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of the ontogenetic development of these structures laid down here,
entirely right and founded on facts.

A direct continuity between myofibrillae and tendon fibrillae in the
sense of ScHULTZE does not exist.

Leiden, December 1914.

Physics. — “On the field of a single centre in EINSTEIN's theory of
gravitation.”” By J. Droste. (Communicated by Prof. H. A.
LoRENTZ).

(Communicated in the meeting of December 30, 1914).

1. The equations which determine the field of gravitation in
EinsTEIN and GrossMany’s theory '), are not linear, hence the field

corresponding to the tensor ) 4 2D (op=1,2,3, 4) is not the sum

of the fields corresponding to the tensors "E,) and € ‘:(52,). The egquations,
p g

indeed, present a certain homogeneity; when all the ¢’s are multiplied
by the constant factor 2 and the T’s also, then the equations

az(y a J

ey s e, (0=1,234 . . . ()

and

0 0
2—( gyv‘ﬁg"l’ ay )—7("”+f°1) (6”—1’ 23, 45) . (2)

sy 002

remain valid, if they were so before the multiplication. But yet it
follows by no means from this that a tield would be possible, whose
¢g’s and Ts would be the 2-fold of a given field. Rather the contrary
may be said to be the case, and this finds its cause in the accessory
condition that for infinitely increasing distance to the places where
€., differs from zero, ¢,,, ¢,,, and g,, must converge towards —1,
g, towards .

These remarks suffice to make us see that the calculation of fields
of gravitation is incomparably more difficult in the new theory than in
the old. (NewroN’s theory). In the latter the field may be found by
an integration; in the former theory this is impossible as appears
from the above. Now equations (2) are, however, intended to pass

1 1. Entwarf einer verallgemeineiten Relativitatstheorie und einer Theotie der
Gravitation, Leipzig bij B. G. Teusxer. This treatise has been reprinted in ‘Zeit-
schrifl fur Mathematik und Physik’, Vol 62.

II. Kovalianzeigenschaften der Feldgleichungen der auf die verallgemeinerte
Relativitatstheorie gegrundeten Gravitationstheorie. Zeilschr, fir Math. u. Phys., Vol. 63,
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into Poisson equations for infinitely weak fields, and so the solution
of these equations may be reduced to the solution of Porsson equa-
tions, if we content ourselves with successive approximations. We
start namely with supposing that the ¢’sand y’s differ little from the
values that they must have at infinity ; which comes to this that
the squares and the products of the differences with those “values at
infinity’ are neglected. Then we have to solve ten Poisson equations,
and we find the differences multiplied by the factor . Then anew
correction is introduced, multiplied by the factor x*; this new cor-
rection is likewise the solution of a PoissoN equation, the second
member of which has now, however, been caleulaled by the aid of
the first correction. Going on thus indefinitely, the whole solution is
obtained in the form of a power series in . For the case of a spherical
body, that can be considered as an incompressible fluid, H. A. LorexNTz
has calculated the field, neglecting terms which are multiplied by
#* and higher powers of ». I have tried to follow the method
used in this caleculation, as I have understood it from oral commu-
nications of Prof. Lorentz, in calculating the field of two spherical
bodies at rest with respect to each other, which I hope to publish
in a later communication.

2. The calculation of the field of a single centre requires only
that of three functions of the distance to the centre, which may be
seen in the following way, given by Prof. LorenTz.

Let the origin be chosen in the centre of the attracting sphere.
It is clear that the ¢’s and y’s can only be functions of the distance
r to the centre. Let ¢,, =u, ¢,, =¢,, =v and g¢,,—=w in a point
P, lying on the z-axis. The field being supposed stationary, ¢,, =
=0 =0u=0u=y0u=y¢, =0, and as veversion of one of the
three coordinate axes can have no influence on ds?, also ¢,,, ¢,
Gas> Go1s 95, and gy, ave zero. Hence

ds* = uda® + v (dy*+de*) 4 wdt?
= (da*+ dy*+de?) + (v—v) da® + wdt®.

In this expression da® - dy* 4 dz* =dI* represents the square of
an element of length in the space (z,y, 2); da® is nothing but dr’.
We can,” therefore, also write

ds® = wdl® 4 (u—v)dr* +wdt* . . . . . . (3)
and this does not contain anything that refers to the particular
situation of the point P. If we had. therefore, taken P on an auxi-
liavy axis a7, i.e. if we had taken P arbitrary, ds* still would have
been given by (3). If @, y,z are the coordinates of P, then
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it =—=da* 4 dy2 + d2?, dr_—:idm -+ —:Z—dy + idz,
P 7T r
hence we get
2
ds* = v (dod - dy? +-de?) - (u—v) (—”— do - % dy 4+ 2 dz) - wdt?,
7 r

m which «, », and w are functions of ». From the form of ds* we find
immediately for the values of the ¢’s the scheme

12

v 4+ — (u—0) %}{(u-——v) —'”Tz(u——v) 0
rt 7 7
fg(u-—v) v+ = (u—v) :g;j (u~—v) 0
r » -
rz Y 2
;:;(u—-v) = (u—v) v+ — (w—v) 0
0 0 0 w
A similar scheme holds for the 4’s, viz.
z* Y xz
— (p— = (p— — (p— 0
9+ = (-9 = (=9 = (r—9)
zy y yz
(-9 ¢+ (@9 5 -9 0
r r » .
z2 yz 2
= (-9 =9 9t+50-9 0
0 0 0 8 -

In this p, ¢, and s are functions of r satisfying the relations
wp==vg=—=ws=1, . . . . . . . (9
which 15 seen in the sumplest way by choosing P on one of
the axes of coordinates.

3. In oider to find the differential equations, which w», v, and w
or, what comes to the same thing, p, ¢, and s satisfy, we make use
of the thesis of the caleulus of varations, which oceurs in the second
paper of Einstein and GrossMany cited above, and which states that

the first variation of fH(l‘t' 15 equal to

% f (2 V=g T dy,w) dr.
P

_— 0g-p 0y«
H=31V "y 3 L2,
* g 9(/3—‘0 Y ﬂ aw“ am[&

the 1ntegration 1s to be performed over a region of the manifold
(2,9,2, 8, dr is an element of that region, and the variations must

In this
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be taken starting from the real (sought) values of the ¢’s and the v’s,
and so that they are zero at the boundary of the region.

Let us first calculate H. We must then differentiate the ¢’s and
the y’s with respeet to the coordinates, then we can take all the
quantities as they are in a point of the z-axis at a distance r ==
from the origin, and thus we find

J11 = 5 G35 = Fss =V s Juus =W » V11 =P s Y22 =V3s = ¢ s Ysg =8,

_a._%l___u, agn__a_gg_s_____vz 6944:201 agmzagm-___agi_agu_u—v

oz w0z O " Oy 0y 0z 3z o '

Ovi_ , Ovee 0 e s Ova _Or_ Oru_p—o

A PR P A " dy dy Oz  d  r
g = ww.

In this the accents denote differentiations with respect to r, the
values that have not been given are zero.

Let us call ¥ —g = for brevity. Then on account of (4)

Fpgs=—1. . . . . . . . . (3
We find for H

H=1}r

Py + 200 + ) + £ 56— =)

as m virtue of ()

1 1 2
g w—2)(p—9)=4¢q (E — (_7) p-—)=—p (1 —%) ,

! ! !

' p ’ q §

— — |
u_._———,v_—--—q2 and o' = —
this becomes

H=—4iFp

plz qla slﬁ 4 ‘q e

ool 4 42 (1LY,

}72 + qz —l_ §3 + X P

We now apply the thesis of the calculus of variations to the region

LSt L nSrgn,

1

then the first variation of /Ha’t becomes

o"fHdt = dfzuflmﬂdr H=—4a(t,~t) df”Ldr,

4 n n

N ‘f)oﬂ 4( —‘iﬂ.. 6
(Gl s)r+a(a-2 ©)

w[de SV g T,, dyp

v

if. we put
L=—Hr=14rp
For
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we find >

Tg
% (t,—t) . 4 [ridr . £ (Tydp + Tpdg + Tyydg + T, ,
n

so that we get

[ @1 (—L) —wr*F (Ty,0p + T,,09 + Tyydq + T, d5)] = 0.
41
Now
Lo =2V =975 Th
#*

and therefore in our case

sw = V:——g Yoo 1.,
from which follows

7,=1% T, =" T,, = T
Foin==—Rp» Flgyym=— Fyy y Il =

> v
T, and Flu__-s—t“.

My |

By substituting this and replacing

fr t; (—L)dr by

JUECD) -2 o 2o 2 00

we get, as the coefticients of dp, dq, and ds must be separately zero,

d (oL aL__ 'r’z d (oL aL__ 7 N o
#(5) =5 =75 alE) =gt

d (bL) L r )

— — =x—-T,,.
dr\ 0¢' “

T s s

In this # must be looked upon as a known function of p, ¢, and s,
given by (5).

The tensor T, :1"—g possesses the same symmetry properties as g,.
Of the equations (1) only the first does not pass into an identity,
but into

dP I ! !
_+g(p_Q)+x(~P+2ZQ+8—S)=O,. . . (8)
p 7 $

if weput ¥, =P, ¢, =¢%,,=Qand T,=4

Then this equation with the three equations (7) form a system
of four differential equations for the determination of p, ¢, and s,
and say P, if, in connection with the nature of the substance,
we know two more relations between P, @, and S. If ep. Q=P
and S=const., we have the case of an incompressible fluid;
Q= P, S= f(P) represents the case of a compressible liquid or gas.
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4. 'In some cases it is possible to derive another relation from
(7) and (8), in which only first derivatives occur, a socalled
first integral. For this purpose we multiply the equations (7)
- successively by p’, ¢’, and s/, and we then add them. The result
may be written in the form
0L oL oL oL dL ey q s
[ -|-ga, as}+$—-—_aﬁ=m (;P—I—Z;Q—}-;S).

From (6) we find that

oL oL oL '2 q* & q 2(
iy 1 =1 7 91 O P 1
pap'+gaq'+ ds' & (’+ q’+8’>7 4(1 p)
and

aL pl‘z qﬂ slﬂ
g—ﬂ”‘(;;-l‘ yrale ey

so that we get in connection with (8)
d Pla qll s’2 q 2
— |1 L 2 47 V412
dr[wo (p2+292 ) P +

12 12’ 12 dP
—}—Fpr(%; + ZZ—; +s_2)= - Zxrzd—r— 4xr (P— Q)

s

)

For the equations (7), written in full, we find, after having
multiplied them successively by p, i¢, and s,

d I
PEp )_lzL—u—p( —-9-)3_—_7.9-213
dr P »/p

i(/,ﬁ,:pg)__%L_]_2Fp(1—g)g:m"Q A ¢ K1)
dr q b/p

¢ (9 Fp )—}— L L= ur28.
dr

We now add twice the second equation to the first, and get in
this way

j[? Fp(’+2g‘>:|+§L:x1'2(P+2Q). .1y
r p q

When we subtract twice (11) from r times (9) we find

d 2
ALl 429 -
B RO R e e B
dr 4 q p’ q § p s

ap
r — 4 1% 2P+ Q)‘
.

<

= — 2%
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or

d 2 /2 2 2 ! !
—_ [% Fpr (]0_? + 22; +§'{) ri— 4(1—-1) z-—— 2 Fpr? (B + 29—)] =
dr P ¢ s p Pq
= —2x {r d—P+ ? (2P+Q)( . i
dr
For a fluid Q= P, and -

brpr

-

(3 2 ) 2 ! !
oot rfiret)
4 2xr* P = const. )

In this case therefore we have a first integral. If S is_only
different from zero, when r < R, the same thing is the case with
P and @, whether P be equal to @ or not. For »r> R (12) then
becomes always a first integral, if we put P=0. In this case
we can get another first integral for » >> R, by subtracting the third
equation (10) from (11), viz.:

e
’()

pl ql s?
7‘ng(-—+2-—-——— =const. . . < . . . (13)
b g s

5. 1 have not succeeded in finding other first integrals of the
system (JO); in what follows we shall therefore content ourselves
with the calculation of the approximation already found by Lorentz;
but we shall for this purpose start from the equations (10), and
besides we shall not suppose £,, to be constant. However intricate the
way may be in which the different quantities ¥,, depend on each

other and on the field, €,, can only depend on r; hence we put

su = o(n).

We suppose the values of the other T’s only different from zero in
consequence of the gravitation and therefore we may suppose these
values to be zero in first approximation. We now think p, g, and s
expanded in a series of powers of x, and the expansion broken off
after the term -of the first degree in . We then find from (10),
neglecting terms with «* etc., ‘

—(—i-(r"”)'—‘i(—— il_ 30) — —— O (p— _‘_z_(ar_.__x_\o_.z
L) =4p—9 ) =—2(p—9 = ¥)=——Fr

From the first two equations it follows, that
r (p'+2¢) = const. and »* (p'—¢') = const.
As p’ and ¢’ must be infinite for » = 0, the two constants appear

to be zero, hence p’ = ¢’ =0 and p=g=— 1. No terms of the
first order will occur, therefore, in p and ¢. Further

7




if we put

Hence

1 ®
% o
- s==— 4 — | —dnr.
a c’j;"
?

Let this approximation of s be called s,. We now go a step
further, by retaining the terms with «* inp, ¢, s, and in the equations
(10). We may put

L= —3cfm% = — §—.

We now put
s=s, + §,

which makes the third equation (10) pass into

d s, »*at
3 1 3 .3 2 — 2
— e P F — + ¢ r g — ettt xqv
dr 8 4o ¢

Now, up to the terms of the first order,

% «
:c“(l—{—ifgdr) =o“(1————— —;d'r),
5, e r 2 ) 7

so that we find

®3a®

o
d d L, Sxd , (e
- (¢’ ?¢) — E(r’cfs )+ % (—i;('r’c’s ’ﬁ; dr) — = xr'o,
r

which in consequence of

— () = — — 2 _

dr ¢
passes into

®
’ d 8x* d o xta®
— () = — —dr |— .
dr (¢ 2¢ dr(af r? r) 4¢*p?

r

From this we find

3%* ma &a %2 mdr ra’ dr
Q::: 2—0;- ;3 dr ;—; dr + Z(? ;‘\ ;,:z_ 1A
r r r Q
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and therefore
1 ) . ® - ood ” .
% « %€ o sf & r a”
S:;E+c—3fﬁdr+? %‘ﬁ—nd):j;—udf-f—i-fr—sfpd?'
r ' ? r 0

Al a great distance from the attr
‘«=a, (constant) and 0 =0. In this

acting centre we may put
way we get

(2]
1 xa »? o’ 5x2a? g
[+ s} -]
s=n ARt (g g
¢ ey detr ) p2

( 8cr?
)

It we now put

@0
1 1 o?
5 xoa,, + y xif; dr =¥,
i

We may write 44°/c*e?, for »* in the last term of s, and so we find

1 2k 5k
S:c—ﬂ(l +GT7~+2647-7 . e e, . (14)

P=—1+48,q=—14q
The first and second of the equations (10) then become

We further put

d “a® oy
an (r"§) — 4 (§—mn) 4+ Aot — = Pre,
r ¢’ ¢

a*  n

%
=— Qr?
de*rr ¢

d ..
= ) + 2 (§—n)—

from which it follows that

d , x 7o’
T E + 2y)] = e (P +2Q +
/g ¢ 4¢3y
y NG
. 2 U — S — i 3 ) —_ x’a’
376 =) — 6 (5—n) = ;7 (P—Q) Yo
In this P and @ must be calculated up to the terms of the

first order, which can take place by the aid of an equation, that
follows from (8) vig.

dP 2. ®ya
T P—Q=

oY
20r®

if one more relation is given between Pand Q If eg. P=0@, then

@w
% al n 5%° %% Cao
02,',,2

3 5 agdr — — | g,
r

§-f—2’)]:

4¢? ) 2

r
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P

#?p? O:x” z*
—n= —dr + — *dr.
K 100"]9'5 r+ 10¢%* fa "

? 0

e

But whatever may be the particular properties of the central
hody, we can put P= Q=9 =0 and ¢ = ¢ at a large distance,
in consequence of which we find from (15)

. %% #al 3B
S§+2p=rr>- , §—yp=—"-4—
~ 8¢t ! 8 ¢* p? P’

in which B is a constant of the second order.
From this it follows that

p=—1+

2B B
+— o g=—1—1

7‘3

2,2
2o

8¢t

6. We shall now examine how a particle moves in the field of

a single centre.
The motion is determined by a principle corresponding to that
of HAMILTON, viz.

ta 1y <
dedt: dtl/guwlz—l—....—l—g“:O.
I 4
In the case under consideration, we have
ds? = ¥ (da® 4 dy® + dz*) + (u—v) dr’ + wdt’.
If we introduce” polar coordinates 7, &, ¢, we get
ds* = wdt* -+ udr® -+ vr* d9* + vr® sin® 9 dop?,
hence

L=Vuw e 9% 4wt sin? & (;;2
One of the three equations of motion is

()
dt\ 99

which shows that if ¢ onece is zero, it remains so; we see from this
that the motion takes-place in a plane, and, knowing this, we can

choose the coordinates so that this plane becomes the plane 9 =

o]y

Accordingly

L="Vuw + urt 4 o 'c'p"

and the equations of motion become:

d (bL) 0L d ( aL)
——)=z— and —(—)=0. . . . . (16)
dr\ or or dt\ 3¢

The equation of energy . .

ry
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AL . dL : I
L — 7 —— — @ —— == constant
o . Op
and the equation
oL
~— = constant
dp _

are first integrals, which together can replace the equations of
motion. If we call the first constant /# and the second A#X, then

w

Viw + ur + vr? cb’
and '

—_—

i =A. .. ..... . (18

w
By these two equations ¢ and » are given as functions of ¢;
(18) presents close resemblance to KEpLER’s second law.
Eliminating ¢ from (17) and (18), we find

dr\* 1 A?
Ul — ) = | = —— | — 2,
dt A ot

by which r is defined as a function of ¢; (18) then gives ¢ as a
funetion of ¢

In the case that the orbit just extends into infinity; r* +7*¢?,
and also + vr? ¢* must be zero for »= o, hence" h=¢ accord-
ing to (17). If h<le, then » remains finite, and- if 2 >¢, the
velocity is different from zero also for infinitely increasing .

The orbit may also be circular; as in virtue of (18) ¢ is constant
in this case, 0L/0r will be constant, and the first equation (16)

shows that -
oL
0,

57:

-
®

czw+(.a d ( *’——0
dr i dr =0
by which the angular velocity is determined as a function of r. |

7. In order to examine closer the motion of a particle we
make use of the approximations for #, », and w, found above. If

we put in (17) -
) Py
u==v=—1, w=¢(l——}
cr

we get, expanding the root,

=h. . . ..Qan
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k et h

————=1——; . .. .. '
& 2¢? ¢’ (17¢)
and from (18) we find, by putting v=—1 and w=c?
y (p:Ac I ( £-7]

The formulae (17a) and (18a) lead to the ordinary planetary
motion as described by KrpLir’s laws. We now shall go a step further
with the approximation. Equation (174) shows that Z/er* and
7 4 (}>’/&“ are of the same order of magnitude; both quantities
are small, as the second represents the square of the ratio of the
planetary velocity to the velocity of light. We shall call these
quantities (also 1—#~/c) of the first order of magnitude, and we
wish to retain in (17) also the quantities of the second order of
magnitude. For this purpose we still need not go further in w and v
than to terms without %, as & and % contain the factor »*, and are
of the second order of magnitude, but would give terms of the third
ovder of magnitude in (17), because they occur there multiplied by
7 and 7% ¢*. The wotion of the material point will, accordingly,
not depend on the special properties of the substance of the
attracting body.

Let us now put for brevity

1— z—L:l, w=c(1—~—d+é&)

in which / and d are of the first order, ¢ of the second order in 2.
We now expand the root in (17), and omit terms of higher order
than the second; this implies that in the terms of the second order we

may apply equation (17a), i.e.:
P it

2¢°
in order to eliminate r* —|—7'“r;)’ from the terms of the second order.

The resulf is

Pt = — 2P1(1 43 + (144l — P (e+d?). . (179)

To proceed a step further with the approximation in (18), we
need only put v =—1 and w = ¢*(1—d); this gives

- rp=Ac(1—d). . . . . . . . (189

In connection with this we ma‘fy write for (170)

1 fde 1 &F—s
—J(@)_{_;é A32(1+'§')+Azg Azoa'
-As ws =1 we get

= }d—I,

= ;1- (L4 6+ (" —e)}.

67
Proceedings Royal Acad, Amsterdam. Vol. XVIL
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If we compare this with (L4), and moreover put »§=1, then

WY B B S
i) " == op U0+ R8T gast

The function

§=ea -+ feosv(p+C)
solves this differential equation by suitable choice of the values
a, B, and v; we can ilake the integration constant C to be zero, as this
choice only determines from where we measure ¢. The function
§=u+ Boos yop
satisfies the differential equation, if
2 L 5%
gt = (=) o= 1—grm =
Instead of the integration constants [/ and A, which we introduced
before, we can now consider « and 3 as such 7y differs from 1
only m terms of the second order, and therefore the equation
k
= A%
is accurate up to terms of the second order.
We may, therefore, use the value of A’¢*, which follows from
this, for the calculation of ¥y, and so we find -

3

Y-

[24

Ya —_— 1 —_— ._S_Zc...al
2¢?
and from this
—1— — 1= §Zc~ a.
v 4c*

If we now put yp =1, then
5k
P=0+ Sob
and

§=l:a—{—[‘»’costp. N O£

7

This is the equation of a conic section in polar coordinates.

The angle 5 Zwy/dc®, between the major axis and the fixed
line ¢ =0, 1s proportional to the angle v, between the radius
vector and the major axis. For one revolution the ‘motion of the
perihelum’ is 450 La/c® degrees; it depends only on the parameter
1/a of the orbit. As Prof. pr Sitrer has calculated from equations
of motion determined by Prof. LoreNtz, it amounts for Mercarius
to 18" per century, the observed motion being 44". It is
worthy of note that the motion of the perihelium does not depend

-
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on the particular properties of the substance of which the centre of

atlraction consists.
The time of revolution 7 (the time i which ¢ increases by 2a)
can easily be calculated. It follows namely from (18%) and (19) that

. 2k
W= Ac*y(a+BcosP)* {1 — = (a3 cos W) ¢,

and from this, accurate up to quantities of the second order of
magnitude,

dp + 2k dy
(a+Beosp) ¢ atBeosp
From this it easily follows, that

ST O ( o« Ic)

'L == — - 1.
Va—p \@—8 &

Let us call a balf the major axis of the ellipse, then

a
a——-m

AV
a a—]—; . _47(2.

T depends therefore still exclusively on the major axis of the orbit;
this 1s, however, not the case with the time of revolution 1 the
ellipse. In the first member we may substitute 4n’a’/c*T? fov L/c*,

and thus we get
2ma\*]? k
11 L2 — T =
() | =a

instead of the third law of KEPLER.

Ac’ydt s

and we get

Chemistry. — “On gas equilibria, and a test of Prof. J. D. va
per Waars Jr’s  formula”. 1I. By Dr. F. E. C. Schureer.
(Communicated by Prof. J. D. vaN pur WauiLs).

(Communicated in the meeting of Dec. 30, 1914.) .

. 7. The equilibriwm 1,2 21. (Continued).

In my preceding paper') I have shown that from the delermi-
nations of the 1odine equilibrium the value 0.41 10-8 em. follows
for the rvadius of 1inertia of the iodine molecule; the iodine disso-
ciation can therefore be represented by equation 8, when 1= 15u
and log M = —38.20 are there substituled. That this equation
sufficiently represents the experimentally found values, appears from

. 1) These Proc. 17, 695 (1914/15).

67*
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