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the viscosimeter was turned round, to drive the remaining liguid
out of the capillary. Only one determination was successful. We
hope later on to be able to publish moie exteusive determinations
at low temperatures.

Our results are given in the table.

The liquid-densities were measured by a dilatometer.

temp. time corrected density 1
34.5° 235.5 235.2 0.556 0.00163
18.5° 258.5 258.2 0.577 176

0.0 291.8 291.5 0.601 207
—23.6 352.6 352.3 0.631 265

The method of calculation of % from the data is made clear by
the following example.

The viscosimeter when filled weighed 16.78 gr. and empty -

14.26 gr.
The weight of the butane was therefore 2.52 gr. with a volume

of 4.20 cem.
The time of flow of 4.20 ccmn. water al 0° is 1504.0 sec. (accor-

ding to table on page 80; of the butane 291.8 sec.
Corrected for capiilarity these times become 1499.8 and 291.5.
0.601 x 2915
a = 0.00207.
1498.9 X 0.9999
Troree and Roperr (p. 590) give for the viscagity at the boiling

nw = 0.01778 ) therefore 1 == 0.01778

point for
normal pentane 7 X 10° 200 isopentane 203
’ hexane 204 isohexane 205
» heptane 199 isoheptane 198
. octane 198

As the boiling point of butane is just below 0° the value we find
for 4 corresponds well with that for the other hydrocarbons.

Physics. — “On the law of the partition of energy.” III. By Prof.
J. D. van pEr Waars Jr. (Communicated by Prof. J. D. vax
pER WaALs Sr.).

§ 9. The distribution in configuration.
In § 7 of my preceding note on this subject I'have called attention

to the deviations of Borrzmany’s law for the distribution in confi-
guration, but then I did not give a possible formula for it. Nor can
I give a formula for the general case now. I will however try for

1) Troree and Ropbeer 1 ¢. p. 449,
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a simple special case to draw wup a formula here, which is in
agreement with what is known concerning the kinetic energy. This
special case is the following.

A large number 7, of particles move in a space V, which has
the following properties: the-particles can move freely in a part of
the space without being subjected to forces. I will call this part the
free space. In another part v forces will act which are direcled
towards a centre; the intensity of these forces will be proportional
to the distance from that centre. We will assume that not only one
centre of this kind is present in the space, but n,, each of them
surrounded by a region ». Every region v, however, will be
surrounded by a transition region, which is characterised by the
property that a particle lying in it has a much higher potential
energy than one in the free space. In other words: when the
particles come from the free space and penetrate into the transition-
regions they are at first repulsed, and not until they have approached
towards the centre to within a definite distance & will they experience
the forces directed towards the centie, which 1 will call the quasi-
elastic forces. I will assume, that the sum of all the regions v and
also of the transition-regions will be small compared with the free
space. This latter may therefore also be vepresented approximaiely
by V.

It is obvious that in each of the regions v particles can move
which execnte harmonic vibrations. The period of these vibrations
will be determined by the mass of the particles and by the intensity
of the quasi-elastic forces. We will raise the question, what will be
the distribution in velocity and the distribution in configuration of
these particles.

I will assume that the component of the velocity in the direction
of the radius-vector towards the centre of attraction will show a
smaller amount than would agree with the equipartition law; but
that the components perpendicular to it will show the normal equi-
partition amount. I make this assumption in order to account for the
energy of di-atomic molecules, which corresponds at ordinary_tem-
peratures with five degrees of freedom. In reality, however, the
properties of di-atomic molecules will probably be somewhat different
from those assumed by me. The average kinetic energy of the com-
ponent of the velocity in the direction of the radius vector of par-
ticles which lie in the regions v will be represented instead of by

7
the n01-ma1 4 6, by the value ascribed to it by Pranck: } © .

90\—1
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The supposition would now naturally suggest itself, 1st. that the
mean value of the kinctic energy for this degree of freedom would
be the same for the different points of the region »; 204, that the
partition of the velocities for this component would be represented

1 mp?

by Ce U dr Y. This- expression however leads to an nntenable
formula for the distribution in configuration. I will therefore assumsé
that the radial cowponent of the velocity does not follow Maxwent's
law for the disiribulion of velocities, and that the mean- kinetic
energy belonging to it is different for different points of the region v.

For points at a distance » from the centre e.g. it will amount to
7 (r). This function F'(r) is unknown; we only know that its mean
value for different values of » will amount to 4 U. The components
of the velocity perpendicular to the radius vector will be denoted
by ¢ and ¢. Their mean kinetic energy will be equal to the normal
equipartition-amount.

In a harmonic vibration kinetic and potential energy are periodi-
cally converted into one another; therefore the dishiibution in
configuration will follow the same law as tle distribution in velocity.
We are therefore justified in the following assertions concerning it.
Let us take all molecules with a definite velocity v, and investigate
their deviations from the posilion of equilibrium. We will call the
component of the deviation in the direction vy, the components
norinal to this direction r; and v,. The mean value of § f»,* for
these molecales will again amount to [fv), which function again is
unknown, whereas its average value for different values of » amounts
to § U. The average values of 4 fr® and 4§ fr,* present the normal
equipartilion-amount.

In this way we ave induced to represent the number of particles
whose coordinates and momenta are included between definite
limits by :

__&they
Ne 4 f (mryms'ymt'y vy, vsarn, ) dmo dms' dind’ dry dosdry . L L (14)

Here &, =1/, m (i* 4 s* 4 £*) and &, = the polential energy. In
the space ¥ this potential energy has a constant amount &,; in the

1) These Proc. Vol, XV, p. 1855 I really have expressed the opinion that this
partition of velocilies would probably exist. I have however written crroneously
/3 U in the numeraltor of the exponent inslead of U, If U represented the total
kinetic emergy of a particle with three degrees of freedom, /s U would be the
vight value. U represents however the kinelic energy for one degree of freedom.
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1
regions v it is equal to & 4 3 fr*, where & is the energy of a

particle lying in a cenfre of a region ». y is an unknown function,

which for »==0 (i.e. in V) assumes the value unity, whereas in

the regions v it must satisfy the following equations:
BT

fé mr* Ne g % () dmr dms' dmt' dr,, dr; dr,

=% ok (15a)
st &g vh
f Ne O % () dmr dins’ dmt’ dvy drs dry ¢ g —1
and a corresponding formula for the mean value of 4 fr’; and
_aTE he
f L ms'® Ne 0 % () dmr dms' dmit' dr, drs dry . '
=10 (152)

&t
f Ne ¢ ¥ () dmr dms' dmt' do,, drs dry

and three corresponding formulae for the average values of & mi?,
t fre® and 4 £/ .
In consequence of the formulae (156) we no doubt must assume, that
¥ is independent of &, ¢, »; and r,. If this is so we can divide in (15q)
1 ms'?

/)

the numerator and the denominator by f e dms’ and by three

corresponding integrals. We get therefore, if we add the two
equations (15a):

mr 4+t

vh~

f({,; mr? + & fr,%) e 20 A (7, 7y, v) dmr dry
= . . . (16)

mr® +- fr’ ”_75
f e 26 X(r; 7y V) dmr dry g() -1

The integrations with vespect to v should be extended between
0 and oo, properly speaking those with respect to » however only
between O and R. If B and f ave sufficiently great and 6 sufficiently
small, it will be allowed to introduce also o as superior limit for
the integration with respect fo 7.

If we call the denominator of the left hand member of (16) J,

aJ
then the numerator may be represented by 6° 0 The equation may

thevefore be written in the following form:



vh
v/ — 8 vh
Ty e .5; -
iﬁ: 4 = N (X))
J a0 vh vh
90 1 1—e 0
from which we deduce: )
C
Jm—— . . ... (18)
vh
1l—e g -

The value of C may be determined, because we know that for
» = 0 the function y assumes the value 1. Then the integral becomes

— 7] /s
V 2nme . !/2::—, and the right hand member C. %E In connec-

f
L —
tion with » =~l/z this yields:
2 m

C=".)

§ 10. Application to chemical equilibrium.

We will apply these results for the derivation of a formula for
the dissociation equilibrium of a di-atomic gas. For this purpose we
will assume, that 7, free atoms are present in a unit of volume.
Each atom has a region v, whose properties gre described in the
preceding paragraph. When another atom penetrates into the region
v, a di-atomic molecule is formed. According to our considerations
in the preceding paragraph we have:

& & N

n,=—=Ne 0, tﬁ O dmr dims' dmt = N¢ 9 (27r7m//)3/a . (19
¥ being unity for free space. The number of particles in one region
v amounts to:

o g )
Ny =< _Z\re 6 fe

g Wy ) dmrdms'dmt' dr dogdr,—
81
- 17 Y,
=N ?.2am0.2x~. '
N vh
0

1) Properly speaking C can be a function of ., and lherefore wé should write
for C=nX F(v), where F(v) is a function of v, which for v =0 is unity. In the
following, however, we will use the simple solution C=h.
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So the total number of associated molecules is:

E—&,
h
—_ —n? g Yo
ng=n, X np=mne @n0) Fm =
- le—e . g
or
&—8&, —— —IL
_ g 9 v C L0
Ty =t I/S.m""m3 vl 9
1—e g

So we have found a general formula for the dissociation of
di-atomic molecules. I hope to discuss this formula later more fully.
At present I will only observe, that it shows a certain analogy
with the results of Nernst’'s <“Warme-theorem”. This analogy consists
in the circumstance, that the equilibrium-constant is determined by
& — & (i.e. the heat developed by the reaction at the absolute
zero of temperatore) and by », which quantity is closely connected
with the store of energy and the specific heat. Besides ihe mole-
cular weight occurs in the formula. The chemical volumes (i. e.
Bortzmany’s “kritische Raume”) to which we should be inclined
to ascribe an influence on the equilibrium-constant do not oceur in
the formula. The cause of this is that in equation (16) we have
extended the integrations with respect to # between 0and co insiead
of between 0 and R. If the conditions on which we thought we
were justified in doing so are not satisfied, then the formula would of
course have to be modified in such a way that the chemical volumes
would occur in it. In this case, however, the number of molecules
dissociating in one second would be so large, that we should be
in circamstances in which we consider the substance to be totally
dissociated. We should no longer have occasion to speak of chemical
combinarion, but only of grouping or quasi-association.

A difference with the considerations of NurNsT constitutes the
civeumstance that we started in the usual way from gasreactions,
whereas NErNst. takes reactions in solid condition as starting-point.
Whether this is only a difference of method, or whether it leads to
different results is a question which ['hope to investigate on alater oecasion.

I will still make one single remark in connection with equation
. {20), namely that it agrees with the law of the equilibrium change.

If namely we put n—q—a::lf, then we get:
ny
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diE 1

a0 0

The expression beiween braces represents the thermal value of
the reaction. For in the free space the potential energy is z, and

el~so+—;—6+[] B 23

3
the mean kinetic energy 56. In associated condifion the potential

energy would be &, if the particles where always in the centres of
the vegions v. Tor the average potential energy of the deviation
from that position of equilibrium in the direction » we have found
3 U and for the two components of the deviation normal to v each
3 6. For the kinefic energy we assumed in the same way & U+§.
So we get for the thermal value of the reaction: -

s 426+ U—(ea+~g—ﬁ):81—~fa+—;—0+ 0.

It is by no means superfluous to investigate whether this law is
salisfied. If e.g. we had assumed Masxwerr's law for the distribution
of » and if in connection with this we had written Ce U dn]
for the probability of a deviation 7, in the direction v then we
should have found a formula for X which in general would not
salisty the law of the equilibrium change. Artificial additional sup-
positions would be required 1f we wished this law to be satisfied.

§ 11.  The distribution in configuration in arbﬁwary fields of force.

The above considerations only refer to particles subjected to forces,
nnder the influence of which they can execute tautochronic harmonie
vibrations. About the question what the formula for the distribution
of particles in arbitrary fields of forces will look like, I should not
venture fo express so much as a supposition, except of course in
those cases in which DBornrzManw’s original formula is a sufficient
approximation. I will only express the following surmise.

For quasi-elastic forces the energy of the particles is governed by
the quantity », which in its turn is again determined by the quantity f.
The conclusion now naturallﬁy suggests itself that for an arbitrary

dF
field of forces the quantity T (L= the force that acts on a particle)
&

will be decisive for the energy of the particles. This supposition
comes to this, that we assume that the particles, when they get into
a very inhomogeneous field of forces, in counsequence of this are
subjected to changes in properties (shape, mass ete.), which changes °
are not governed by the laws of classical mechanics, and give rise
to the deviations from the equipartition law. .-



