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The equation (6) has in the course of time been usSed for the
determination of u, of », and of & It is, however, doubtful whether
the accuracy, needed to derive a real correction to our present know-
ledge of any of these constants, could be attamned even by a series of
observations such as 1s proposed by E. W. Browx 1n his address to
the British Association mn Australia. It certainly should determine the
parallax within a fraction of = 0".01 to be of real value. To make
this possible the selenocentric coordinates, especially the radius-vector
of the Crater Mosting A, or any other feature of the lunar surface
which is used for the determination, must be accurately known.
The determinations of the height of Mosting A over the mean
radius are:

Hayn?) +2"2=+=0'"6 effect on a' . .. 0".037

Stra1TON?) +-3 .0 =0 .7 v s s . . 0.049.

The difference between the {wo determinations makes a difference
in the parallax larger than the uncertainty due to any of the con-
stants r,, g,, 4 Or &

Our conclusion is thus that the value (8) of the lunar parallax
is more accurate than any that can at present be derived by direct
observations.

Geodesy. — “On Isostasy, the Moments of Inertia, and the Com-
pression of the Eartl”’. By Prof. W. pi SirTrr.

1. The bypothesis of isostasy is sirvictly speaking a compound ot
two hypotheses, viz. :

A. Up to a certain distance from the centre the constitution of
the earth is in agreement with the theory of Cramkaur,i. e. the
equipotential surfaces are surfaces of equal density, and the density
never increases®) from the centre outwards. [Apart from this con-
dition it may vary in any manner, even discontinuously.] The last

1) Selenographische Koordinaten. III. (1907). Abh. der K. Sdchs. Ges. der Wiss,
Band XXX. page 74.
) Memoirs of the R. A. S. Vol. LIX, Part 1V, page 276.

dA
8) Strictly speaking it is not necessary that always —— b= L0, Tt is sufficient 1f, for

ab
dll values of U; fﬂ —dp g0, 'mdfﬂ“ & ———d‘3< 0.
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gquipotential surface which satisfies these postulates is called thé
isostatic surface, and will be denoted by S,.

B. In the crust outside S, the distribution of mass is such that.
over sufficiently large areas of S, there is the same mass as there
would be with a certain normal distribution. How exactly this nor-
mal distribution is supposed to be, 15 generally not explicitly stated.
In any case with the normal disiribution the whole mass of the
crust would be inclosed between S, and a certain normal surface S.

The actual surface of the earth is neither an equipotential surface,
nor a surface of equal density. The actual surfaces of the oceans
may be supposed to be paris of one and the same equipotential
surface, which is called the geoid. The figure of this geoid is derived
from geodetic measures made on the continents or from determinations
of the intensity of gravity made on the continents and on the sea.
It has been found that the geoid differs very little from an ellipsoid
of revolution. This “ellipsoid of reference” may be taken to be
identical with the normal surface, or more precisely the several
ellipsoids of reference found from each separate investigation are
considered to be approximations to the normal surface. The latter
is thus determined as the ellipsoid best fitting the several partial
ellipsoids of reference.

2. On the basis of the theory of isostasy we must consider the
isostatic surface .S, as primarily given, though of course its figure
is unknown, and must be determined from that of S. Now the
relation between S, and S is not very explicitly stated by the different
authors on the subject. ’

The most natural assumption evidently is that S would be a equi-
potential surface and a surface of equal density. The normal surface
satisfying these conditions, which are those of the theory of Crairaur,
will be called the ideal surfuce of the earth, and will be denoted by S,.

When HerMmert originally introduced the method of condensation,
he supposed the radius-vector of the surface ot condensation to be
proportional to that of the normal surface: r, =7 (1—a). In the
reductions according to the theory of isostasy the isostatic surface S,
corresponds to Hermearr’s surface of condensation. The normal surface
would then be given by 7 =r, (1—ea)~1. This surface may be called
the proportional surface, and will be denoted by S,.

Some authors also state as a definition that the depth of the
isostatic surface below the normal surface is constant. We should
thus have r=7»,+ Z. The surface so defined may be called the
equidistant surfuce, and will be denoted by S;-
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Let

=— the ae/quatoria,l radius

. of any surface,
& = the compression

Further
b de
KT
then we_have approximately
7€
& = —b—(bl—'bn)'

b—b,
For the earth we have 1y, = 0.561. Taking —’—z—— =0.0179, and

¢ == 0.00338, we find -

g, — & = - 0.000034

The difference of the numerators is
51—1—50—1 — — 3.0 1).

1) A better approximation is obtained by also taking inlo accoimt the variation
of 4. Let
4 = the density at

= . any equipotenlial surface
D = the mean density within y equip ’

and

b dD
D db’
then the theory of Crairavr gives, neglecling lhe second ovder in ¢

A
st(l——]})

dy
b— = 281 — By —t.
7 §(14-m)—B9—1y

§=

If the crust were constituted in accordance with the theory of CLamavm, it
would consist of a solid crust enlirely covered by an ocean of a depth of about
2.4 km. The botlom of this ocean would be an equipotential surface, say Se. Ior
S; we have now

A =108 1 =552
from which we find
L = 2.44.

Talt

']‘hend, with +; =0.561, we find

dy
b{— | =4.50.
() =4

Therefore, since ,—bs = 0.00038 b;, we have

d
Ny == 1, — (b,—hy) ((—71—2) = 0,559,
. 1

For the surface Sy we then have .
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For the proportional surface we have, of course,

£, =&, i
The equidistant surface is not an exact ellipsoid, but it differs
only in quantities of the second order in & from the ellipsoid whose

-

compression is, 3

£
: = 0.979 ¢,.
g + k Fo

o

3 1 +

VA
where k= o Therefore
) <

&, — &, = — 0.000070
g1 —g—~1= { 6.1,
The depth of the isostatic surface below the normal surface is in
the three cases
- r, — vy = kb [1 4 & (14n) (& -—sin® )],
r, — 7, = kb1 + & (3 — sin® )],
ry — 7, = kb.
or, expressed in kilometers
r, — 7o =114 4 0.59 (4 — sin’ ¢p),
r, — 7, = 114 + 0.38 (3 — sin® @)
n—or, =114,

The difference between the three definitions of the relation of the
isostatic and the normal surfaces is thus considerable, especially in
its effect on the compression. If the nndisturbed surface of the
different oceans ave parts of one and the same equipotential surface,
which is the geoid, and if at the same time the geoid does not
ditfer more than a few tens of meters') from an ellipsoid of revolution,

- . -l
- Ay=273 §=152 B[ ) =1.6s.
b ), \

Further if we put &=1% (b, -+ by), we have by—by = 00177 b, and consequently
N, = M — 0.0177 X 1.63 = 0.530.
Taking now
7 == 40, 4n,) = 0.546, &=1i(s,+&) b,—b, = 0.01817,
we find -
: & —e, = 0,0181 77 . & = 0.0099 &.
Taking - = 0.00886, we have
&, —&, = 0.000033.
g l—g,~1= — 2.9.
1) Hermert, Geoid und Erdellipsoid, Zeitschr. der Ges. (i Erdkunde, 1913,
p. 17—84, ' .
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we cannot but take this latter as the normal surface. In that case
the normal surface is very nearly an equipotential surface. The
deviations of the geoid from the ellipsoid, or, which is the same
thing, of the normal surface from the equipotential surface, are
caused by the irregularities in the crust. They would be very much
larger — in fact of the order of 1000 meters ') — if there were
no isostatic compensation. If this point of view is adopted, then the
normal surface can differ only very little from the “‘ideal” surface
S, as detined above. This will be assumed in what follows and no
further reference will be made to the surfaces S, and S;. They were
only discussed here to point out the necessity of precision in the
definition of the relation between the isostatic and the normal surfaces.

8. Let A< B <L C be the moments of inertia of a body about
the axes of z,y,z If the body rotates about the axis of z with the
velocity o, then the outer surface, if it is an equipotential surface,
is very nearly *) an ellipsoid whose principal axes are

b, b(1—1v), b(1—iv)(1—s).

It C—A and C—B are of the first order of smallness, and B—A4
of the second order, and if
20-4-B . B4

2 Mb* MbH?
then to the second ovder inclusive we have

s=J+ o, +& —4e0,—4B, .+ . .. 1)
=K. . . . . . ... . @®

The radius of the equator in longitude 2 is & [1—wv sin® (1—3,)],
if 2, be the longitude of the axis of x. The compression of the
meridian in longitude 2 is thus &, =& 4~ § reos 2 (A—2,). Consequently
¢ is the average ‘compression of the meridians.

The value of o, in (1), viz

0= " — 0.0034496,
95
can bé assumed to be exactly known. Further
- . B, = 0.0000029.
The equation (1) can thus be written
e=J 4 0.0017287. . . . . . . . (@)

J=

ek

1) Hgumert, Hohere Geodisie, I, p. 356.
%) The deviation from the ellipsoid is — b sin? 2¢, where

x—==E§80— f& + $4 B, =0.0000051,
or b« =326 melers Darwin, Scientific Papers, Vol. IlI, p. 102. -

86
Proceedings Royal Acad. Amsterdam. Vol. XVII.
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and the uncertainty in the numerical part is no more than a few
units in the last detimal place given. .
We also need the ratio

2C—A—B
=5
For the ideal surface we have A, =— B,, and consequently
C,—A, - C,—4
J =3 1 H =21,
R 1T e,

The true moments of inertia A and B may however be nnequal.
The ratio H can be determined with great accuracy from the
constant of precession. The best modern determinations of this
constant are (for 1850):
Nwweoms (with corrections by Houvga and Harw)') p,=50".2486
» Boss %) 50 .2511
Dyson and THACKERAY ?) 50 .2503
We can thus take
P, = 50".2500 == 0".0010.
The lunisolar precession then becomes
p = 50".378.
It now we take for the mass of the moon
p—1 = 81.50 == 0.07,
we find
H =0.0032775 4= 0.0000022.

The uncertainty is almost entirely due to g and not to p.

So far no assumptions have been made regarding the constitution
of the earth. The theory of CLAIRAUT now leads to a determination
of the ratio of J and H. We are thus able from A, to compute
J, and then & from (1). Rapau’s transformation. of CraIrRAUTS
differential equation gives, to the first order of &*),

= N €

J
where, also to the first order, y =3,— 5 —, and F, is a certain
&

1) Monthly Notices, Vol. LXX; p. 587. Sec also: The Observalory, July 1913,
p. 299.

%) Astronomical Journal, Vol. XXVL p. 148.

%) Monthly Notices, Vol. LXV, p. 443,

4) This and other formulas of the theory of Cratraur will be collected in the
following paper.
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mean value of a fanction F of » which differs very little from
unity for values of 1 between O and 7,.

If the formula (3) is extended to the second ovder, it becomes
very complicated. The range of /7, becomes wider, and therefore
also of g and & The formula has been elaborated by Darwin?) and
Vironner #). The formulac given by these two anthors are very
different. DarwiN starts from a definite assumption regarding the
constitution of the earth, and thus finds a definite value of e
VErONNET ntroduces no assumpiions, and consequently only gives
hmits for e Introducing the above value of H we find :

DARWIN . . . . =1 — 996.03.
Vironver . . . 295.84 < s—1 < 296.68.

The lower limit of &=t corresponds to the case of homogeneity,
the upper limit {o concenfration of the whole mass in the centre.
There can be no doubi, but that the actual distribution is nearer
the first limit. The agreement of the results of Darwix and VEroNNET
is thus complete, and we can adopt the valne derived from Darwin’s
formula. The m. e. of &= due to vhe uncertamnty of H is = 0.16.
From the agreement of the results of DarwIN and VERONNET we may
conclude that any probable hypothesis regarding the constitution of
the earth differing from that of DarwiN would not cause in &1 a
difference exceeding say =+ 0.10. We thus estimate the total uncer-
fainty of ¢! at = 0.19.

4. However, the value of H used above is the ratio of the frue
moments* of inertia. The équation (3) on the other hand is only
applicable to the ideal surface. We wmust thus try to derive the
values of J, and H, for the ideal surface from the true values J
and H, and at the same time determine the difference ¢—&, of the
compressions of the normal and the ideal surfaces. This will be
done on the basis® of the hypothesis of isostasy.

The normal surface is the ellipsoid best fitting the geoid. The
potential on the geoid depends on the true momeuts of inertia. The
compressions » and & of the normal surface are therefore derived
by the equations (1) or (1') and (2) by using the true values of J
and K. The equation (1) or (1) also applies to the ideal surface.
Jonsequently - )

1) The theory of the figure of the earlh to the second order of small quantities.
Scientific Papers, Vol. lli, p. 78 -118,

2) Rolation de lellipsoide hétérogéne el figuie exacte de la Terre. Journal des
Math. 1912, 4me fascicule.

86+
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e—e =J— J,. -
The change in A due to the change in C in the denominator is
very small (of the order of '/;,,) compared with the effect of the ",
change in the numerator. Consequently
,]'—-J;:g(H—HI).
and
¢ —e =g(H—H)==0502(H—H). . . . . (4

-

The part contributed towards the moments of inertia by an element
of mass m at latitude ¢, longitude 2, and distance from the centre 7 is
dC = mr® cos* ¢,
dd = mr* [1 — cos® ¢ cos® (A —2)], -
dB = mr* [1 — cos® p sin® (A — 2,)] , -
from which . '
dfC — (A + B)] = mr* (1l — 3sin® )
d[B — A] = ms*® cos® ¢ cos 2 (A — A,).

If now over a surface element w of the ideal surface the height
of the continent is %, and the mean density A, then the mass is
m=whh, If Z is the depth of the jsostatic surface below the
ideal surface, the defect of density needed to coinpensate this mass,

h

if equally distributed over the whole depth,isd = A‘El . The change
1

in Zmr® produced Dy the continent and its isostatic compensation

then is, if », be the radius vector of the ideal surface :
1+ 7y

d(Emrﬂ:[Awa;"‘d:v —/d‘wwzd.v: Aol (Z +h)(r,—3Z, +11), . (5)
1 1'1—Z1

Similarly for an oceanic element, let ¢, be the dépth of the bottom
of the ocean below the ideal surface and &' the difference of density

between the water and the mean density of the crust. The com-

d B
pensating excess of density below the sea then becomes ¢' == — . TARN
N it

and the change‘ in 2me® is .
d, (Emrz) = A,wdl [(_ Z1 + 2d1) 7y '+ "15‘ Ziﬂ -+ %‘ Zldl]' oo ¥(6)
It has been found sufficiently exact for our purpose instead of

(5) and (6) to use the approximate formulas -
d(2mry=gq.hy . . . .« o . . L0)
d(Emr*y= —057¢.d, . . . . . . (6) -

The height h, above the ideal surface is the sum of the height
h above_the normal surface and the height 4’ of the ‘normal .above
‘the ideal surface. This latter is -

i

.
L
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W= (e—&) b, (5 — sin® ).
Taking Z, = 0.0179 r,, and A, = 2.70, and integraling over the
whole surface we find for this part of H—H,, using also {):
¢ H=10.023 (6—s,) = 0.012 (H—H,)) . . . . (0
The principal part of H—H, is due to the deviation of the actual
surface from the normal surface. This has been computed by (5
and (6", replacing 4, and d, by 4 and d respectively. The value
of the constant ¢ depends on Z and on the units used. I have
adopted A =2.70, A'=1.70"), Z= 114 km.
The surface of the earth was divided into compartments of about
100 square degrees. For each compartment the value of
Q= qo (a,h — 0.57 a,d)
was compuied, where e, and «, arc the fractions of the compart-
ment covered by land and by sea respectively (so that e, 4 «, = 1).
Further
P = Q(1—3 sin? ¢p)
R = Qcos® ¢ cos 22
S="Qcos® ¢ sin 22. - -
The units had been so chosen that
JAE s

B—4 .
d_b_ = 10—7{Z'R . cos 22, + 28 .o 22},
The longitude 2, is determined by
2Scos 22, — ZRsin 22, = 0.
I found the following results. (See table p. 1304).

We find thus
d20 —A—B

2c

B—4 -
d—7— = -+ 0.00000205,

= — 0.00000512

>

and the axis of minimum moment of inertia (4) is situated in the
longitude
4, =86.°5 West of Greenwich.
This computation, of course, is rather rough. It would perbaps
be worth while to repeat it with greater care. The $mall influence
of the continents, especially of Asia, is somewhat surprising. This

1) The normal density of the crust in the upper few kilowmcters below the
normal surface was thus taken 1o be 2.73,and the densily of the land projecting
above that surface 2.70.

-10 -
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Parts of the world. 2P 1 2R =8
1. North Polar Area + 24 — 0.02 -+ 0.03
2. Europe — 0.8 - 4 0.39 — 0.47
3. Asia — 1.51 — 5.72 — 0.19
4. North-America — 3.64 — 1.36 — 1.28
5, Northern Atlantic Ocean — 5.00 — 0.23 — 11.36
6. South-America + 321 — 2.16 + 2.56
7 Southern Atlantic Ocean — 0.45 — 11.65 — 6.36
8. Africa + 3.55 + 22277 — 329
9. Indian Ocean — 2.58 + 15,11 + 709
10 Indian Archipelago and Australia| — 2.14 + 1.12 — 1.57
11, Pacific Ocean — 29.97 — 17.96 -+ 17.97
12, South Polar Area — 14.27 — 0.03 + 0.02

is due to the remarkable fact that the great mountainous regions
of the earth (Himalaya, the Alps, Rocky Montains, the higher part
of South Africa) are situated on or near the neutral latitude of which
the sine is V7, [p = 85°.8].

The value of dH found here is not yet exact, for if the crust
were built according to the theory of Crairavr it would consist of
a solid crust covered by an ocean of a mean depih of about 2.4 km
In the above computation tbis ocean has been taken of the density
2.73 nstead of 1.03. To remedy this we must apply a correction,
which by the theory of CLAIRAUT is

b
d
d,(C—4)= & ﬂfA' b (B°e)dp = £ m . 2.4 (54m) ble.
b—2 4

This gives
d, H = -+ 0.00000213.1)
The bottom and the surface of this ocean wonld be ellipsoids of
revolution, the neglect has therefore no effect on the value of B— 4.

There now remains
dH — — 0.00000299,

) Thete 1s an erior of computation in Lhis number. It should be 40.00000260.
The final value then becomes 1 = 295.95. The difference ftom the value mn the
text in neglgible. (Added in the English franslation.)

I

-11 -



Adding this to ¢"H as given by (7) we have allogether

H — A, = —0.00000299 + 0.012 (H—A)
or
H— H, = — 0.0000081,
Then we find by (4)
& — &, = — 0.0000016
et —g~1= 4 0.14.
From

- H = 0.0032775 -
we find thus ’
I, = 0.0032800.

DARWIN’s equation then gives

&1 =295.82,
and from the equation of ViroNNwr we find
295.62 < £,~1 < 296.46,

It has already been mentioned that DarwiN’s value may be assumed
to be very near the truth. Adopting this and adding the value of
e-1—g ~1 which has been found above, we have?)

g1 = 295.96.

It is very difficult to estimate the uncertainty of the correction
H—H,, since it depends not only on the correctness of the data
used, but also, and probably for the greater part, on the exactness
of the hypothesis that the compensating defect or excess of density |
is distributed equally over the whole depth Z. The whole correction
to &' however only amounts to 0.07, and its uncertainty is almost
cerlainly overestimated if we take 1t equal to the whole amount,
=+ 0.07. Combining this with the me. == 0.19 due to the uncertainty
of H, and of Darww’s hypothesis, the total uncertainty of &' is
found to be == 0.20.

The greater part of this is due to the uncertainty of A, and this
is wholly dne to that of the adopted value of the moon’s mass.
Consequently, in order to improve ouar knowledge of ¢ we must
determine u, which is found from the lunar inequality of
the sun’s longitude and the solar parallax. A correction of 4 0.05
to the adopted value of w—! would give —0.10 in &1

For 'the ideal surface B, =4,, or K, = 0. Therefore for the
normal surface
¢ B—4
My C
The longest radius of the equator, in the longitude 86°.5 is thus

= 0.00000108.

v=K=3}

1) See note on p. 1304

-12 -
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6.4 meters longer than the shortest radius. The cdompression of the
meridian &, varies between & | 4v and ¢ — $». For ceniral Europe,
2= —30° we find:

. ()~ = 295.98 -
and for North-America, 12— 100° -

(e)~1 = 295.92.

5. The methods mosily used for the determination of the com-
pression of the earth are: :
I. From geodetic measures,
[I. From the intensity of gravity,
III. From the moon’s parallax, N -
IV. From the lunar theory.
By the first method the geodetic measures made in the United
States of America give ‘
' e-1=297.0£12 . . . . . . . (D
This agrees within the limits of the mean error with the value
296.0 fonnd above.
From a great number of determinations of the intensity of gravity
Hrrmert derived
e1=2983 11 . . . . . . . (II)
This result agrees with the final result from the American deter-
minations, viz.:
1==2984 15 . . . . . . . (I

In judging the value of these results it must be remembered that
both the direction (method I) and the intensity (method 1I) of gravity,
before they are used for the determination of the figure of the
geoid, or of an ellipsoid of reference, need certain corrections, which
have been applied by different investigators more or less in agreement
with the hypothesis of isostasy. All investigators however use
approximate formulas, and it is not clear which of the definitions,
treated in art. 2 above, has been adopted. The American investigators
take a constant depth below the aciual surface of the earth (under
the sea even below the lottom). HELMERT uses the reduction as in
free air'), thus assuming thaf the isostalic compensation is complete.

Now it is of course impossible from the observations to decide
between the three cases of art. 2, and also the corrections computed
under the three assumptions will be very nearly equal. But small

) The American observalions reduced by the free air method give instead of
(1) e='= 292.1 & 1.7. Sce Bowix, Effcct of topography and jsoslatic compensation
upon the intensily of Gravily, second paper, p. 26,

-13 -
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differences in the radius of curvature, or in the values of g, have a
large influence on the compression, and it seems not impossible that
the resulting value of & has been influenced by inaccuracies in the
reductions. Discussing the large difference between the compressions
found by Bessen (e=1=299.15) and Crarxe (293.47) partly from
the same observations, HELMERT!) asserts that this difference can be
fully explained by a difference of a few meters in the adopted
height ‘of the geoid over the normal surface. If this is so, we can
expect that considerably larger differences of the isostatic reduction
will lead to similar effects 2).

‘For these reasons it appears to' me that the agreement of the
three values (I), (II) and (II') can only be accidental. It is not at
all certain a priori whether they refer to the same normal surface,
and their uncertainty undoubtedly is considerably larger than would
be inferred from the mean errors. ®)

From the lunar parallax we found in the preceding paper

3 e1=2084 . . . . . . . . (U

We also showed that the value 296.0 cannot be said to be
excluded by the observations.

The lunar theory gives J, from which & is found by the equation
(1. The principal term, which is commonly used for the deter-

1) Geoid und Erdellipsoid, l.c. p. 18.
%) The values of s derived from the American determinations by different methods ~
of reduction (and different combinations of stations) are widely_divergent. Thus
c.g. from the ohservations in the United Stales and in Alaska by the isostatic
method 300.4 £0.7 and by the free air method 291.2 4 0.7. See Bows,1c p.26.
The former of these should properly be quoted instead of (II') as the final result
from the American determinations.
%) Hewmerr's formula of 1901, from which (II) is derived, reduced to the Pots-
dam system, is
g =19.78030 [1 4 0.005302 sin* p — 0.000007 sin* 2 p] . . (a)

Wilh the compression §—1= 296.0, and a constant correction of + 0.00011
this becomes -

g =9.78041 1 4- 0.0052764 sin® p — 0.0000074 sin* 2 p] . (8)

The residuals of these two formulas for different zones of latitude are as follows,
expressed in units of 0.00001 :
Zone  5° 15° 25° 86°  4&° 55° 65° 75°
@ 7 0 —2 +6 +6 411 —7 “—3
® —4 -9 - 4 +3 +8 417 +3 +10
The m. e. of each of these residuals is = 11. The residuals 8 naturally are
somewhat systematic, but they are not larger than (z\, and can very well be due
to etrors of observation or inaceuracies in the reductions. A new discussion on
the basis of the theory of isostasy, and including the valuable malerial, which has
become available since 1900, is very desirable. [Note added in the English translation]..

-14 -
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mination of J, is a periodic term in the latitude, whose period  is
one month and whose coefficient is, by BrowN’s theory:') . ’ -

B = —[8.7046] J — 0".017. -
From the observations Brown finds?) -
B=—28"19 2= 0".06 — [0".40=% 0".20]. 7', '

where 7’ is the time expressed in centuries and counted from 1850.0.
If we take the mean epoch of the observations, i.e. about 1875,
we find*®) J == 0.001633, and consequently
e1=297.8+138. . . . . . . . (IV) -

It appears to me that this determination is not very veliable,
chiefly on account of the large and uncertain coefficient of 7" in
the observed value. BrownN proposes to use it not to determine ¢,
but the inclination of the ecliptic and its secular variation. It seems
very doubtful whether a correction to these elements thus determined
would be a real improvement to our knowledge of them derived
from other sources.

A great weight is attributed by Brown to the determination of J
from the motion of the perigee and the node. He finds

~1=2035+05 . . . . . . . (IV)

In deriving the m.e. no account has been taken of the uncertainty
of the theoretically determined part of these motions due to other
causes. Among these other causes, however, is the figure of the moon,
whicl is very imperfectly known. It will be shown in the following
paper that it is very well possible to adopt such values for the
quantities defining this figure, that the motions of the perigee and
the node are in agreement with the value &1 = 296.0. Smaller
values of & however lead to very improbable conclusions regarding
the constitution of the moon. "

All our discussions thus lead to the conclusion that none of the
other determinations is equal in accuracy to, or can throw a doubt
on the determination from the constant of precession. We must
therefore adopt as .final value of the compression the result of this -~
determination, viz:

~

—:— = 295.96 = 0.20.

1) Part V, Chapter XIIIL. (Memoirs of the R. A. S, Vol. LIX, Pait I). On p. 80
the inequality is given as — 8”.355 sin (wy < ¢). This should be — 8".553.

%) Monthly Notices, Vol. LXXIV, p. 564. Browx gives probable errors, which
I have changed to mean errors. ~

3) The theorelical value for 1875, corvesponding fo .—!=297.0 is — 8".312,
the observed value is — 8”.28, The difference is thevelfore 0 — € =-0".03 and
not —0”.08 as stated by Brown, lc. p. 565, . - '
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