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Physics. — “Some difficulties and contradictions met with in the
drawing up of the equation of state.” By J. J. van Laag,
(Communicated by Prof. H. A. LoxzenTz).

(Communicated in the meeting of April 25, 1913).

1. The latest papers by van pEr WaaLs on the equation of stale )
— also in connection with my own recent investigations *) — induce
me to publish the following remarks, which may not be entirely
devoid of interest at the present stage of the question.

When we start from vaN ppr WaaLs’s fundamental equatmn, viz.

T a
p:E——————......:.(l)

9
v—b o?

and for the present disregard association or quasi-association, there
are — the chosen form of the equation of state being retained —
only two possibilities for the explanation of the found deviations
from the above equation:

The quantity b 15 still a function of » (and possibly of T').

I . a oy s " , v, or of T.

If at first we still disregard the variability with the temperature,
we shall in the first place ascertain the consequences of the varia-
bility of & with .

If b= f(v), the above equation of state gives at the critical point:

(@)= —+3=

2RT RT 6a
= [— by b —— =0
(dv ) (v—28)° gy ¢ y (v—0)? '
db 3
where &' is written for o and &" for P

v 0
Hence it follows from this that
2a(vp—0b;)°
T, (1 — by = 220"
vk

b
RTy [2 (1 — by)* + (o — Bz) B ] ﬁf‘(”v_';f’i s
1) These Proc. Vol. XV, 903—910; XV, p. 971—981; XV, p. 1131—1145.
(To be cited as v. d. W I, IL, and III),
8) These Proc. Vol. XIV, p. 278—-298; X1V, p. 428—442; XIV, p. 563—579;
XIV,p. 711—724. (Tobe cited asv.L. I, 1L, IIf and IV), Further XIV, p. 771—781;
X1V, p. 10911107, (To be cited as v. L. A and B.)
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Division gives:

vi—bk b
3 =3(L— VD) + 0k — b9 ’2
hence, putting vxb"r: (1 -— b%) = 8"
vu—br __ 2(1—b'y)
n  3—8%
oy VK
With 5 =1 We get finally :
k
r—1 2 1-2; 9
" —31—-1/53'%. R )]
Further follows from the first of the above equations for R7%:
\ 2b b7}
RT, =2 2t
b vt(1—0"%)
hence :
a 1/»—1\* 2 8 I
Rl —— . — —_— 2. . . .
Te=g, r( , ) =% 27 by @

We tind finally for p; from the equation of state by substitution
of the value of BT%:

a 2(ve—0by) a a [v—b, 2
P = B oL o]

T 10 | vt v 1=V
ie.
_‘L,lﬁ[ 1]=lzi R
LI & 1——1)/c 27 T iy? )
Then (v == rby):
( r l—b' ?__1_ )
1 2 1 ° 7, o
r 1=
is found for the quantity s :::{e———ﬂ.
Pivk

If therefore &' and 6" are known, » is given by (2), and further
RT:, pr, and s by (3), 4), and (5). Reversely 't and &"; can be
calculated when » and s are known.

Thus e.g. with s = 3,774 (1 : s = 0,265) and r = 2,11 from (5) —-
as then (r —1): 2 =10,526 and (» — 1)* : #* = 0,277 — for 2 : (1 — b))
we find the value 2,21, hence #'; = 0,094. From (2) we then calculate
further p"% = — 0,44, i.e. vd"r = — 0,40.
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For A, and %, we then find from (3) and (4) A, = 0,98, and
also 4, = 0,98.

Remark. The values of 2, and A, found, change only very litile
when association or quasi association is assumed. Then the expres-
sions for r=w;: 0, BT}, pr and s, indeed, become more intricate
(¢f. Van L. I and II), and we shall among others find — according
as partial (very slight) association to double molecules is assumed,
or association to Zriple ones — in which the quantity O changes in
consequence of this association (loc. cit. I, p. 295—297 ; I, p. 428 —431):

7
O

r I b, —kab”kl Ay ‘ A,

2,114 | 0.0534 | 0.295 | 1.004 | 1.007 ’ 0.971 ’
2,102 | 0.0319 | 0.196 | 1.010 | 1.019 ’ 0.972

put the values of A, and 2, remain in the immediate neighbourhood
of unity; that of A4, on an average 1,007, and that of 2, on an
average 1,013 ; i.e. they are about 1°/, above unity, whereas when
the association is disregarded, they remain about 2 °/, below it.

For O’y and —upd"; lower values, viz. the mean values 0,043 and
0,25 are found when association is assumed; whereas 0,094 and 0,40
are found, when association is left out of accounnt.

As appears from the above values of the factor a; of BT (resp.
=1 48::2 or (14 28,):3), the association at the critical point -
is still exceedingly slight'); the mean value of e; being = 0,975,
on an average only 2'/,°/, of the simple molecules have aggregated
to multiple ones.

1) In their interesting and thorough paper on the equation of state in the
Encyklopidie der Math. Wiss. (12 Sept. 1912, p 615—945) KamerriNga ONNES
and Kmesom make the very true remark on p. 177 (paging of the reprint in the
“Comm.”), that it is going too far to ascribe every deviation from the ideal
equation of state to associalion. Also my stalement in the TeEyLEr-paper cited
there, is loo sweeping in this respect. It appears sufficienlly from the above
remarks lhat the simple assumption of the variability of & with v can also satis-
factorily account for these deviations (see also § 2). It remains of course to be
seen to what this variability of b is due: in a quasi or in a real diminution of
the volume of the molecules (v. D. WAALS) — or in a variation of b also in
consequence of the association (v, L. I and II). )

On this occasion, in connection with the footnote on p. 178 in the cited paper
by KaueruiweH OsnEs and Kemsod, we may remind of the fact that according
to my consideralions there would indeed be double and (riple molecules in the
neighbourhood of the critical temperature — but only to an exceedingly slight
amount, viz. about 21/, 9/ (see above).
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Also the value of », viz. 2,11 on an average, remains in the
neighbourhood of 2,1, the value found for it experimentally.

I calculated all these values then not from those of s and 7, but
from those of s and f, viz. s=23,774, f=17.

It is seen that thes assumption of possible association does not
bring a real change in the_values of the critical quantities (deter-
mined by », 4,, and A,) — and may therefore be left out of account
in their determination.

Another Remark. We put vy :bp =1 in the above, and nofvy: b,
(v. . W. L. ¢.). In the expressions for the critical quantities namely
bi. occurs, and not b; — and therefore to get more certainty in the
formulae, and to remain independent of the theoretically and expe-
rimentally somewhat unwieldy relation §,: b, I have thought I ought
to introduce bx and not b, into the formulae (cf. v. L. A., p. 772).
[According to the association theory, see v. L. II, p. 422 and 431,
bg: by is resp. =1,03 or = 1,015 according as partial association
(to an amount of on an average only aboutl 2%/, °/,, see above) to
double or to triple molecules is assumed].

There is another advantage in putting vr: by = », namely this that
now the factors 2, and 1, in the formulae (3) and (4) for BT} and
pr are much nearer unity than when J, is introduced. For both
for RT: and for p; (leaving the factor »—1 out of account)
r—=or: b, occurs to the third power, so that the deviation of the
ratio bg:0r from unity will be found in 4, and 2, at least three
ftmes enlarged. 1f therefore according o van DEr WaaLs b,: b = 1,04
a 1,05, or according to the above 1,015 & 1,03 '), hence on an
average about 1,03, 4, and 2, can differ about 10°/, from unity
when ' = vk: by is assumed instead of » = v : b, and the relations
drawn up by vaNn bpEr WaaLs between r, s, and f will be valid
only by approximation, whereas they may be considered as almnost
entirely accurate when » = v O is introduced.

2
Y Asrs = 81—‘-, by : by may be determined from:
2
by * 18 A *
Hem o= =8,
by s Ay

when 7' = o : b, is known from experiment.

As rﬁl:—;—or r(l -——;—) = 1 follows from (6) — see § 2 — also

f r b

[When association is taken into account, the factor a; is added to s].

$ by .
'r’(l — —~)=— ::—/”—, from which the rclation b, : b; may also be defermined.
q
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2. The quantity f. Relations between f, r, and s.
When neither @ nor & is a function of 7, it follows from (1) that

dp R 1 a -
(ﬁ)z,:v_—-——b , Or :-"-T P + F)$
and so also:
)iy e
)= 5oy =

d, d,
At the critical point ( dl;) (dg’ )cm 52;—1 so that there
R1

Ty (dp ) b2 v
s or—=1
I= aTl)p pk(v/c—Ek) v—br’ + PR
After substltutlon of the value s from (5), pr from (4), and o =1by,
we get:

8 2, 271
r ,01 f"—]-— b . . . . (6)

J=s r—1 7-——1 2 r* A,

2 2 2
If in the second relation according to (5) we substitute Esi(li)
1

1
for —, then
7',
f—1_ 271,

= 7
st 6447 M
As » no longer oceurs in this, Van per Waars was justified in
—1 27
saying that this equation derived by him, viz. f PR YL would be
8

almost entirely exact, whereas the two others, viz, (5) and (6) with
' == vy : by, would only be true by approximation. But as we already
observed above, when not » but » = wz: by i1s taken, these laiter
equations too will hold with the same degree of accuracy as (7).

As, when association is disregarded, 1, = 0,977 and 2, = 0,980;
whereas, when it is taken into account, on an average i, = 1,007,
2,=1,013, the ratio 4,:2, will be =1 — 0,003 or =1 — 0,006
in (5) and (6), ie. it may be put equal to unity. For a,:2,* we
find 1,026 or 1,001, so that this ratio approaches unity still more
closely than 2,:%, on assumption of association, but with disregard
of it will not differ more from unity than 2 or 3°/,. Finally 1: 2,
in the second equation (6) will remain either 2°/, above, or about
1°/, below unity.

The value 2,11 is found for » from (5) with s = 38,774, while
the second equation (6) with f=7 also yields the value 2,11.
Further s*:(/~—1)=14,24..6 = 2,37, and also 64:27 = 2,37; so
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that equation (7) is accuralely satisfied with these values of sand f.
With regard to the first equation (6) it should be borne in mind
that when association is taken into account, a factor «; appears in
the second member. (because then f becomes = ar BT : pr (vp—0x).
Thus :
ro 8 ry
=y 87'—1-——;:?1 akl—" ’
in which according to the table in §1 er has the mean value of
0,975. (cf. also v. L. A., p. 772). From

271 f—1_ 271,

- 1= —2_
f ” 1, s 647
r and s may be expressed in f—1, and we find then:
3 8 F—1 2,
N el Y 2 S N
3 &
two relations also derived by Van per Waars, — but now, the

factors A, and 2, having been faken into account, quite accurate.
Putting 2, and A, =1, we find from this approximately, when /' —=7:

3 8
= =212 ; s=—/2=238,77.
7 72 s= 174

That the factor 12 plays a part, I had already surmised before,
without knowing the cause. See inter alia the Vorlesungen iiber
theoretische und physik Chemie by Van 't Horr, 3¢ Heft, p. 14,
and the Vorwort p. VI (1900). Besides already in 1905 (Arch.
ToyLer) I expressed some critical guaniities in experimentally deter-
minable quaniities in a perfectly analogous way as later Van pEr WaaLs
— however with the exclusion of the quantity £, as the possibility that
b and particularly @ could be functions of the temperature, was not
excluded by me. (Cf. also v. L. A,, p. 773).

" 8. Difficulties and objections.

So far there is not a single objection, and 1if there were no
other characteristic critical quantities than #, s, and f, it would
suffice to consider 6 as function of », and to seek the cause of this
variability. The association (or quasi-association) might then be
accepted or left as a graluitous addition. It would not be necessary.

But unfortunately, matters are different. There is namely one more
characteristic quantity, i.e. the quantity ¢, given by

_ F—1 ¢
=r—1aa

Proceedings Royal Acad. Amsterdam. Vol. XVI.
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) .
which _Tdp .
in which # T Fr= (

po P L Uk
¢ =—, d,=—, d,=—. Here
P T v Pk Y, v, p

denotes the pressure of coexistence, », and v, the specific volumes
of the coexisting liquid and vapour phases.

If only b= f@), ¢ would be =1 at all temperatures, and not
only at the critical temperature. But as it has been found that ¢
increases from 1 to about 1.4, when the temperature falls from 77
to about !/, 7% (cf. also v. . W. loc. cit., and v. L. B., p. 1100—1101)
— 1t follows that necessarily either o must confain a function
of v, besides 1:4?, or @ (or also ) must still be a (non-linear) func-
tion of T.

Van pEr WaaLs thought he could allow for this by putting

a = a,(1—/,2)",

in which & represents the relative number of quasi-associated moie-
cules. Since besides on 7, z will depend on v in a high degree,
a function of » has been applied here to a. The dependence of the
temperature may be neglected, as in’ case of (quasi) association under
the influence of the molecular forces the generation of heat may be
put =0 (cf. also v. . W. loc. cit.,, and v. L. I, p. 291; A, p. 77L)

But apart from the insufficient justification of the above relation in
my opinion, especially as far as the coefficient '/, (in general =—1—4%)
is concerned — it will be shown in what follows that every function
0 = f(v) for ¢/,» will lead to contradictions, when it would have to
account for the great decrease of the quantity ¢ in the immediate
neighbourhood of the ecritical temperature, while at the same time
S=17r=21 and s= 3,8 remain. The said decrease is so con-

d
siderable at 7%, that (Zz,%) may be put =— 7 m=1T:T}; cf.
2

v. L. B, p. 1101 et seq.) -

We therefore put e.g. @ =a;8, in which 8 = f(v:v:). The quan-
tity @ may therefore be for some reason or other (e.g. quasi association,
see above) a function of v — and hence in case of coexistence of
two phases also indirectly of 7. - -

The direct dependence on 7, which we shall discuss later, is left
entirely out of account for the present.

From

RI' a8
e A § 1))

v—10b v?

p:‘.

follows in a quite analogous way as was derived above in § 1:
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dp RT , 26 ¢ ‘
PN_ B gy —~)=0
(dT)l, ( b)s( % ak( o® +vkv’ {
dp gy BT . (60 46 & ’
= — by | —— =0
(dfl")v ( b)“( & +( b)ﬁb T\ v +'n/c“‘v"
d6 aé
when '= —and 8" = — .- (n = v : vk).
dn dn*®
Hence:
2
RT, (1—b) = “k(”"k %) G—1/,6%)
) 6 b
R.T [2(1 blk)z ’I“(’Wc'—bk)b”:l ak(’Dk4 k) (gk 2/ 0'Ic+ l/oﬂnk)
vk
yielding by division :
b”k
21— —
Jo—b_ =¥+t ;5

w (=/04+8")01-—/,6%)’

as O apparently — 1.
With vk : be=r, vid"t, : (1—b=8"k, (1—2/,0'%+"/,6"8) : 1—1,0)=0
we get:
-1

LF Bo—f"y) =2 (1- ¥,

or
r—1 _ 2 1-—b
» 8 o—'/,"%’ ‘

so that (2¢) differs from (2) only in this, that now w — !/, 8", occurs

in the denominator instead of 1 — '/, 8",
We now find for RT% and pi:

v e . (20

ar 1 r—1\*2 (1—/,6"%)
.RTL bk r ” ) 1 — btk . . . s . (30)
o 1 |r—12(1—1,0%
oo 1 —1] ...
Pk bk‘ 7 L P 1 — b’k ’ (40)

s becoming:

( — )’ 2(1—=1/.6'%)
l_b.......(Ba)

'r—l 2(1—/,6'%) 1

r 1— b

In this the factor 1—'/,0'% always occurs as a multiplicator
of 2:(1—b"%).
4%
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Sp with s=3,774 and r=2,11 we now find the value 2,21 for
2 -0 1—=07), i e. 1—/,6% + 1—Vr) =1,105. And as
b'x has a very small positive value, &', will necessarily have a very
small (probably negative) value. But then 0"; must possess a very
d
great positive value, viz. about 2,7, if (}) is to become == —7
m/ i

(see above), as we shall show now.
We namely derived before (v. L. B, p. 1098, formulae (4) and (5)) :

F—1 &0
o ——— == 1 ]—" « e
?=F T, +A(Q=m)+ ..., -
in which
F'y
=(@—28) — — . . . . . . .
b= (=20 — 7 ®

Eccer.

& -
In this F"; represents (T;—), while « and 8 are the first coef-
ms Jk

ficienis of the expansion into series-

dy=14aVi-m+4B(1l—m)+...
dy=1—aVi—m+B(l—m)—... :

given by (see p. 1094 and 1096 loc. cit.)

i i 1 14
Be" e ] . &= et
o= 3 ﬁ =a — T v
&3 &

-

. de d’e
In this &', stands for (dn.ch;);: &y, for (dn’.dm)k’ s for

PN andem for (25). T i d 1
— ], and ™y for [ — |. The quantities &, m, and n are resp. the
dn" k’ v dnq L q ’ H p
reduced pressare, temperature, and volame.

Now taking the value of F";, viz. (see p. 1098 and 1104 loc. cil.)
Fi=¢"e — (6 —B) ¢"yy—/,u’¢"2; into account, we may also write
for

—~ &+ @[(F 1)+ ot o |~ B2 (D)ot
A= 71 v - (9

. . \ d*e .
in which &'z = (‘7—2) , 1. e. for n () constant. (so & nof the reduced
m* /i

a)

pressure of ‘coéuistence). For I, we haven written f (see § 2).
i d
We now find — as z:-(i) — the value 7 (at the least
k

dm

6,8 loc. cit. p. 1101) for this quantity 2

-10 -
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Let us now calculate the different differential quotients of & with
respect to m and n with the aid of (1a). We find :

dp\ R 1 af dp
(dzv);m-ff(ﬂv)’ (zﬁ),,—‘)
dp  1[dp 28 &
dvdr*‘f[ﬁ“k(*?ﬂ,; ]

d*p 1[a% 60 460 g"
dvszw_Y’_[% + o <~{)T_ v v? + v’kv‘)il.

d; d®
Hence for T (ak=1, P _o, i’:o):
dv v?
Tw /d;
f:-k _gy) =1 akz ;) fa=
rr \aT' /i Prv’
Y uTe f d*p ag
- = —24-4
L o (dv a7 ), pkv’k( +6'%) .

V1 Iy [ dp ay
Moy == = 6—40':-+-8").
8"y - ( e dT)k p/cv’/a( &+6"1)

So we find for A: )

2= (14 (=240 + Y/, 6—464+0") |—8[2+(—2+0%)],
i e.

A= ([,064,0") — 8.
As experimentally about (see also v. L. B, p. 1101):
a* =15; g=109; A=—6,8
has been found, we get:
4,16+ 2,6 0", =6,8.

Hence if ¢'; is very small — which is inevitable according to
(5a) (see above) — O"; will necessarily have to lie in the neigh-
bourhood of 2,7 (with 8y = —0,1, 6" would be found even 2,9).
We may therefore consider the value 2,7 as the lowesi required to
make A=26,8, as no doubt ¢'; will always have a negative value,
even though it be a very small one (see above).

Granting this to be true — and it is hardly possible to deny the
above, when for the equation of state the form (1a) is assumed with
b and a as functions of v — it is easy to see that the result found
leads to a penfectly tmpossible result for 0", if the critical volume
ete. must also bhave the desired experimental value.

For from (2a), viz.

r—1 2 1—b
r 3 o—1b"%

-11 -
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with » = 2,1 and &'t small, eg. = 0,04 — since the value of
o =(1=/,0%+"/,0"%: 1~"/.0'%)
will amount to about =1 4 '/, X 2,7 =145 — will follow:
8"y =— 0,69, i. e. vxb"r = 0,66.

So instead of finding a negative value, which varies according to
the different assumptions from —-0,40 to — 0,20 (— 0,40 when
association is not assumed), we now find an impossibly large positive
value for v.0";.

And as nobody will think possible the fantastical course of the
quantity b following from this, any attempt to account for the course
of the characteristic quantity ¢ in the neighbourhood of 7%, where

g—:iz—- 7,— while at the same time the ordinary quantities must
retain their known experimental values — by the addition of a factor
6=/ by the side of a/v’ — hence also of vAN DER WAALS'S
factor (1—'/, #)®, in which 2 is a function of v — should be rejected.
In this state of affairs there is nothing left but to assume direct
dependence of the quantities @ or 0 on the femperature.

4. The quantities a or b are functions of the temperature. When
a or b are temperature-functions, all the relations derived in § 1
remain unchanged at the critical point, because in their derivation
we only differentiated with respect to v with 7' copstant.

But the value of f, derived in § 2, will in general undergo a change.

a. When a is a temperalure-function, we may put ¢ =agv, in

T
which v = f (ﬁ) From

_RT art
p—v’————b”? N 1))

dr .
follows, when E—(m: T: T%) is represented by z':
m
dp R apv 1 apT arv
(d"T)u"' b Tgo' T ':F(p + Tf_) T Thot
Hence also :

T(dp) RT Tap’ P =1 ak (v—mr')

-I; T U:P("_‘b)~PTkU’, pv? ’
or because evidently vz =1:
. Tk, dp) __ RT: apt' or =14 ar (1—r'y)
T ope\dT i pr(vr—br) prv*y PRV

-12 -
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After substitution of the values of s from (5), pr from (4) and
vk : b = r, this becomes:

o271 27 1
= g, e =14 (=), . .
f=o g mT e o =14 A=, (62)

8 A
in which also —— =* can be _written for s — according to (5).
r—14, r—1

r

A
or — amounts

As with §=2,77, r=2,1 the value of ¢
r—1 r—14,

27 ¢ .
already to 7, and also 14 pri g =7 — it follows necessarily that

the value of vz must either be_(almost) =0 or ezceedingly small).

In consequence of this the ¢! formulae (6), (7), and (8) can also
be kept unchanged.

Let us now calculate the value of the characteristic function ¢,
or rather of the quantity 2= —-(dﬁ))

dm /],

Now we proved in a preceding Paper (see v. L. B, p. 1104~
1105), that when only a is a function of 7, the coefficients of «*
and B8 in the expression (9a) for 2 Dboth become — 0, and that
therefore only :

!
& ,12

l:_f——l

R (1)

is left.
In this experimentally the value — 40,8 is found for &'z ?), so

1) We will just remind here of the fact, that some thirty years ago, when r
27

was still =38, the value —1 had to be assumed from f =1+-r_2(1—7,k)=

14+3(1~+%) for «% to make f=7. Craustws’ function =1 :m\ satisfied this

condition, but also the better function = =-el=m of van per Waais.

dm?
for » constant, is a proof that @ (or &) must be a temperature-function, If

. . . . . d*&ce
one substitutes in the above given expression for F'y, viz. F'k=( dc":x' =
m

. . , . a
?) The mere fact that so high a (negative) value is found for ¢",i.e. (__8)
k

=&y — (P—P) ", —Vsa®" 2, for F'k , ¢’ , and &z, resp. the values 89,6,
~ 11,4 and 29,6 experimentally found (loc. cit. p. 1101—1103), one finds
namely with «2=15, $=0,9 for ¢”;; the value 89,6+14,1 .(—11,4)4+25.29,6 =
= 39,6—160,7 4 74,0 = —47. If the values —11,4 and 29,6 are raised resp. to
—12 and 86 for the reasons given on p. 1103 —1105, one finds for ¢”, the above
given value — 40,8. At any rate this value differs much from 0, and @ (or b) is
therefore certainly a temperature-function.

-13 -



-56

that 2 with /=7 assumes the value 40,8:6 =6,8. [The original
cquation (9) gives 39,6 for F'; with the experimental value, and
of course also 2 =13,4—6,6 =6,8 with «* =15,2, $=0,9]. This
value is in perfect agreement with the course of the value of ¢ in
the immediate neighbourhood of 7% (loe. cit. p. 1100—1102), from
which even a somewhat higher value would follow.

Let vs now calculate the value of &s on the supposition that «

d
is a function of 7. From the value found above for (ﬁ), viz.
v

dp R ap t' dr  dv'
L) — . : vedi ] " — = -
< 2 A S follows immediately (z e dm)
(d’p ar ¢

ar v:—Tk’v”

pom (E0) 2T (20 ey
T\ e pe \dT ) progt

50 that we find;

hence

45— apt'e  ap(l—7r)
pro oot 1—tg

I )

when we substitute the value found above for f—1.

Now 73=0 may be put (see above), so that with 2 =6,8 we
shall have (see also p. 1106 loc. cit.):

'y — 6,8. v

So when — as an explanation of the course of ¢ at Tip—
a=apt is put, in which v=f(m), v must satisfy the two conditions:
T =0(=x) and v"r = 7.

B). If b is supposed td be a function of the temperature, then
from

P —— . (L)
in which v is therefore both a function of v and of 7, follows:
dp R RT b R mby T
'-.) = + s T — 1+ ’
arj, v—bv  (v—bprf Tp v-bpt v—bgT

dr
when ' = . at v constant.
m

Hence:

. Ty /dp Ry (1 b vy, ) (85)

f——;k_ aT )i pulve— bu) ve—by)

because at I the value of v is evidently again =1. And since
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again the factor RT%: pi(vr — bi) = s ’ . yields already f="17, now
B ——

teco 7'y must be either (about) 0), or éxceedingly small, so that also
in this case the formulae (6), (7), and (8) can remain intact.

And as for 7'y =0 again formula (9) holds, viz. A= —¢&"p : (f— 1),
because the coefficients of o* and g in (9a) will be =0 (see above
at &), we again determine only &'s.

We find:
d’p a 2R brpt 9RT brt'\? RT  bpt"
a1 ), (v—brr)* Th ' (v~bpr) \ Tk/) ' (v—brv)® TF
hence, when 7'x =0 is put:
) Tk”(d p) RT:
glp— — " ——— b= F.
pr \aT pL(vk——bk)” vk——bL
taking the value of f into account according to (66) — when 7'z
is put there = 0.
So we find for 2:
"
LT e

T f—1r—1

d*t

in w(hich = for v constant. We draw attention to this, that

. =", was found on the assuption of @ = azr (formula 9¢).
Now f:(f—1)(r —1)=7:6 X 1,11 = 1,05, so that we must
now get: ’

= —06,8:1,05 = - 6,5.
So whether one takes ¢ as temperature function or 6 -— in both
cases one will find 't =0, and *"¢ not far from 7, resp. — 7.

And as to the dependence of the quantity 6 on v, 0t will be at
most 0,1, vzd"r at most — 0,4 (see § 1).

By the side of “/» no function of v can occur which could
account af the same tine for ihe course of the quantity ¢ at 7%,
and for the known values of the critical quantities. So not VAN DER
Waars’s factor (1 —1'/,x)* either, in which # is a function of v
(see § 3).

1) It is of course impossible that »% is absolutely =0, for then the critical
temperature would have an exceptional meaning in the series of temperatures
hetween T=oo and T=0, to which it cannot lay claim. For quantities which
have only sigvificance in the heterogeneous region, where liquid and vapour coexist,
there can indeed be question of a factor 1 — m in the neighbourhood of TY%,
which factor would become =0 at Tk (m =1) — but never for quantities as
o and b, for which the critical temperature is no morc than an ordinary tempe-
rature. So #’, can ouly be exceedingly small.
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These are accordingly the inevitable conclusions to which the
investigation of the preceding paragraphs has led us.

5. The reduced equation of state. Already in previous papers
(v. L. III, p. 568, IV, p. 719) I made use of the reduced form of the
equation of state, when &= f(v) was assumed in consequence of
association. VAN DER WaaLs has, however, (see particularly v. p. W. II)
given such a form to the reduced equation of state, that the law of
corresponding states was brought forward in a new form. For this
purpose it was only necessary to divide the former reduced volume

(expressed in ) by —= l/f (The relation bg:d, or bg b,

may be left out of c0n31de1at10n for the present; we shall return to
it in our concluding paper).

Van per WaaLs's results are naturally mote or less approximative:
first because the factors 2, and 2, have been disregarded, and secondTy
because not »=wy: b, but again v =y : b, was introduced.

There is now no longer any approximation, and we get — also
by a simpler way — the resulis found by van pir Waats, perfectly
defined, when p,7" and v are not expressed in the real critical
quantities pg, T, and vy — but in the ideal critical quantities, i.e.
those which would hold for the ideal equation of state with « and
b constant. If we call the latter quantities p's, ', and o't, then

RT~—__81_“- B L
arTASY IR TR L
8 a 1l a
fl“ —_— . UP— ; '_...3b'
O PP T ey vk =0
Then from:

(p+ f;)(v—b):RT
v
follows the equation
' a [} fod 2\ e ann! g
(ap’k + m) (n'v'r — BY'E) = m'RI,
when ¢,n, ¥, and m' vesp. represent p:p'k, v: v b:0% T: T,
just as formerly p:pz, v:vk, b:vg, T: Tk were represented by

& n, B, and m.
After substitution of the above given values of RT’k,pL, and v'g,

we get therefore as before:

1l a a 8 a
ot f V. st —p .= — o,
(8 27bk’+n”.9bk’>(n v S =

ie.
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3 8
(&'—{—FE)(n'———B'):——m' B ¢ (1))
7 3
Had we expressed everything in the re¢al BTy, pr and v, we
should have got:
(e)lz +27:r )(n——ﬁ):—s—-llm,
r

,n‘l

or also:

(S+ 27:1,7‘2) (n_B):_g_;_"_m:sﬂL’ e . (10“)

n’ g
in which g =20:vr=b:rbp.
Hence the new reduced quantities &, m,n, and B of equation (10)
are to the original ones in the following simple relations:
& = 2,8 =& X (pi:ph)
m'= Am =m X (Tr: T'r) (53

== n X (v : v'E)

Substitution of (11) in (10a), of course, immediately leads to {10),
and vice versa.

Van per Waarns has vetained & — s, m'=m, and therefore his
new reduced equation of state will in this réspect only hold by
approximation, though the difference will be exceedingly slight. But
as VAN DER WaarLs does not put ' =1/yr.n (or n'=mn:?)), but
n'=mn:’/, in which s does not represent vj: by, but vy: 0, while
by and b can differ 4 or 5°/,, the difference with the reduced
equation of state (10) will be much greater for the quantity n: %/,
becausc in (10) the specific element [embodicd in the quantity r
(2, and 2, left out of consideration), which quantity » can be different
for different classes of bodies] has been entirely removed.

If @ and & ave still functions of the temperature, the term 3 : n'* in
(10) will have evidently to be replaced by 37(m') : n"%, or 8 by B'f(m).

Ag according to (6) A,(f—1):3=29:7*, also:

3 F—1
?-l/%‘?*

and we may also wrile instead of »'=mn:?/,:
—1
n=n: I/Z’%—’
now perfectly accurate.

In a following (concluding) paper some remarks will be made
about the dependence of aord on the temperature, and some general
considerations will be given ahout the nature of the function b = f{v).

Fontanivent sur Clarens, March 1913,
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