Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)
Citation:
J. de Vries, A bilinear congruence of rational twisted quintics, in: KNAW, Proceedings, 17 III, 1914-1915, Amsterdam, 1915, pp. 1250-1256
This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl) > 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

curves A and B need at most be of degree (r-m) and (r-n). If this is not the case, however, the terms of the highest degree of AF_1 and BF_2 will cancel each other; as the terms of the highest degree in F_1 and F_2 have no common factor, those of AF_1 and BF_2 will be divisible by those of F_1F_2 .

Let us therefore suppose

$$AF_1 \equiv A'F_1F_2 + A''F_1$$

 $BF_2 \equiv B'F_1F_2 + B''F_2$,

in which we extend the division by F_1F_2 only so far that the terms of the highest degree in AF_1 and BF_2 have disappeared, we have

$$A' \equiv -B'$$
.

So we find

$$F_3 \equiv A''F_1 + B''F_2,$$

in which A'' and B'' are of a lower degree than A and B. So we may go on till we find

$$F_3 \equiv A^{(c)}F_1 + B^{(c)}F_2$$

in which $A^{(c)}$ and $B^{(r)}$ are at most of degree (r-m) and (r-n).

Mathematics. — "A bilinear congruence of rational twisted quintics".

By Professor Jan de Vries.

(Communicated in the meeting of March 27, 1915).

1. The base-curves of the pencils belonging to a net $[\Phi^*]$ of cubic surfaces form a *bilinear congruence*. For through an arbitrary point passes only *one* curve, and an arbitrary straight line is chord of *one* curve; for the involution I_2^* , which the net determines on that line, has *one* neutral pair of points.

We shall consider the particular net, the base of which consists of the twisted cubic σ^3 , the straight line s and the points F_1 , F_2 , F_3 . 1) The surfaces Φ^3 , which connect this basis with a point P have moreover a twisted quintic φ^5 in common. A bilinear congruence $[\varphi^5]$ is therefore determined by $[\Phi^3]$. A plane passing through s intersects two arbitrary surfaces of the net in two conics; of their intersections three lie on σ^3 , the fourth belongs to φ^5 ; consequently this curve has four points in common with s, is therefore rational.

The straight line s is apparently a singular quadrisecant.

The figure consisting of s, σ^s and ρ^s is, as complete intersection

¹⁾ Two other particular nets I have considered in two communications placed in volume XVI (p. 733 and p. 1186) of these "Proceedings". They determine bilinear congruences of twisted quartics (1st and 2nd species).

of two, Φ^{γ} , of rank, 36. As σ^{γ} is of rank four and ϱ^{δ} , as rational curve of rank eight, while s has four points in common with ϱ^{δ} , ϱ^{δ} and σ^{δ} will have eight points in common. We can therefore determine the congruence $[\varrho^{\delta}]$ as the system of rational curves ϱ^{δ} passing through three fundamental points F_1 , F_2 , F_3 , cutting the singular curve σ^{δ} eight times and having s as singular quadrisecant.

It incidentally follows from this, that o' may satisfy 20 simple conditions.

2. Let b be a bisecant of σ' , resting on s, all Φ^s passing through a point of b have this line in common, therefore determine a pencil the base of which consists of s, b, σ^s and a rational ϱ^s , which has three points with s six points with σ^s , consequently one point in common with b.

There are also figures of $[\varrho^s]$ consisting of a conic ϱ^2 and a cubic ϱ^3 . The plane Φ_1 passing through F_1 and s forms with the ruled surface Φ_1^2 , determined by σ^3 , F_2 and F_3 , a Φ_1^3 . Any other figure of $[\Phi^3]$ intersects Φ_1^3 along a conic ϱ_1^2 in the plane Φ_1 , passing through F_1 and the intersections $S_1^{(k)}$ of σ^3 , and a twisted curve ϱ_1^3 intersecting σ^3 in five points C_1^2 , C_1^2 , which are determined by Φ_1^2 ; it passes of course through F_2 and F_3 .

To the curves ϱ_1^3 belong two degenerate figures each formed by the bisecant of σ^3 out of one of the points C, and the conic φ_1^2 , in which Φ_1^3 is intersected by the plane that connects the points F_2 and F_3 with the other point C. Apparently φ_1^2 and the corresponding ϱ_1^2 form a degenerate curve ϱ_1^4 .

The three degenerate conics ϱ_1^2 as well determine degenerate curves ϱ^4 . For the straight line $S_1'S_1''$ is a bisecant b; hence the line F_1S_1''' forms with the corresponding ϱ_1^3 a degenerate figure ϱ^4 .

3. To the net $[\Phi^i]$ belongs the surface Σ^i , which has a node in a point S of σ^i . This nodal surface determines with any other surface of the net a ϱ^i , intersecting σ^i in S, is therefore the locus of the ϱ^i passing through the *singular point* S.

The surfaces Σ_1 , and Σ_2 have s, σ^3 and a ϱ^4 in common, consequently one ϱ^4 passes through two points S_1 , S_2 of σ^3 . The groups of eight points, which the curves of the congruence determine on σ^6 form therefore an involution of the second rank. From this ensues that σ^3 is osculated by 18 curves ϱ^4 , and contains 21 pairs S_1 , S_2 through which ∞^4 curves ϱ^4 pass. So there are 21 surfaces Φ^3 each possessing two nodes lying on σ^3 .

A straight line passing through the vertex S of the monoid Σ° inter-

Proceedings Royal Acad. Amsterdam. Vol. XVII.

sects the latter moreover in a point P and the plane φ passing through F_1, F_2, F_3 in a point P', which we shall consider as an image of P. As one ϱ^5 passes through any point P, the curves of the congruence lying on Σ^3 are represented by a pencil of rational curves φ^4 . Every φ^4 has in common with the intersection φ^3 of Σ^3 the five points, in which the corresponding $\dot{\varrho}^5$ intersects the plane φ ; the remaining seven intersections of φ^3 with φ^4 are base-points of the pencil (φ^4) . To them belong the points F_1, F_2, F_3 ; the remaining four are intersections of four straight lines lying on Σ^3 . One of them is intersected by every $\varrho^{\mathfrak{s}}$ in S and in a point P, is therefore a singular bisecant p of the congruence; the involution which the ∞^1 curves ϱ^{δ} determine on it, is parabolic; so we might call p a parabolic bisecant. The remaining three straight lines d_1, d_2, d_3 passing through S are common trisecants of the curves $\varrho^{\mathfrak{s}}$; on these singular trisecants as well the involution of the points of support is special, for each group contains the point S.

The monoid Σ^3 contains moreover two straight lines passing through S viz. the two bisecants of σ^3 cutting s, being consequently component parts of two ϱ^5 degenerated into a straight line b and a ϱ^4 .

The pencil (φ^4) has three double base-points D_1 , D_2 , D_3 and four single base-points E, F_1 , F_2 , F_3 ; it contains six compound figures: three figures consisting of a nodal φ^3 and a straight line and three pairs of conics.

Let us now first consider the figure formed by the straight line D_2D_3 and the φ^3 , which has a nodal point in D_1 and passes through the remaining six base-points. It is the image of a figure consisting of a bisecant b and a rational curve ϱ^4 ; for the plane passing through d_2 and d_3 has only one straight line in common with Σ^3 so that D_2D_3 cannot be the image of a conic passing through S. Consequently there lie on Σ^3 three straight lines b not passing through S, and therefore three curves ϱ^4 passing through S.

The conic passing through D_1 , D_2 , D_3 , E, F_1 is the image of the conic ϱ^2 which the plane (F_1s) has in common with Σ^3 ; the conic to be associated to her passing through D_1 , D_2 , D_3 , F_2 , F_3 is the image of the ϱ^3 forming with ϱ^2 a curve of the congruence $[\varrho^5]$. There are apparently there figures (ϱ^3, ϱ^2) on Σ^3 .

4. The curves ϱ^5 , meeting s in a point S^* lie on the nodal surface Φ^3 , which has S^* as node. The monoids Σ^{**3} belonging to two points of s, have one ϱ^5 in common; so the groups of four points which the ϱ^5 have in common with s form a I_2^4 . There are consequently six ϱ^5 which osculate s, and three binodal surfaces Φ^3 which

have their nodes on s, consequently contain ∞^1 curves ϱ^s , intersecting s in the same two points.

The $oldsymbol{\phi}^s$ of the monoid $oldsymbol{\Sigma}^{\tau s}$ are represented on the plane $oldsymbol{\phi} \equiv F_1 F_2 F_3$ by a pencil of $oldsymbol{\phi}^s$, which have the intersection $oldsymbol{D}$ of s as triple point and pass through $oldsymbol{F_1}, F_2, F_1$. The remaining base-points $oldsymbol{E_1}, E_2, E_3, E_4$ of that pencil lie in the intersections of straight lines $oldsymbol{p}_k$ of the monoid, which lines meet in $oldsymbol{S}^*$ and apparently are parabolic singular bisecants. The sixth straight line of the monoid passing through $oldsymbol{S}^*$ is the bisecant $oldsymbol{b}$ of $oldsymbol{\sigma}^s$, consequently part of a degenerate $oldsymbol{\phi}^s$.

The straight line DF_1 is the image of the conic ϱ_1^2 , in which the monoid is moreover intersected by the plane (sF_1) ; the nodal φ^3 completing it into a φ^4 represents the cubic ϱ^3 , belonging to ϱ_1^2 . So three figures (ϱ^3, ϱ^2) lie on Σ^{*3} .

The straight line DE_1 forms with the nodal cubic passing through E_2 , E_3 , E_4 , E_1 , E_2 , E_3 and twice through D, the image of a degenerate \mathbf{e}^5 , consisting of the straight line b in the plane (sp_1) and a rational \mathbf{e}^4 passing through S^* . The monoid \mathbf{e}^{*3} too contains therefore five figures (b, \mathbf{e}^4) .

5. We can now determine the order of the locus of the rational curves ϱ^4 . It has s as quadruple straight line and passes thrice through σ^3 (§ 3). Its intersection with a $\Sigma^{\#3}$ consists apart from these multiple lines of five curves ϱ^4 , is therefore of order 33. The rational curves ϱ^4 lie therefore on a surface of order eleven.

The section of this surface Φ^{11} with the plane (F_1s) consists of the quadruple straight line s, and parts of degenerate figures ϱ^4 . To it belong in the first place the three straight lines joining F_1 to the intersections $S_1^{(k)}$ of σ^3 (§ 2); the remaining section is formed by the two ϱ_1^2 belonging to the bisecants b out of the points C_1' , C_1'' (§ 2). A straight line passing through F_1 intersects Φ^{11} four times on s and has with each of the two conics ϱ_1^2 a point of intersection not lying in F_1 ; so five intersections lie in F_1 . The three fundamental points F are therefore quintuple points of Φ^{11} .

In order to determine the locus of the intersection B of a ϱ^4 with the bisecant b coupled to it, we consider on s the correspondence between its intersections with b and ϱ^4 . Through any point P passes one b; to it are associated the three points Q, which ϱ^4 has in common with s. In each point Q, s is intersected by four curves ϱ^4 ; hence four points P are associated to Q. From this it appears that s contains seven points B. A plane passing through s contains three straight lines s, consequently three points s, so the

points B lie on a curve β^{10} with septuple secant s. In the same way it appears that β^{10} meets σ^3 in 15 points. The surfaces Φ^{11} and $(b)^4$ have in s and σ^3 a section of order $4+3 \times 2 \times 3$; moreover they have β^{10} in common. The remaining section of order 12 must consist of straight lines belonging to degenerate figures ϕ^5 , each composed of a ϕ^3 and two straight lines b intersecting it. From this it ensues that $[\phi^5]$ contains six figures consisting of a twisted cubic and two of its secants.

This result may also be formulated in this way: through three points F_k pass 6 curves ϱ^a which intersect a given σ^a four times and a straight line s twice. Such a ϱ^a intersects the ruled surface $(b)^a$ in two points B lying outside s and σ^a ; through these points pass the two straight lines b, completing ϱ^a into a ϱ^a .

6. Any straight line d having three points in common with a \mathfrak{Q}^5 is a singular trisecant of the congruence. For through it passes one \mathfrak{P}^3 and the remaining surfaces of the net intersect it in the triplets of an involution. From this it ensues that the trisecants of the \mathfrak{Q}^5 form a congruence of order three, as a \mathfrak{Q}^5 is intersected in each of its points by three trisecants. In § 3 it has been proved that any point S of \mathfrak{G}^3 also sends out three straight lines d; on these singular trisecants, however, all the groups of the I_3 have the point S in common.

Let b be a bisecant of a ϕ^{δ} intersecting σ^{δ} . Through it passes one Φ^{δ} ; the net therefore determines on b an involution I^{δ} , so that b is a singular bisecant.

Through a point P pass four straight lines b. For the curve ϱ_P^s , which can be laid through P is projected out of P by a cone k^4 ; the latter has in common with σ^s the eight points in which ϱ_P^s rests on σ^s . The remaining four intersections lie on edges of k^4 , which have in common with ϱ_P^s two points not lying on σ^s , consequently are singular bisecants.

These four straight lines b lie on the surface H, which is the locus of the pairs of points, which the curves of $[o^t]$ have in common with their chords passing through the point P. H is apparently a surface of order six with quadruple point P, the tangent cone of which coincides with k^t .

 H^{0} contains s and σ^{0} , therefore has with an arbitrary ϱ^{0} four points of s and eight points of σ^{0} in common; of the remaining 18 points of intersection 12 lie on the 6 chords, which ϱ^{0} sends through P, and 6 in the points F. Hence H^{0} has three nodes F_{k} .

With the cone k^4 H^6 has the curve ϱ_P^5 in common; the remaining section can only consist of straight lines. To it belong the *three* parabolic bisecants PF_k and the *four* singular bisecants b. From this it ensues that the three trisecants d which ϱ_P^5 sends through P are nodal lines of H^6 .

For a point S of the singular curve σ^3 the surface H^s degenerates into the monoid Σ^s and a cubic cone k^s , formed by singular bisecants b. The straight lines b form therefore a congruence of order four, with singular curve σ^s , consequently of class nine.

7. The surface Λ formed by the ϱ^s , intersecting a straight line ℓ , has the ϱ^s intersecting ℓ twice as nodal curve.

As l intersects every monoid Σ^3 thrice, s and σ^3 are triple lines on Λ . The section of Λ with the plane (F_1s) consists of the triple straight line s and three conics ϱ_1^2 ; of these, one passes through the intersection of l, the other two are determined by the two curves ϱ_1^3 resting on l. So Λ is a surface of order nine, with triple points in F_1 , F_2 , F_3 .

On $\mathcal{A}^{\mathfrak{d}}$ lie 15 straight lines, 9 conics, 9 curves $\varrho^{\mathfrak{d}}$ and 15 rational curves, $\varrho^{\mathfrak{d}}$. For l intersects 4 bisecants b, 11 curves $\varrho^{\mathfrak{d}}$; 3 conics, and 6 curves $\varrho^{\mathfrak{d}}$.

A plane λ passing through l intersects \mathcal{A}^{o} along a curve λ^{s} ; the latter has in common with l the points, in which l is intersected by the \mathbf{e}^{s} , which has l as bisecant. In each of the remaining six points λ is touched by a \mathbf{e}^{s} of the congruence.

The locus of the points in which a plane φ is touched by curves ϱ^s is therefore a curve φ^s . It is the curve of coincidence of the quintuple involution, which determines $[\varrho^s]$ on φ . The intersections S^* , S_1 , S_2 , S_3 of the singular lines s, σ^s are apparently nodes of φ^s .

With the surface A° belonging to an arbitrary straight line l, φ° has in those intersections $4 \times 3 \times 2$ points in common; in each of the remaining intersections φ is touched by a φ° resting on l.

The curves ϱ^5 touching φ form therefore a surface Φ^{50} .

A monoid Σ^s has in the points S^* , S_k 4×2 points in common with φ^s ; on φ^s lie therefore the points of contact of 10 curves φ^s of the monoid. From this it ensues that s and σ^s are decuple lines of Φ^{so} .

With the curve $\psi^{\mathfrak{o}}$, belonging to the plane ψ , $\Phi^{\mathfrak{o}\mathfrak{o}}$ has, in the four nodes of $\psi^{\mathfrak{o}}$, $4 \times 2 \times 10$ points in common; in each of the remaining intersections ψ is touched by a $\varrho^{\mathfrak{o}}$, which at the same time touches the plane φ . There are consequently 100 curves $\varrho^{\mathfrak{o}}$, touching two given planes.

The plane φ has with Φ^{so} , besides the curve of contact φ^s to be

counted twice, a curve φ^{1s} in common possessing four sextuple points in S^* , S_k . Apart from the multiple points, φ^s and φ^{1s} have moreover $6 \times 18 - 4 \times 2 \times 6$ points in common; from this it ensues that each plane is osculated by thirty curves φ^s .

Mathematics. — "Some particular bilinear congruences of twisted cubics." By Prof. Jan de Vries.

(Communicated in the meeting of March 27, 1915).

The bilinear congruences of twisted cubics ϱ^3 may principally be brought to two groups. The congruences of the first group may be produced by two pencils of ruled quadrics, the bases of which have a straight line in common; the congruences of the second group consist of the base-curves of the pencils belonging to a net of cubic surfaces, which have in common a fixed point and a twisted curve of order six and genus three. Refer congruence formed by the ϱ^3 passing through five given points F_k , belongs to both groups; it may be produced by two pencils of quadratic cones; the straight lines, connecting each of two points F_1 , F_2 with each of the remaining four, are base-edges. We shall now consider some other particular cases of congruences of the first group, which may also be produced by two pencils of quadratic cones.

1. We consider the curves ϱ^3 passing through the fundamental points F_1 , F_2 , F_3 , F_4 and having the lines s_1 (passing through F_1) and s_2 (passing through F_2) as chords. Each ϱ^3 is the partial intersection of a quadratic cone passing through the lines $(s_1, F_1F_2, F_1F_3, F_1F_4)$; $(s_2, F_2 F_1, F_2 F_3, F_2 F_4)$; the congruence is consequently bilinear. Apparently s_1 and s_2 are singular bisecants. Any point S_1 of s_1 is singular; the ϱ^3 passing through S_1 lie on the cone of the second pencil passing through S_1 . Consequently s_1 , as well as s_2 , is a singular straight line of order two.

The figures of the congruence consisting of a straight line d and a conic d^2 , may be brought to four groups.

A. The straight line $d_{12} \equiv F_1 F_2$, may be combined with any σ^2 of the system of conics passing through F_3 and F_4 and resting on

¹⁾ Veneroni, Rendiconti del Circolo matematico di Palermo, tomo XVI, 209—229. In a short communication in vol. XXXVII, 259, of the Rendiconti del Ist. Lombardo, Veneroni has added to these two main types a third which by the way may be considered as a limit case of the first type. This congruence may be produced by a pencil of quadrics and a pencil of quartic surfaces, one surface of which is composed of two quadrics of the first pencil. The bases of the pencils have a straight line in common, which is nodal line for the second pencil.