Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

Kuenen, J.P. \& Visser, S.W., The virial-coefficient B for normal butane, in:
KNAW, Proceedings, 16 I, 1913, Amsterdam, 1913, pp. 350-355

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Physics. - "The virial-coefficient B for normal butane." By Prof.

J. P. Koenen and S. W. Visser.
(Communicated in the meeting of September 27, 1913).
Determinations of the vapour density of normal butane have enabled us to calculate the virial-coefficient B in the empirical equation of state as established by Kamerlingh Onnes 1). In the course of these calculations anomalies appeared which may be explained by the presence of a small quantity of a lighter admixture: a confirmation of this supposition was obtained by determinations of the boilng point and from the critical temperature.
The vapour density was determined by weighing. For this purpose a glass bulb of about .4 litre was, used, provided with a stopcock and ground joint by means of which it could be connected to a butane-reservor, a mercury pump, and an open mercury manometer.

The volume of the bulb was determined by weighing with air. First the weight of the bulb was determined after having been exhausted as completely as possible by the mercury pump. In all the weighings a tarra-bulb of about the same external volume was suspended from the other arm of the balance: the reading was not taken uniil the equilibrium had become constant.

The pressure of the air and afterwards of butane was first of all taken equal to the atmospheric pressure, the temperature being that of the room. For this puxpose a tube some metres long with a stopcock was attached to the filling-apparatus. The gas was admitted to a pressure of about $1 \mathrm{~m} . \mathrm{m}$. above the atmospheric: by opening the tap at the end of the long tube for a moment, the excess pressure could be let off without appreciable change of temperature and without fear of outside air penetrating into the bulb. Immediately after closing the 'bulb the temperature and pressure were read. The bulb was then weighed. In tilling the bulb with butane vapour it was three thnes washed out with the vapour and exhausted.

The barometric pressures were reduced to 0° and in the weights at temperatures above 0° a correction was applied for the expansion of the glass.

In the same manner a determination with butane was made at 0°, the bulb having been kept in ice for at least half an hour. During the operation the butane-reservoir was also placed in ice to
${ }^{1}$) Leiden Comm. Suppl. 23; § 36; p. 114, sqq.

prevent distillation of liquid into the bulb. After the weighing the weight of the empty buib was determined a second time as a test.

Subsequently determinations at room temperature were made at pressures of $1 / 2$ and $1 / 4 \mathrm{~atm}$. The pressure was in this case read on the mercury-gange.

It appeared necessary to determine the contraction of the bulb by the diminution of the internal pressure. For this purpose the weight of air contained in the bulb at a pressure of $1 /$, of an atm. was measured.

Finally two weighings were made with butane-vapour at 0° and at $1 / 2$ and $3 / 3$ of an atm.

Measurements ${ }^{1}$).

Empty bulb. The tarra-bulb +8 grammes made equilibrium with the empty bulb +.84036 grms. A later weighing gave .84033 , a third .84036 . The mean of these is .84035 . This weight is in error by an amount x, owing to the change of the external volume by exhaustion.

Bulb with dry air. At $18^{\circ} .58$ and 76.738 cms. the weight of the air was found to be .47370 grms; a second weighing gave .47735 grms. at $16^{\circ} .88$ and 76.805 cms . For the weight at 0° and 76 cms . they give .5009 grms and .5014 grms. the mean of which is .5012 grms. This figure has to be increased by the amount x mentioned above.

Bulb with dry air at lover internal pressure. At a pressure of 26.816 cms and a temperature of $16^{\circ} .71$ the air weighed .16596 grms. The weight of the air contained in the bulb at 0°, and 76 cms would have been .49899 grms. It is easily proved, that the elror of this figure owing to the change of external volume is approximately equal to x. The difference between .5010 and ;49899 is therefore independent of x and represents the dimination of weight due to the diminution of internal volume at the lower pressure: as the diminution may be taken proportional to the change of pressure, it follows that the diminution of weight for 1 atmosphere would be .00333 grms. The external change of volume being approximately equal to the internal change, this latter weight is equal to the correction x. The weight at 0° and 1 atm . is thus $.5012+.0033=$.5045 grms. From this weight the volume is found by dividing by the normal density of air. The measured weights of butane have

[^0]also to be corrected by amounts proportional to x and to the press sure expressed as a fraction of 76 cms .

Bulb with butane vapour.
The following table gives the results of the 6 weighings.

Temp.	Pressure	Weight.	Weight corrected.	Volume.
$16^{\circ} .63$	76.08 cm.	0.98219 Gram	0.98513	390.1 cm.
0.00	75.68	1.04400	1.04733	390.1
21.02	40.42	0.50339	0.50 ± 69	388.9
19.94	18.57	0.22935	0.23016	388.1
0.00	23.48	0.31244	0.31347	388.3
0.00	48.89	0.66184	0.66398	389.2

Empirical reduced equation of state.
The equation of state was taken in the form (Comm. Leiden, Suppl. 23)

$$
\begin{equation*}
p v=A\left(1+\frac{B}{v}+\frac{C}{v^{2}}+\frac{D}{v^{4}}+\frac{E}{v^{0}}+\frac{F}{v^{8}}\right) . \tag{1}
\end{equation*}
$$

where p is the pressure in atmospheres at 45° latitude, v the volume of 1 gramme expressed in the theoretical normal volume as unit, further:

$$
A=R T ; \quad B=\frac{R T_{k}}{p_{k}} \mathfrak{\Im} ; \quad C=\frac{R^{2} T_{k^{2}}{ }^{2}}{p_{k}{ }^{2}} \mathfrak{G} ; \text { etc. }
$$

\mathfrak{F}, ๔, etc. represent the "reduced virial coefficients", quantities which depend on T only and must be equal for different substances, except for small individual deviations.
D and the subsequent coefficients may be neglected for pressures smaller than $1 / p_{k}$.
By mtroducing p as the mdependent variable instead of v equation (1) assumes the form.

$$
\begin{equation*}
p v=R T\left(1+\frac{B}{R T} p+\frac{C-B^{2}}{R^{2} T^{2}} p^{2}\right) . \tag{2}
\end{equation*}
$$

The theoretical normal volume of pure butane is

$$
22412: 58.08=386.0
$$

where 22412 is the normal volume of one gramme-molecule and 58.08 the molar weight of butane. When the constants were calculated on this basis, large deviations from the reduced equation of state were found. This finds a ready explanation in the fact, that
the butane was not absolutely pure. It seemed therefore preferable to treat the theoretical normal volume as an unknown quantity and deduce it together with the other contants from the observations. It was for this purpose, that the above weighings at 0° at three different pressures were made.

Substituting in (2) p_{5}, v_{5} and p_{6}, v_{6} respectively and dividing the two resultugg equations, we obtain the relation

$$
\begin{equation*}
1-\frac{p_{5} v_{6}}{p_{8} v_{6}}=\frac{B}{R T}\left(p_{0}-p_{5}\right)-\frac{B^{2}}{R^{2} T^{2}}\left(p_{6}-p_{5}\right)\left\{p_{0}+\left(1-\frac{C}{B^{2}}\right)\left(p_{5}+p_{6}\right)\right\} . \tag{3}
\end{equation*}
$$

In this equation we may take for v_{5} and v_{0} the volumes of 1 gramme in ccm. The term containing C is of minor importance: C may therefore be calculared with sufficient accuracy from the reduced coefficient 『, which is known from measurements on a number of other substances.

From equation (3) was found $B=-.0430$
In the same manner the second and sixth weighings gave $B=-.0431$; as the mean was taken .0431 .

The theoretical normal volume of the butane used may now be calculated from equation (2): it becomes 388.1.

The difference of this figure from the value for pure butane (386.0) gives an indication as to the amount of the impurity: it points to the presence of a lighter admixture. The difference is $.5 \%$.

Using the normal volume found in this manner we may now deduce the virial coefficients B in the measurements at other temperatures.

t	B	B calculated.
0°	-.0431	$-.046 \mathbf{5}$
16.63	381	393
19.94	371	382
21.02	359	376

In the last column are given the values of B, as, calculated from the mean reduced virial coefficient \mathfrak{B} for a number of substances. The correspondence is satisfactory considered the degree of accuracy of the method by which B was here determined. An error in the fraction on the left side of equation (3) appears in B one hundred times enlarged; an error of 5% in B corresponds to an error of observation of $1 / 2000$.
Moreover a complete correspondence can in any case not be expected, as the equation of state is after all only an approximation

Proceedings Royal Acad. Amsterdam. Vcl. XVI.
owing to the mutual deviations of the various substances with regard to the law of corresponding states. This is shown by the following table containing various values of \mathfrak{j}.

Reduced temperature . 644			
	t		$\mathfrak{3}$
ammonia ${ }^{\text {² }}$)	-12°	c.	-1.22
methyl chloride ${ }^{1}$)	- 5		-0.961
isopentane ${ }^{2}$)	23.7		-1.02
n. butane ${ }^{3}$)	00		-1.0

Test of the impurity. The theoretical normal volume found 388.1 leads to a molar weight of 57.77 . If we assume the admixture to be ethane, its amount may be calculated from the molar weights of ethane (30.05) and butane (58.08): the amount of ethane would appear to be 1%.

The above result respecting the nature of the admixture finds contirmation in the boiling point of our butane. This point $\left.\left(-1^{\circ} .0\right)^{4}\right)$ was derived from determinations of the vapour pressure in the neighbourhood of 0° :

temp.	press. (atm.)
12.0	1.6
0.00	1.049
0.00	1.046
-6.2	0.79

Owing to the presence of a more volatile admixture (ethane) the boiling point will be too low. In order to remove it to a certain extent the butane was cooled in solid carbon dioxide and vapour was pumped off. After this operation the vapour pressure at 0° was again measured; it was now $1,035 \mathrm{~atm}$. The boiling point has therefore actually been raised: it now becomes - 0.8°. In repeating the same operation a large portion of the vapour coming off was collected in the bulb of the mercury pump. The pressure above the small quantity of liquid left, appeared to have diminished to 1.027 atm .,

[^1]which means a furtier rise of the boiling point: the final value may be taken at $-0.6^{\circ} \mathrm{C}$.

A further confirmation of the presence of an admixture like ethane is afforded by the ralue of the critical temperature (550.8°). When for the various saturated hydrocarbons a graphical curve is drawn with the molar weights as abscissae and the corresponding critical temperatures as ordinates, the value found for butane seems to be a little too small. By representing the critical temperatures of ethane ($305^{\circ} .3$), pentane ($470^{\circ} .3$), hexane ($507^{\circ} .9$), heptane ($539^{\circ} .95$) and octane ($569^{\circ} .3$) as an arithmetical series of the fourth order, we find for propane $370^{\circ} .25$ instead of the experimental value $370^{\circ} .1$ and for butane $424^{\circ} .94$, i.e. $1^{\circ} 04$ higher than what was obtained by us. This result also points to a deviation of the critical temperature owing to the presence of a more volatile admixtere.

Physics. - "The viscosity of the vapour of normal butane". By J. P. Kuenen and S. W. Visser.
(Communicated in the meeting of September 27, 1913).
For the determination of the viscosity of butane vapour Rankine's ${ }^{1}$) transpiration method was used; a method` which is very simple and requires very little vapour, and in which the rapour comes into contact with glass and mercury only.
The apparatus consists of a long O-tube placed vertically and capable of being turned over on a horizontal axis. One arm of the O is capllary, the other one a wider tube. The vapour is forced through the capillary by a falling drop of mercury ir the wide tube. When the drop has arrived at the bottom of the tube, the apparatus is simply turned upside down, and the drop now drives the gas through the capillary in the opposite direction. The time is measured between the moments at which the mercury passes two marks on the fall-tube. The whole tube is mounted in a glass jacket, where the temperature is kept constant.

In order to be able to work with a long capillary without making the apparatus unwieldy by its length, a capillary is used which is twice bent round: hereby it becomes alnost three times as long as the wide tube.

[^2]
[^0]: ${ }^{1}$) The calculations as given here differ slightly from those in the Dutch edition owing to a correction which had been overlooked.

[^1]: ${ }^{1}$) For these data we are indebted to Mr. G. Horst, whose results, which were worked out in the Leiden Laboratory, will shortly be published as a thesis at Zürich.
 ${ }^{2}$) Calculated from S. Youna's data.'
 ${ }^{3}$) Deduced from the above value of B.
 ${ }^{4}$) In Comm. 125 p. 4 by a clerical error the boiling point was given as -0.1°.

[^2]: ${ }^{1}$) A. O. Rankine, Proc. Roy. Soc. London A 83, 265, $516 ; 1910$.

