{NH}_{4} \mathrm{AsO}_{2}$. We imagine also in fig. 1 the line $\mathrm{NH}_{3}-$ D_{211} to be drawn; its point of intersection with $W-\mathrm{As}_{2} \mathrm{O}_{3}$ is represented by h. The point h indicates a complex which contans $\pm 91.5 \% \mathrm{As}_{2} \mathrm{O}_{3}$ and consequently $\pm 8,5 \%$ water. Now we take a complex g between h and f; this contams, therefore, more than $22,5 \%$ and less than $91,5 \% \mathrm{As}_{2} \mathrm{O}_{3}$ and it consists of solution $a+$ solid $\mathrm{As}_{2} \mathrm{O}_{3}$. When we bring NH_{3}-gas into this complex, it follows the line $y-\mathrm{NH}_{3}$; this line intersects, starting from g, first the region $a b \mathrm{As}_{2} \mathrm{O}_{3}$, after that the threephasetriangle $b . D_{211} . \mathrm{As}_{2} \mathrm{O}_{3}$ and afterwards the region $b c d . \mathrm{As}_{2} \mathrm{O}_{3}$. Hence .it follows that on addition of gaseous NH_{3} first $\mathrm{As}_{2} \mathrm{O}_{3}$ is dissolved until solution b

TABLEI.
Compositions in percentages by weight at 30°.

of the $\% \mathrm{NH}_{3}$	solution $\% \mathrm{As}_{2} \mathrm{O}_{3}$	$\begin{gathered} \text { of the } \\ \% \\ \hline \end{gathered}$	$\begin{aligned} & \text { e rest } \\ & \left\|\%_{0} \mathrm{As}_{2} \mathrm{O}_{3}\right\| \end{aligned}$	solid phase
0	2.26	-	-	$\mathrm{As}_{2} \mathrm{O}_{3}$
1.41	10.98	0.37	59.79	"
2.78	20.49	1.24	63.10	"
2.86	21.17	1.21	64.26	"
2.88	18.43	7.43	43.13	$\mathrm{NH}_{4} \mathrm{AsO}_{2}$
3.13	12.30	7.25	38.59	"
3.18	11.13	7.51	38.39	"
3.91	7.63	8.24	35.80	"
5.82	5.61	9.08	36.44	"
6.95	4.72	9.74	35.55	"
9.25	3.44	11.42	41.79	"
9.93	3.20	11.74	42.44	"
10.06	3.14	12.22	49.14	"
13.98	2.50	13.78	42.50	"
14.28	2.16	13.77	44.78	"

1s formed; the liquid contains then $22 \% \mathrm{As}_{2} \mathrm{O}_{3}$ and $2.87 \% \mathrm{NH}_{8}$. On further addition of NH_{3} the solution keeps the composition b as long as the complex remains within the threephasetriangle $b . D_{211} . \mathrm{As}_{2} \mathrm{O}_{3}$, and we have the complex: $\mathrm{As}_{2} \mathrm{O}_{3}+\mathrm{NH}_{4} \mathrm{AsO}_{2}+$ solution b. The only thing that happens on addition of NH_{8} is the conversion of $\mathrm{As}_{2} \mathrm{O}_{3}$ into $\mathrm{NH}_{4} \mathrm{AsO}_{2}$. When all the $\mathrm{As}_{2} \mathrm{O}_{3}$ has disappeared and has been converted into $\mathrm{NH}_{4} \mathrm{AsO}_{2}$, then on further addition of NH_{3} the solution follows curve $b c d$, in which case its content of $\mathrm{As}_{2} \mathrm{O}_{3}$ decreases continuously.

Leiden, Anorg. Chem. Lab.

Chemistry. - "The allotropy of potassium." I. By Prof. Ernst

 Cohen and Dr. S. Wolyf.1. We have in view to investigate here whether potassium as it has been known litherto is a metastable system in consequence of the simultaneous presence of two or more allotropic forms of this metal.

It will become evident from the following lines that the literature already contains very accurate data for solving this problem.
2. As long as thirty years ago Erngt Hagen ${ }^{1}$) published his very careful experiments on the determination of the coefficient of expansion of potassium, which were carried out with the dilatometer.

Contrarily to many other physicists he bestowed much care on the purity of the material used. The specimen of potassium experimented with contained only a trace of sodium (in 6 or 7 grams).
3. For a description of the details of the measurements the reader is referred to the original paper, but it may be pointed out here that the agreement between the determinations made with two different dilatometers (containing $\pm \pm 0$ grams of potassium each) was exceedingly satisfactory.

The measurements are summarized in the Tables I and II, where t indicates the temperatures at which the experments were made, whinle v indicates the volume (in cem.) of 1 gram of the metal.

1) Wied. Ann. 19, 436 (1883).
