Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J. de Vries, A bilinear congruence of rational twisted quintics, in: KNAW, Proceedings, 17 III, 1914-1915, Amsterdam, 1915, pp. 1250-1256

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'
curves A and B need at most be of degree ($r-m$) and ($r-n$). If this is not the case, however, the terms of the highest degree of $A F_{1}$ and $B F_{2}$ will cancel each other; as the terms of the highest degree in F_{1} and F_{2} have no common factor, those of $A F_{1}$ and $B F_{2}$ will be divisible by those of $F_{1} F_{2}$.

Let us therefore suppose

$$
\begin{aligned}
& A F_{1} \equiv A^{\prime} F_{1} F_{2}+A^{\prime \prime} F_{2} \\
& B F_{2} \equiv B^{\prime} F_{1} F_{2}+B^{\prime \prime} F_{2},
\end{aligned}
$$

in which we extend the division by $F_{1} F_{2}$ only so far that the terms of the highest degree in $A F_{1}$ and $B F_{2}$ have disappeared, we have

$$
A^{\prime} \equiv-B^{\prime}
$$

So we find

$$
F_{\mathrm{s}} \equiv A^{\prime \prime} F_{1}+B^{\prime \prime} F_{2},
$$

in which $A^{\prime \prime}$ and $B^{\prime \prime}$ are of a lower degree than A and B. So we may go on till we find

$$
F_{\mathrm{s}} \equiv A(c) F_{1}+B(c) F_{\mathrm{z}}
$$

in which $A^{(c)}$ and $B^{\left({ }^{\prime}\right)}$ are at most of degree $(r-m)$ and ${ }^{*}(r-n)$.

Mathematics. - "A bilinear congruence of rational twisted quintics".

 By Professor Jan de Vries.(Communicated in the meeting of March 27, 1915).

1. The base-curves of the pencils belonging to a net [$\boldsymbol{\Phi}^{3}$] of cubic surfaces form a bilinear congruence. For through an arbitrary point passes only one curve, and an arbitrary straight line is chord of one curve; for the involution $I_{2}{ }^{3}$, which the net determines on that line, has one neutral pair of points.

We shall consider the particular net, the base of which consists of the twisted cubic σ^{3}, the straight line s and the points $F_{1}, F_{y}, F_{3},{ }^{1}$) The surfaces $\boldsymbol{\Phi}^{\mathbf{3}}$, which connect this basis with a point P have moreover a twisted quintic ρ^{5} in common. A bilinear congruence $\left[\boldsymbol{\rho}^{5}\right]$ is therefore determined by [$\left.\boldsymbol{I}^{3}\right]$. A plane passing through s intersects two arbitrary surfaces of the net in two conics; of their intersections three lie on $\sigma^{\text {b }}$, the fourth belongs to ϱ^{5}; consequently this curve has four points in common with s, is therefore rational.

The straight line s is apparently a singular quadrisecant.
The figure consisting of s, σ^{3} and ρ^{5} is, as complete intersection

[^0]of , two Φ^{3}, of rank, 36. As σ^{3} is of rank four and ρ^{5}, as rational ${ }^{\prime}$ curve of rank eight, while s has four points in common with ρ^{6}, e^{5} and σ^{3}. will have eight points in common. We can therefore determine the congruence $\left[0^{\circ}\right]$ as the system of rational curves 9^{6} passing through three fundamental points F_{1}, F_{3}, F_{3}, cutting the singular curve σ^{3} eight times and having s as sinqular quadrisecant.

It incidentally follows from this, that ϱ^{5} may satisfy 20 simple conditions.
2. Let b be a bisecant of σ^{3}, resting on s, all Φ^{2} passing through a point of b have this line in common, therefore determine a pencil the base of which consists of s, b, σ^{2} and a rettional Q^{4}, which has three points wilh s six points with σ^{3}, consequently one point in common with b.

There are also figures of $\left[\rho^{5}\right]$ consisting of a conce ρ^{2} and a enbic ρ^{3}. The plane $\boldsymbol{\Phi}_{1}$ passing through F_{1} and s forms with the ruled surface $\Phi_{1}{ }^{3}$, deternined by σ^{3}, F_{2} and F_{3}, a $\boldsymbol{\Phi}_{1}{ }^{3}$. Any other figure of [$\left.\boldsymbol{\Phi}^{3}\right]$ intersects $\boldsymbol{T}_{1}{ }^{\text {a }}$ along a conic $\varrho_{1}{ }^{2}$ in the plane $\boldsymbol{\Phi}_{1}$, passing through F_{1} and the intersections $S_{1}\left({ }^{(k)}\right.$ of σ^{3}, and a twisted curve ${\omega_{1}}^{\prime}$ intersecting σ^{2} in five points $C_{1}{ }^{\prime}, C_{1}{ }^{\prime}$, which are determined by $\Phi_{2}{ }^{2}$; it passes of course through F_{2} and F_{3}.

To the curves $\boldsymbol{o}_{1}{ }^{3}$ belong two degenerate figures each formed by the bisecant of σ^{3} out of one of the points C, and the conic $\rho_{1}{ }^{2}$, in which $\Phi_{1}{ }^{3}$ is intersected by the plane, that connects the points F_{3} and F_{3} with the other point C. Apparently $\varphi_{2}{ }^{2}$ and the corresponding $\varrho_{1}{ }^{2}$ form a degenerate curve ϱ^{4}.

The three degenerate conics $\rho_{1}{ }^{2}$ as well determine degenérate curves 0^{4}. For the straight line $S_{1}{ }^{\prime} S_{1}^{\prime \prime}$ is a bisecant b; hence the line $F_{1} S_{1}{ }^{\prime \prime \prime}$ forms with the corresponding $\rho_{1}{ }^{3}$ a degenerate figure φ^{4}.
3. To the net $\left[\boldsymbol{\Phi}^{3}\right]$ belongs the surface Σ^{3}, which has a node in a point S of σ^{3}. This nodal surface determines with any other surface of the net a ρ^{5}, intersecting σ^{3} in S, is therefore the locus of the e^{5} passing through the singular point S.

The surfaces $\Sigma_{1}{ }^{3}$ and $\Sigma_{2}{ }^{3}$ have s, σ^{3} and a ρ^{3} in common, consequently one ϱ^{5} passes through two points S_{1}, S_{2} of σ^{3}. The groups of eight points, which the curves of the congruence determine on σ^{3} form therefore an involution of the second rank. From this ensues that σ^{3} 'is osculated by 18 curves ρ^{5}, and contains 21 pairs S_{1}, S_{2} through which ∞^{1} curves ϱ^{5} pass. So there are 21 surfaces \boldsymbol{T}^{3} each possessing two nodes lying on ' σ^{3}.

A straight line passing through the vertex S of the monoid Σ^{8} inter-
Rroceedings Royal Acad, Amsterdam، Vol, XVH.
sects the latter moreover in a point P and the plane φ passing through F_{1}, F_{2}, F_{3} in a point P^{\prime}, which we shall consider as an image of P. As one ρ^{5} passes through any point P, the curves of the congruence lying on $\boldsymbol{\Sigma}^{3}$ are represented by a pencil of rational curves μ^{4} : Every φ^{4} has in common with the intersection ψ^{3} of Σ^{3} the five points, in which the corresponding $\dot{\rho}^{b}$ intersects the plane p; the remaining seven intersections of p^{3} with p^{4} are base-points of the pencil $\left(\varphi^{4}\right)$. To them belong the points F_{1}, F_{2}, F_{3}; the remaining four are intersections of four straight lines lying on Σ^{3}. One of them is intersected by every ρ^{5} in S and in a point P, is therefore a singular bisecant p of the congruence; the involution which the ∞^{1} curves ϱ^{5} determine on it, is parabolic; so we might call p a parabolic bisecant. The remaining three straight lines d_{1}, d_{2}, d_{3} passing through S are common trisecants of the curves ϱ^{5}; on these singular trisecants as well the involution of the points of support is special, for each group contains the point S.

The monoid $\boldsymbol{\Sigma}^{3}$ contains moreover two straight lines -passing through S viz. the two bisecants of σ^{3} cutting s, being consequently. component parts of two ρ^{5} degenerated into a straight line b and a ρ^{4}.

The pencil ($\mathscr{\varphi}^{4}$) hass three double base-points D_{1}, D_{3}, D_{5} and four single base-points E, F_{1}, F_{2}, F_{3}; it contains six compound tigures: three figures consisting of a nodal φ^{3} and a straight line and three pairs of conics.

Let us now first consider the figure formed by the straight line $D_{2} D_{3}$ and the μ^{3}, which has a nodal point in D_{1} and passes through the remaining six base-points. It is the image of a figure consisting of a bisecant b and a rational curve ρ^{4}; for the plane passing through d_{2} and d_{3} has only one straight line in common with Σ^{3} so that $D_{2} D_{3}$ cannot be the image of a conic passing through S. Consequently there lie on Σ^{3} three straight lines b not passing through S, and therefore three curves (4 passing through S.

The conic passing through $D_{1}, D_{2}, D_{3}, E, F_{1}$ is the image of the conic ρ^{2} which the plane ($F_{1} s$) has in common with Σ^{3}; the conic to be associated to her passing through $D_{1}, D_{2}, D_{3}, F_{2}, F_{3}$ is the image of the ϱ^{3} forming with ρ^{2} a curve of the congruence [ρ^{5}]. There are apparently there figures $\left(\rho^{3}, \rho^{2}\right)$ on Σ^{3}.
4. The curves ρ^{5}, meeting s in a point S^{*} lie on the nodal surface \boldsymbol{J}^{3}, which has S^{*} as node. The monoids $\sum^{*{ }^{3}}$ belonging to two points of s, hare one ρ^{5} in common; so the groups of four points which the ρ^{6} have in common with s form a $I_{2}{ }^{4}$. There are consequently six ρ^{5} which osculate s, and three binodal surfaces $\boldsymbol{\Phi}^{3}$ which
have their nodes on 3 , consequently contain ∞^{1} curves $\rho^{\dot{5}}$, intersecting s in the same two points.

The ρ^{5} of the monoid $\Sigma^{\boldsymbol{T}^{3}}$ are represented on the plane $\varphi \equiv F_{1} F_{2} F_{3}$ by a pencil of φ^{4}, which have the intersection D of s as triple point and pass through $\vec{l}_{1}, F_{2}, F_{3}$. The remaining base-points E_{1}, E_{2}, E_{3}, E_{4} of that pencil lie in the intersections of straight lines p_{k} of the monoid, which lines meet in S^{*} and apparently are parabolic singular bisecants. The sixth straight line of the monoid passing through S^{*} is the bisecant b of σ^{3}, consequently part of a degenerate ϱ^{5}.

The straight line $D F_{2}$ is the image of the conic $\rho_{1}{ }^{3}$, in which the monoid is moreover intersected by the plane ($s F_{2}$); the nodal ρ^{3} completing it into a ρ^{1} represents the cubic ρ^{3}, belonging to $\rho_{1}{ }^{2}$. So three figures (φ^{3}, ϱ^{2}) lie on $\Sigma^{* 3}$.

The straight line $D E_{1}$ forms with the nodal cubic passing through $E_{2}, E_{3}, E_{4}, F_{1}, F_{2}, F_{3}$ and twice through D, the image of a degenerate ρ^{5}, consisting of the straight line b in the plane $\left(s p_{1}\right)$ and a rational ϱ^{4} passing through S^{*}. The monoid $\Sigma^{* 3}$ too contains therefore five figures (b, ρ^{4}).
5. We can now determine the order of the locus of the rational curves ρ^{4}. It has s as quadruple straight line and passes thrice through $\sigma^{3}(\$ 3)$. Its intersection with a $\sum^{*{ }^{* 3}}$ consists apart from these multiple lines of five curres 9^{4}, is therefore of order 33. The rational curves ϱ^{4} lie therefore on a surface of order eleven.

The section of this surface $\boldsymbol{\Phi}^{12}$ with the plane ($F_{1} s$) consists of the quadruple straight line s, and parts of degenerate figures ρ^{4}. To it belong in the first place the three straight lines joining F_{1} to the intersections $S_{1}^{(k)}$ of $\sigma^{3}(\$ 2)$; the remaining section is formed by the two $\rho_{1}{ }^{2}$ belonging to the bisecants b out of the points $C_{1}^{\prime}, C_{1}^{\prime \prime}\left(\delta^{\prime} 2\right)$. A straight line passing through F_{1} intersects Φ^{11} four times on s and has with each of the two conics $\boldsymbol{o}_{1}{ }^{2}$ a point of intersection not lying in F_{1}; so five intersections lie in F_{1}. The three fundamental points F are therefore quintuple points of \boldsymbol{P}^{11}.

In order to determine the locus of the intersection B of a ρ^{4} with the bisecant b coupled to it, we consider on s the correspondence between ${ }^{\circ}$ its intersections with b and ρ^{4}. Through any point P passes one b; to it are associated the three points Q, which ϱ^{4} has in common with s. In each point Q, s is intersected by four curves ${ }^{4}$; hence four points P are associated to Q. From this it appears that s contains seven points B. A plane passing throngh s contains three straight lines b, consequently three points B; so the
points B lie on a curve β^{10} with septuple secant s. In the samenway it appears that β^{10} meets σ^{3} in 15 points, The surfaces $\boldsymbol{\Phi}^{11 \cdot}$ and $(b)^{4}$ have in s and σ^{3} a section of order $4+3 \times 2 \times 3$; moreover they have β^{10} in common. The remaining section of order 12 must consist of straight lines belonging to degenerate figures $\varrho^{\overline{5}}$, each composed of a ρ^{3} and two straight lines b intersecting it. From this it ensues that $\left[\rho^{5}\right]$ contains six figures consisting of a twisted cubic and two of its secants.

This result may also be formulated in this way: through three points F_{k} pass 6 curves 9^{3} which intersect a given σ^{3} four times and a straight line s twice. Such a ρ^{3} intersects the ruled surface $(b)^{4}$ in two points B lying outside s and σ^{3}; through these points pass the two straight lines b, completing ρ^{3} into a ρ^{6}.
6. Any straight line d having threc points in common with a ϱ^{6} is a singular trisecant of the congruence. For through it passes one \boldsymbol{D}^{3} and the remaining surfaces of the net intersect it in the triplets of an involution. From this it ensues that the trisecants of the ρ^{5} form a congruence of order three, as a ρ^{5} is intersected in each of its points by three trisecants. In $\$ 3$ it has been proved that any point S of σ^{3} also sends ont three straight lines d; on these singular trisecants, however, all the groups of the I_{s} have the point S in common.

Let b be a bisecant of a ρ^{5} intersecting σ^{2}. Through it passes one Φ^{3}; the net therefore determines on b an involution I^{2}, so that b is a singular bisecant.

Through a point P pass four straight lines b. For the curve ϱ_{P}^{s}, which can be laid through P is projected out of P by a coue k^{4}; the latter has in common with σ^{3} the eight points in which ϱ_{p}^{5} rests on σ^{3}. The remaining four intersections lie on edges of k^{4}, which have in common with ϱ_{P}^{5} two points not lying on σ^{3}, consequently are singular bisecants.

These four straight lines b lie on the surface Π, which is the locus of the pairs of points, which the curves of $\left[\rho^{5}\right]$ have in common with their chords passing through the point P, Π is apparently a surface of order six with' quadruple point P, the tangent cone of which coincides with k^{4}.

I7 ${ }^{6}$, contains' s and σ^{3}, therefore has with an arbitrary ϱ^{6} four points of s and eiglt points of σ^{7} in common; of the remaining 18 points of intersection 12 lie on the 6 chords, which \boldsymbol{o}^{6} sends through , P, and 6 in the points F. Hence Π^{s} has three nodes F_{k}, .

With the cone $\hbar^{4} \cdot \Pi^{9}$ has the curve $o P^{5}$ in common; the remaining section can only consist of straight lines. To it belong the three parabolic bisecants $P F_{k}$ and the four singular bisecants b. From this it ensues that the three trisecants d which ϱP^{5} sends through P are nodal lines of Π^{8}.

For a point S of the singular curve σ^{3} the surface Π^{8} degenerates into the monoid Σ^{3} and a cubic cone l^{3}, formed by singular bisecants b. The straight lines b form therefore a congruence of order four, with singular curve σ^{3}, consequently of class nine.
7. The surface A formed by the ρ^{5}. intersecting a straight line l, has the ϱ^{5} intersecting l twice as nuclal curve.

As l intersects every monoid Σ^{3} thrice, s and σ^{3} are triple lines on A. The section of A with the plane ($F_{1} s$) consists of the triple straight line s and three conics $\rho_{1}{ }^{2}$; of these, one passes through the intersection of l, the other two are determined by the two curves $\varrho_{1}{ }^{9}$ resting on l. So \boldsymbol{A} is a surface of order nine, with triple points in $F_{1}, F_{2}, F_{3}^{\prime}$.

On \boldsymbol{A}^{2} lie 15 straight lines, 9 conics, 9 curves ϱ^{3} and 15 rational curves, ϱ^{4}. For l intersects 4 bisecants $b, 11$ curves ϱ^{4}; 3 conics and 6 curves ϱ^{3}.

A plane λ passing through l intersects A^{3} along a curve λ^{8}; the latter has in common with l the points, in which l is intersected by the ρ^{5}, which bas l as bisecant. In each of the remaining six points λ is tonched by a ρ^{5} of the congruence.

The locus of the points in which a plane p is touched by curves ρ^{5} is therefore a curve φ^{0}. It is the curve of coincidence of the
 $S^{*}, S_{1}, S_{3}, S_{3}$ of the singular lines $s . \sigma^{3}$ are apparently nodes of ρ^{6}.

With the surface Λ^{n} belonging to an arbitrary straight line $l, q^{\prime \prime}$ has in those intersections $4 \times 3 \times 2$ points in common; in each of the remaining intersections φ is touched by a ρ^{5} resting on l.

The curves ϱ^{5} touching φ form therefore a surface $\boldsymbol{\Phi}^{30}$.
A monoid Σ^{3} has in the points $S^{*}, S_{k} 4 \times 2$ points in common with ρ^{0}; on ψ^{8} lie therefore the points of contact of 10 curves \mathbf{o}^{5} ' of the monoid. From this it ensues that s and σ^{3} are decuple lines of \boldsymbol{m}^{30}. . With the curve $\boldsymbol{\psi}^{0}$, belonging to the plane $\boldsymbol{\psi}$, $\boldsymbol{\Phi}^{\mathrm{io}^{0}}$ has, in the four nodes of $\boldsymbol{\psi}^{\text {i }}, 4 \times 2 \times 10$ points in common; in each of the remaining intersections ψ is touched by a ρ^{5}, which at the same time touches the plane φ. There are consequently 100 curves ϱ^{6}, touching two given planes.

The plane of has with \boldsymbol{P}^{30}, besides the curve of contact ρ^{0} to be
counted twice, a curve φ^{18} in common possessing four sextuple points in S^{*}, S_{k}. Apart from the multiple points, φ^{6} and φ^{18} have moreover $6 \times 18-4 \times 2 \times 6$ points in common; from this it ensues that each plane is osculated by thirty curves ϱ^{5}.

Mathematics. -- "Some particular bilinear congruences of twisted cubics." By Prof. Jan de Vries.
(Communicated in the meeting of March 27, 1915).
The bilinear congruences of twisted cubics 0^{3} may principally be brought to two groups. ${ }^{\text {i }}$) The congruences of the first group may be produced by two pencils of ruled quadrics, the bases of which have a straight line in common; the congruences of the second group consist of the base-curves of the pencils belonging to a net of cubic surfaces, which bave in common a fixed point and a twisted curve of order six and genus three. Reye's congruence formed by the ρ^{3} passing through five given points F_{k}, belongs to both groups; it may be produced by two pencils of quadratic cones; the straight lines, connecting each of two points H_{1}, F_{2} with each of the remaining four, are base-edges. We shall now consider some other particular cases of congruences of the first group, which may also be produced by two pencils of quadratic cones.

1. We consider the curves ϱ^{3} passing through the fundamental points $F_{1}, F_{2}, F_{3}, F_{4}$ and having the lines s_{1} (passing through F_{1}) and s_{2} (passing through F_{2}) as chords. Each \Downarrow^{3} is the partial intersection of a quadratic cone passing through the lines ($s_{1}, F_{1} F_{2}, F_{1} F_{3}, F_{1} F_{4}$); $\left(s_{2}, F_{3} F_{1}, F_{2} F_{3}, F_{2} F_{4}^{\prime}\right)$; the congruence is consequently bilinear. Apparently s_{1} and s_{2} are singular bisecants. Any point S_{1} of s_{1} is singular; the \Downarrow^{3} passing through S_{1} lie on the cone of the second pencil passing through S_{1}. Consequently s_{1}, as well as s_{2}, is a singular straight line of order two.

The figures of the congruence consisting of a straight line d and a conic $\boldsymbol{\sigma}^{2}$, may be brought to four groups.
A. The straight line $d_{12} \equiv F_{1} F_{2}$, may be combined with any δ^{2} of the system of conics passing through F_{3} and F_{4} and resting on

[^1]
[^0]: り) Two other particular nets I have considered in two communications placed in volume XVI (p. 733 and p. 1186) of these "Proceedings". They determine bilinear congruences of twisted quartics (1st and 2nd species).

[^1]: 1) Veneron, Rendiconti del Circolo matematico di Palermo, tomo XVI, 209229. In a short communication in vol. XXXVII, 279, of the Rendiconti del Ist. Lombardo, Veneroni has added to these trio main types a third which by the way may be considered as a limit case of the first type. This congruence may be produced by a pencil of quadrics aud a pencil of quartic surfaces, one surface of which is composed of two quadrics of the first pencil. The bases of the pencils have a straight line in common, which -is nodal line-for the second-pencil,
