Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J. de Vries, Characteristic numbers for nets of algebraic curves, in: KNAW, Proceedings, 17 III, 1914-1915, Amsterdam, 1915, pp. 935-944

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Mathematics. - "Characteristic numbers for nets of algebraic curves." By Professor Jan de Vries.
(Communicated in the mecting of November 28, 1914).

1. The curves of order n, c^{n}, which belong to a net N, cut a straight line l in the groups of an involution of the second rank, $I_{n}{ }^{2}$. The latter has $3(n-2)$ groups each with a triple element ${ }^{1}$); l is therefore stationary tangent for $3(n-2)$ curves of N.

Any point P is base-point of a pencil belonging to N, hence inflectional point for three curves ${ }^{2}$) of N.

The locus of the inflectional points of N which send their tangent i through P, is therefore a curve $(I)_{P}$ of order $3(n-1)$ with triple point P.

If the net has a base-point in B any straight line through B is stationary tangent with point of inflection in B. Consequently ($I)_{p}$ passes through all the base-points of the net.

We shall suppose that N has only single base-points.
On $P B \quad N$ determines an l_{n-1}^{2}; the latter has $3(n-3)$ triple elements; from which it ensues that B is an inflectional point of ($l_{\text {) }}$ having $P B$ as tangent i.

Through P pass $3(n-1)(2 n-3)$ straight lines, each of which touch a singular curve in its node ${ }^{3}$); all these nodes \dot{D} lie apparently on $\left(I_{P}\right.$.
2. Every c^{n}, which osculates l in a point l, cuts it moreover in $(n-3)$ points S. We consider the locus of the points S, which belong in this way to $(I)_{P}$. Since P, as base-point of a pencil, lies on $3(n-3)(n+1)$ tangents of inflexion $\left.{ }^{4}\right)$, the curve (S) has in P a $3(n-3)(n+1)$-fold point. Apart from P each ray of the pencil (P) contains $3(n-2)(n-3)$ points S; hence (S) is a curve of order 3 ($n-3$) ($2 n-1$).

Let us now consider the correspondence between the rays s and s^{\prime}, which connect a point M with two points S and l belonging to

[^0]the same c^{n}. Any ray s contains $3 \cdot(n-3)(2 n-1)$ points S, determines therefore as many rays s^{\prime}; any ray s^{\prime} contains $3(n-1)$ points I, determines therefore $3(n-1)(n-3)$ points S and consequently as many rays s. The number of rays of coincidence $s^{\prime} \equiv s$ amounts therefore to $3(n-3)(2 n-1)+3(n-3)(n-1)=3(n-3)(3 n-2)$. The ray $M P$ contains $3(n-2)$ points I, which are each associated to $(n-3)$ points S; consequently $M P$ represents $3(n-2)(n-3)$ coincidences. The remainng $6 n(n-3)$ coincidences arise from coincidences $I \equiv S$, consequently from points of undulation U. Through P pass consequently $6 n(n-3)$ four-point tangents t_{4}; the tangents t_{4} envelop therefore a curve of class bn (n-3).
3. We further consider the correspondence between the rays s_{1}, s_{2}, which connect M with two points S belonging to the same point I. This symmetrical correspondence has apparently as characteristic number $3(n-3)(2 n-1) \cdot(n-4)$. The ray MP contains $3(n-2)$ points of inflection, hence $3(n-2)(n-3)(n-4)$ pairs S_{1}, S_{z}; as many coincidences $s_{1} \equiv s_{2}$ coincide with $M P$. The remaining coincidences pass through points of contact of tangents $t_{2,3}$ (straight lines, which touch a c^{n} in a point R and osculate it in a point l). The tangents $\iota_{2,3}$ envelop therefore a curve of class $9 n(n-3)(n-4)$.
4. Let a be an arbitrary straight line; each of its points is, as base-point of a pencil, point of inflection for three c^{n}. The curves c^{n} coupled by this to a form a system [c^{n}] with index $6(n-1)$; for the inflectional points of the curves c^{n}, which pass through a point P, lie on a curve of order $6(n-1)^{2}$), and the latter cuts a in $6(n-1)$, points I. The stationary tangents i, which have their point of contact I on a, form a system [$i]$ with index $3(n-1)$, for through a point P pass the straight lines i, which'connect P with the intersections of a and $(I) P$.
The systems [c^{n}] and [i] are projective; on a straight line l they determine between two series of points a correspondence which has as characteristic numbers $6(n-1)$ and $3(n-1) n$. The coincidences of this correspondence lie in the points, in which l is cut by the loci of the points I and S, which every i determines on the associated c^{n}. As any point of a is point of inflection for three c^{n}, a belongs nine times to the locus in question. Hence the points S^{\prime} lie on a curve $(S)_{a}$ of order $3\left(n^{2}+n-5\right)$.
For $n=3$ the number 21 is found; this is in keeping. with the
${ }^{\text {2 }}$ T. p. 104.

937

well-known theorem, according to which a net of cubics contains 21 figures, composed of a conic and a straight line.
5. To the intersections of $a_{\text {a }}$ with the curve $(S)_{a}$ belong the $3(n-2)$ groups of $(n-3)$ points S, arising from the curves c^{n}, which osculate a. In each of the remaining $3\left(n^{2}+n-5\right)-3(n-2)(n-3)$ intersections a point I coincides with a point S of one of the three c^{n}, which have I as point of inflection. The corresponding tangent i then has in common with c^{n} four points coinciding in I, so that I is point of undulation. The points of undulation of the net lie therefore on a curve (U) of order $3(6 n-11)$.

For $n=3$ we find the 21 straight lines belonging to the degenerate cubics of the net.

As a base-point B of a net is point of inflection of ∞^{1} curves c^{n}, there will have to be a finite number of curves, for which B is point of undulation. In order to find this number we consider the locus of the points T which any ray t passing through B has still in common with the c^{n}, which osculates it in B. As B is point of inflection on three c^{n} of the pencil which has an arbitrary point P as base-point, the curves of N falling under consideration here form a system [$c^{\prime \prime}$] with index three, which is projective with the pencil of rays (t).

The two systems produce a curve of order $(n+3)$, which is cut by a ray t in ($n-3$) points T^{\prime}. Consequently it has in B a sextuple point, and there are six curves c^{n}, on which B is point of undulation.

If the net has base-points they are siafold points on the curve (U).
For $n=3$ the curve degenerates into a sixray, which consists of parts of compound curves.
6. To each c^{n}, which possesses a point of undulation, U we shall associate irs fourpoint tangent u; the latter cuts it moreover in $(n-4)$ points V. The locus of the points forms with the curve (U) counted four times the prodnct of the projective systems [c^{n}] and $[u]$. In the pencil which a point P sets apart from N occur $6(n-3)(3 n-2)$ curves, which possess a point $\left.U^{1}\right)$; this number is. therefore the index of $\left[c^{n}\right]$. The system $[u]$ has, as appears from $\$ 2$, the index $6 n(n-3)$. In a similar way as above ($\$ 4$) we find now for the order of $(V) 6(n-3)(3 n-2)+6 n^{3}(n-3)-12(6 n-11)=$ $=6(n-4)\left(n^{2}+4 n-7\right)$.
-We now associate on each straight line u the point U to each

[^1]Proceedings Royal Acad. Amsterdam. Vol. XVII.
of the ($n-4$) points Γ. By this the rays of a pencil (M) are arranged into a correspondence with characteristic numbers $3(6 n-11)(n-4)$ and $6(n-4)\left(n^{2}+4 n-7\right)$. Observing that the $6 n(n-3)$ fourpoint tangents, which meet in M, represent ($n-4$) coincidences each, we find for the coincidences $U \equiv V$ the number
$(n-4)\left[3(6 n-11)+6\left(n^{2}+4 n-7\right)-6 n(n-3)\right]=15(n-4)(4 n-5)$. This is therefore the number of curves c^{n} with " fivepoint tangent t_{5}.

Let us now consider the correspondence between two points V_{1}, V_{2}, which lie on the same tangent u. Using the correspondence arising between the rays $M V_{1}, M V_{2}$ we find in a similar way for the number of coincidences $V_{1} \equiv V_{2} 12\left(n^{2}+4 n-7\right)(n-4)(n-5)-6 n(n-3)$. $(n-4)(n-5)=6(n-4)(n--5)\left(n^{2}+11 n-14\right)$. With this the number of curves of N has been found, which are in possession of a tangent $t_{4,2}$, consequently of a point of undulation, the tangent of which touches the curve moreover.
7. The involution of the second rank, which N determines on a straight line l, has $\cdot 2(n-2)(n-3)$ groups, each of which possesses two double elements; l is therefore bitangent for as many curves of the net. If l rotates round a point P, the points of contact R, R^{\prime} will describe a curve, which passes $(n-3)(n+4)$ times through P; for P as base-point of a net lies on $(n-3)(n+ \pm)$ curves, which are each touched in P by one of their bitangents. From this follows that the locus of the pairs R, R^{\prime}, which we shall indicate by $(R)_{P}$ is a curre of order $(n-3)(5 n-4)$.

If we consider the correspondence $\left(R, R^{\prime}\right)$ on the rays of the pencil (P), and, in connection with this, the correspondence between the rays $M R, M / R^{\prime}$, we arrive at the number of coincidences $R \equiv R^{\prime}$ and we find once more that the fourpoint tangents envelop a curve of class $6 n(n-3)$.

Let us now determine the order of the locus of the groups of $(n-4)$ points S, which l has in common with the $2(n-2)(n-3)$ curves c^{n}, for which l is bitangent. The pencil determined by P contains $2(n-3)(n-4)(n+1)$ curves which are cut $\left.{ }^{1}\right)$ in P by one of their bitangents. This number indicates at the same time the number of branches of the curve ($S)_{p}$ passing through P; for its order we find therefore $2(n-3)(n-4)(n+1)+2(n-2)(n-3)(n-4)$, or $2(n-3)(n-4)(2 n-1)$.

If we associate each point R to each of the points S belonging to the same c^{n}, a correspondence is determined in the pencil of rays

[^2]with vertex M, which correspondence has ($n-3$) $(5 n--4)(n-t)$ and $4(n-3)(n-4)(2 n-1)$ as characteristic numbers.

Since the ray $M P$ contains $4(n-2)(n-3)$ points R, which are eách associated to ($n-4$) points S, so that $M P$ is to be considered as $4(n-2)(n-3)(n-4)$-fold coincidence, we find for the number of coincidences $9 n(n-3)(n-4)$. By this we again find the class of the curve-enveloped by the tangents $t_{0,3}$ (cf. $\$ 3$).

1 new result is arrived at from the correspondence between two points S_{1}, S_{2} belonging to the same pair R, R^{\prime}. The symmetrical correspondence between the rays $M S_{1}, M S_{2}$ has as characteristic number $2(2 n-1)(n-3)(n-4)(n-5)$. Any of the groups of ($n-4$) points S lying on $M P$ produces ($n-4$) $n-5$) pairs S_{1}, S_{2}, so that $M P$ represents $2(n-2)(n-3)(n-4)(n-5)$ coincidences. The remaining $[4(2 n-1)-2(n-2)](n-3)(n-4)(n-5)$ coincidences are, taken three by three, points of contact of triple tangents $t_{3,2,2}$. Through an arbitrary point P pass consequently $2 n(n-3)(n-4)(n-5)$ triple tanyents.
8. Let' a again be an arbitrary straight line; each of its points is, as base-point of a pencil belonging to N, point of contact R of $(n+4)(n-3)$ bitangents $\left(d^{2}\right)$. We determine the order of the locus of the second point of contact R^{\prime}. The latter has in common with a the pairs of points R, R^{\prime}, in which a is touched by c^{n}, and also the points of undulation ($R^{\prime} \equiv R$), lying on a, consequently $4(n-2)(n-3)+3(6 n-11)$ or $\left(4 n^{2}-2 n-9\right)$ in all. This number is apparently the order of the curve $\left(R^{\prime}\right)_{a}^{-}$in question.

In order to determine the locus of the points W, which each bitangent d of the system in question has moreover in common with the c^{n}, twice touched by it, we associate to each of those curves c^{n}, the bitangent d, for which the point of contact l lies on a.

To the pencil, which a point P sets apart from N, a curve of order ($n-3$) $\left(2 n^{2}+5 n-6\right)$ is associated, which contains the points of contact of the bitangents to the curves of that pencil ${ }^{2}$). By this the number of straight lines d becomes known, of which a point of contact lies on a; the system [c^{n}] has therefore as index ($n-3$) $\left(2 n^{2}+5 n-6\right)$. The index of the system $[d]$ is $(n-3)(5 n-4)$; for this is (\$7) the number of intersections of a with the curve ($\boldsymbol{R})_{P}$. The systems [c^{n}] and [$\left.c l\right]$ rendered projective, produce a locus of order $(n-3)\left(2 n^{2}+5 n-6\right)+n(n-3)(5 n-4)$. To it belongs the straight

[^3]line a $2(n+4)(n-3)$-times, because each of its points is point of contact of $(n+4)(n-3)$ bitangents. The curve $\left(R^{\prime}\right)_{a}$ belongs moreover fwice to it. For the order of the curve $(W)_{a}$ we find consequently $(n-3)\left(7 n^{2}+n-\cdots\right)-2(n-3)(n+4)-2\left(4 n^{2}-2 n-9\right)=(n-4)\left(7 n^{2}-2 n-15\right)$.

We now consider the correspondence between the rays $r^{\prime}=M R^{\prime}$ and $w=M W$. A ray r^{\prime} contains ($4 n^{2}-2 n-9$) pounts R^{\prime}, consequently determines $\left(4 n^{2}-2 n-9\right)(n-4)$ rays w; to a ray $w(n-4)\left(7 n^{2}-2 n-15\right)$ rays r^{\prime} are associated. Each of the $(n-3)(5 n-4)$ lines d, which connect M with the intersections of a and $(R)_{\text {II }}$, is apparently an ($n--4$)-fold coincidence. The number of concidences $R^{\prime} \equiv W$ amounts therefore to $\left.(n-4)\left[4 n^{2}-2 n-9\right)+\left(7 n^{2}-2 n--15\right)-(n-3)(5 n-4)\right]=-$ $(n-4)\left(6 n^{2}+15 n-36\right)$. This number is the order of the locus $(R)_{2,3}$ of the points of contact R of the tangents $t_{2,3}$.
9. In order to find also the order of the locus $(S)_{2,3}$ of the irflectional points l of the tangents $t_{2,3}$, we return to the system $\left[c^{n}\right]$ considered in $\$ 4$, of which all the curves have an-inflectional point I on a given line a. The points S, which the corresponding statomary tangent has moreover in common with c^{n}, lie on a curve $(S)_{a}$ of order $3\left(n^{2}+n-5\right)$. We consider now the correspondence between two points S_{1}, S_{2} of the same curve. It determines in a pencil of rays (M) a symmetrical correspondence with characteristic number $3\left(n^{3}+n-5\right)(n-4)$. The rays connecting M with the intersections of a and $(I)_{11}$, are ($n-3$) $(n-4)$-fold coincidences; as their number amounts to $3(n-1)(\$ 1)$, we find for the number of coincidences $S_{1} \equiv S_{2}\left[2\left(n^{2}+n-5\right)-(n-1)(n-3)\right]$ or $3(n-4)\left(n^{2}+6 n-13\right)$. This, however, is also the number of tangents $t_{2,3}$, the point of inflection of which lies on a, consequentiy the order of the locus $I_{2,3}$ of the points of inflection of the tangents $t_{3,3}$.

By means of the curves $(R)_{2,3}$ and $(\Gamma)_{2,3}$, belonging to the system $\left[t_{2,3}\right]$, we can again determine the number of fivepoint-tangents t_{5}. For this purpose we associate the lines $M R$ and $M I$, on account of which a correspondence with characteristic numbers $3(n-4)$ $\left(2 n^{2}+5 n-12\right)$ and $3(n-4)\left(n^{2}+6 n-13\right)$ arises. The $9 n(n-3)(n-4)$ tangents $t_{2,3}$ converging in M are concidences. On the remaining ones R coincides with I. So we find for the number of the t_{s} $3(n-4)\left(3 n^{2}+11 n-25\right)-9 n(n-3)(n-4)$ or $15(n-4)(4 n-5)$.
10. We return to the system [c^{n}] of the curves, which ($\$ 8$) are each touched by one of their bitangents d in a point R of a straight line a.

If on a line d two of the points W coincide d becomes a triple
tangent. The correspondence between two points W_{1}, W_{2} of a same c^{n} determines in the pencil of rays M a symmetrical correspondence with characteristic number $\left(7 n^{2}-2 n-15\right)(n-4)(n-5)$. As each bitangent through M having one of its poinis of contact on a, represents $(n-4)(n-5)$ coincidences, the number of coincidences $W_{1} \equiv W_{2}$ amounts to $2(n-4)(n-5)\left(7 n^{2}-2 n-15\right)-(n-4)(n-5)$ $(n-3)(5 n-4)=(n-4)(n-5)\left(9 n^{3}+15 n-42\right)$. As they lie two by two on tangents $t_{2,22}$, the locus of the points of contact of the triple tangents is a curve $R_{2,2,2}$ of order $\frac{3}{2}(n-4)(n-5)\left(3 n^{2}+5 n-14\right)$.

We consider now the system [c^{n}] of the curves possessing a tangent $t_{2,2,2}$, and determine the order of the locus of the points Q, which each c^{1} bas moreover in common with its $t_{2,2,2}$. The system [$\left.c^{n}\right]$ has as index $(n-3)(n-4)(n-5)\left(n^{2}+3 n-2\right)$; for this. is the number of c^{n} of the pencil determined by a point P possessing a $t_{2,2,2}{ }^{1}$). The index of the system $\left[t_{2,2,2}\right]$ is ($\left.\$ 7\right) 2 n(n-3)(n-4)$ $(n-5)$. To the figure produced by $\left[c^{n}\right]$ and $\left[t_{2,2,2}\right]$ the curve $(R)_{2,2,2}$ belongs twice. For the order of (Q) we find consequently $(n-3)$ $(n-4)(n-5)\left(n^{2}+3 n-2\right)+2 n^{2}(n-3)(n-4)(n-5)-$ $3(n-4)(n-5)\left(3 n^{2}+5 n-14\right)$ or $(n-4)(n-5)(n-6)\left(3 n^{2}+\right.$ $+3 n-8)$.
11. On each $t_{2,2,2}$ we associate each of the points of contact R to each of the intersections Q, and consider the correspondence $(M R, M Q)$. Its characteristic numbers are $\frac{3}{2}\left(3 n^{2}+5 n-14\right)(n-4)$ $(n-5)(n-6)$ and $3(n-4)(n-5)(n-6)\left(3 n^{2}+3 n-8\right)$. Each of the $2 n(n-3)(n-4)(n-5)$ tangents $t_{2,2,2}$ converging in $M \Gamma$, represents apparently $3(n-6)$ coincidences. Taking this into consideration we find for the number of coincidences $R \equiv Q$, consequently for the number of tangents $t_{2,2,3}$, $\frac{3}{2}(n-4)(n-5)(n-6)\left(5 n^{2}+23 n-30\right)$.
The correspondence between two points Q belonging to the same c^{n} determines in the pencil of rays (M) a symmetrical correspondence with characteristic number $\left(3 n^{2}+3 n-8\right)(n-4)(n-5)(n-6)(n-7)$. To this each of the $2 n(n-3)(n-4)(n-5)$ tangents converging in M belongs ($n-6$) ($n-7$)-limes. Paying attention to this we find for the number of coincidences $Q_{1} \equiv Q_{2} 4(n-4)(n-5)(n-6)(n-7)(n-1)$ $(n+4)$. There are consequently $(n-4)(n-5)(n-6)(n-7)(n--1) \cdot n+4)$ quadruple tangents.
12. We shall now consider the system of the curves c^{n} possessing a tangent $t_{2,3}$, which touches it in a point R, and osculates it in a point 1. In order to find the locus of the points S, which c^{n} has
${ }^{1}$) T. p. 108.
moreover in common with $t_{2,3}$, we determine the order of the figure produced by the projective systems $\left[c^{\circ}\right]$ and $\left[t_{2,3}\right]$. The former has as index $3(n-3)(n-4)\left(n^{2}+6 n-4\right)$ i.e. the number of c^{n} with a $t_{2,3}$ appearing in a pencil ${ }^{1}$) of N. The mdex of $\left[t_{2,3}\right]$ is ($\left.\$ 3\right) 9 n(n-3)$ ($n-4$). The figure produced contans the curve (R) twice, the curve (I) three times. For the order of S we- find therefore

$$
\begin{gathered}
3(n-3)(n-4)\left(n^{2}+6 n-4\right)+9 n^{2}(n-3)(n-4)-6(n-4)\left(2 n^{2}+5 n-12\right)- \\
-9(n-4)\left(n^{2}+6 n-13\right)=3(n-4)(n-5)\left(4 n^{2}+7 n-15\right) .
\end{gathered}
$$

By means of this result we can determine the number of twice osculating lines $t_{3,3}$. For this purpose we consider the correspondence ($1 / R, M S$). Its characteristic numbers are
$3\left(2 n^{2}+5 n-12\right)(n-4)(n-5)$ and $3\left(4 n^{2}+7 n-15\right)(n-4)(n-5)$.
Each of the $9 n(n-3)(n-4) t_{2,3}$ belonging to the pencil (λ) is ($n-5$)-fold coincidence, hence the number of coincidences $R \equiv S$ is $(n-4)(n-5)\left[\left(6 n^{2}+15 n-36\right)+\left(12 n^{2}+21 n-45\right)-9 n(n-3)\right]=(n-4)$ $(n-5)\left(9 n^{2}+63 n-81\right)$. But then the number of twice osculating tangents $t_{3,3}$ amounts to $\frac{9}{2}(n-4)(n-5)\left(n^{2}+7 n-9\right)$.

By means of the correspondence between the points l and S of the tangents $t_{2,3}$ we can find back the number of tangents $t_{2,4}$ found already in $\S 6$. Analogously we obtain by means of the correspondence between two points S of the same $t_{2,3}$ again the number of tangents $t_{2,2,3}$ found in $\$ 11$.
13. If the net has a base-point B, the curves c^{n}, having an inflection in B are cut by their stationary tangents t in groups of ($n-3$) points T, lying on a curve ($\left.T^{3}\right)^{n+3}$ with sextuple point B (\$5). This curve is of class $(n+3)(n+2)-30$; through B pass $\left(n^{2}+5 n-36\right)$ of its tangents. In the point of contact R of such a tangent the latter is touched by a c^{n}, which it osculates in B; consequently B is a $(n-4)(n+9)$-fold point on the curve $(\Gamma)_{2,3}$.

The curves c^{n}, which touch in B at a ray d, form a pencil, consequently determine on d an involution of order ($n-2$). As it possesses $2(n-3)$ coincidences there are $2(n-3) c$, which have d as bitangent, of which B is one of the points of contact. The second point of contact, R, coincides with B if d becomes fourpoint tangent, consequently B point of undulation. This occurs six times; hence the locus $(R)_{B}$ of the points R is a cruve of order $2 n$, with sextuple point B.
Every straight line d cuts the c^{n}, which it touches in B and in R, moreoler in ($n-4$) points S. In order to determine the locus
${ }^{\text {1) }}$ T. p. 106.
$(\dot{S})_{B}$ of these points, we associate each ray d to the $2(n-3)$ curves c^{n}, to which it belongs, and consider the figure produced by the projective systems $\left[c^{\prime}\right]$ and ((l) thus determined.

Through a point P passes a pencll of c^{n}; the base-point B is point of contact of $(n-3)(n+4)$ bitangents; this number is the index of $\left[c^{n}\right]$. The order of the figure produced now amounts to $(n-3)(n+4)+$ $+2 n(n-3)=(n-3)(3 n+4)$. To this the curve $(R)_{B}$ apparently belongs twice; for the order of $(S)_{B}$ we find therefore $(n-3)(3 n+4)-4 n$ or $3(n+1)(n-4)$.

As every d, oulside B, contains $2(n-3)(n-4)$ points $S,(S)_{B}$ will have in B a multiple point of order $3(n+1)(n-4)-2(n-3)(n-4)$ or $(n+9)(n-4)$.
14. Let us now consider the correspondence ($M R, M 1 S$), if R and S lie on the same ray d through B. To each ray $M R$ belong $2 n(n-4)$ rays $M S$, each ray $M S$ determines $3(n+1)(n-4)$ rays $M R$. The ray $M B$ contains $2(n-3)$ points R, consequently represents $2(n-3)(n-4)$ coincidences. The remaining ones, to the number of ($n-4)(2 n+3 n+3-2 n+6)$, pass through points $R \equiv S$. So there are $3(n-4)(n+3)$ rays d, which each touch a c^{n} in B and osculate it in a point I; the curve $(R)_{2,3}$ has consequently a $3(n-4)(n+3)$-fold point in B.

Now we pay attention to the symmetrical correspondence of the rays, which connect M with two points S belonging to the same c^{n}. The characteristic number is here $3(n+1)(n-4)(n-5)$, while $M B$ represents $2(n-3)(n-4)(n-5)$ coincidences. The remaining $(n-4)(n-5)$ $[6(n+1)-2(n-3)]$ lie in pairs on a triple tangent, which bas one of its points of contact in B. From this we conclude that the curve $(R)_{2,2,2}$ possesses in B a $2(n+3)(n-4)(n-5)$-fold point.
15. Let D be node of an c^{n}, t one of the tangents in D, S one of the intersections of t with c^{n}. In order to find the locus of S, we associate to each nodal c^{n} its two tangents t and determine the order of the figure produced by it. The tangents t envelop the curve of Zeuthin ; they form consequently a system with index $3(n-1)^{2}$; for a pencil contains $3(n-1)^{2}$ nodal curves. By means of the correspondence of the series of points, which the two systems determine on a line, we now find again the order of the figure produced. Considering that the locus of D belongs six times to it, we obtain as order of the curve $(S) 3 n(n-1)(2 n-3)+6(n-1)^{2}-18(n-1)=$ $=3(n-1)\left(2 n^{2}-n-8\right)$. For $n=3$ we find 42 for it ; the 21 straight lines of the degenerate curves must indeed be counted twice.

'94'4

Ẅe now consider the correspondence ($M D, M S$). Its characteristic numbers are $3(n-1) .2(n-3)$ and $3(n-1)\left(2 n^{2}-n-8\right)$, while each of the tangents t converging in M, apparently produces ($n-3$) coincidences. The remaining ones arise from coincidences $D \equiv S$, consequently from nodal curves, for which D has an inflection on one of its branches. It now ensues from $6(n-1)(\bar{n}-3)+3(n-1)\left(2 n^{2}-n-8\right)$ $-3(n-1)(n-3)(2 n-3)=3(n-1)(10 n-23)$, that the net contains $3(n-1)(10 n-23)$ curves with a flecnodal poini.

ERRATUM.

In the Proceedings of the meeting of November 28, 1914.
p. 870 line 15 from the bottom: Add: Supplemēnt $N^{0} .37$ to thè Communications from the Physical Laboratory at Leiden. Communicated bỳ Prof. H. Kamerlingi Onneś.

January 28, 1915.

[^0]: ${ }^{1}$) If the $I_{n}{ }^{2}$ is transported to a rational curve c^{n} and determined by the field of rays, these groups lie on the stationary tangents.
 ${ }^{2}$) For the characteristic numbers of a pencil my paper "Faisceaux de courbes planes" may be referred to (Archives Teyler, sér. II, t. XI, 99-113). For the sake of brevity it will be quoted by T.
 ${ }^{\text {3 }}$) Cf. for instance my paper "On nets of algebraic plane curves". (Proceedings volume VII, p. 631).
 ${ }^{4}$) T. p. 100.

[^1]: ${ }^{1}$) T. p. 105.

[^2]: ${ }^{2}$) T. p. 102.

[^3]: ${ }^{1}$) T. p. 102.
 $\left.{ }^{2}\right)$-Bitangential curve; cf. T. p. 107.

