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540 .

Chemistry. — “Equiiibria m ternary systems” X. By Prof. F. A.
H. ScHREINEMAKERS. .

After having deduced in the previous communication the diagrams
for a constant temperature (the saturation- and vaponrsaturation-
curves under their own vapourpressure), and for a constant pressure
(the boilingpointcurves and their corresponding sapourcurves), we
will deduce now the diagrams for a constant temperature and
pressure. We may act for this in the same way as in communi-
cation I. For this we imagine for instance in figure 1 (I) besides
the saturationcurve of the compound /7 also one of the compound
I". Both these saturationcurves may then e situated either outside
each other or they may intersect each other, or the one may
surround the other. We imagine both curves sitnated completely
in the liquid-region.

Because the heterogeneous region shifts on decrease of pressure in
such direction that the liquidregion becomes smaller and the vapour-
region becomes greater, under a certain pressure the liguid-curve
¢ d of the heterogeneous region will touch one of the saturationcurves.
When it touches that of F, we obtain figure 2 (I) wherein the
saturationcurve of F” is to be unagined. This is then still com-
pletely situated in the liquidregion and may be situated wilh respect
to that of # in the abovementioned ways. Of all the solutions
saturated with F# or with #” at this pressure, therefore, only one
exists, namely saturated with I, that can be in equilibrinm with vapour.

On further decrease of pressure figure 3 (1) now arises; herein
we imagine the second saturationcurve, still completely in the liquid-
region, and whether or not intersecting that of F. Of all solutions
saturated with F or with Z” at this pressure now two liquids exist,
saturated with # (@ and ) which may be in equilibrium with
vapour (e, and b,). On further decrease of pressure very many
cases may now occur, At first we assume that both the saturation-
curves are situated completely outside each other and rest also out-
side each other in the comtemplated pressure-interval. On decrease
of pressure the heterogeneous region shifts over the saturalioncurve
of F, attains at a certain pressure the saturationcurve of I, and
on further decrease of pressure shifts also over this.

We may distinguish for this two principal cases:

1. the saturationcurve of J is situated already completely ouiside
the liguidregion before the liquidcurve e¢d of the heterogeneous
region touches the saturationcurve of F”;

2. the saturationcurve of I is situated still partly in the liquid-
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region, when the liquidcurve ed of the heterogeneous region touches
the saturationcurve of /",

In the latter case, therefore, there is a series of pressures under which
at the same time two lquids saturated with [ and two with A"
may be in equilibrium with vapour. Solutions saturated with /- F
do not exist.

When boih the liquidenrves intersect each other numberless cases
are to be distinguished, of which we shall only discuss a few.
Imagining for instance in fig. 3 (I) that the vapoursaturation curve
of I is also drawn, then we can obtain a diagram as fig 1. The
liquidline -¢ of the heterogeneous region, intersects the saturation-
curve of F in a and b and that
of I inx and y; the vapourcurve
of the heterogeneous region inter-
sects the vapoursaturationcurve
of F in a, and 4, and that of /"
in «, and y,. The saturationcurves
of F and of F’ intersect each
other in « and z. )

At the temperatnre and under the
pressure to which figure 1 upplies,
therefore, besides the solntions satu-
rated with solid 2" of branch bz and
az and the solutions saturated with
solid /" of branch zu and yz, there
) still exist also the two solutions

Fig. 1. w and z, saturated with F - F".
The liquids of branch d & may be in equilibrinm with the vapours
of d, a; the liquids of ya with the vapours of y, a,, the liquids
of be¢ with the vapours of b, ¢,. The solid phase /' can exist together
with the vapours of branch a, b, ; the solid phase £ together with
the vapours of branch «, y,.

Farther there are four liquids saturated with a solid phase which
may be at the same time in equilibrium with a vapour. Therefore,
there exist four threephasecomplexes: solid 4 liquid - vapour, nl.
F 4+ liquid a + vapour @,, F - liquid 6 4- vapour b,, F” -+ liquid
x4 vapour &, and F 4 liquid y - vapour y,. Besides the great.
liquidregion, indicated by L we find also in the figure the small
liquidregion a z y.

On decrease of pressure figure L may pass now into figure 2.
The points a, y, and z of figure 1 coincide in figure 2 in the point
J> the points a, and y, of fig. 1 coincide in fig. 2 in the point f,.

35%




542 -

The metastable part bz of curve de must therefore go through point
J and the melastable part @,b, of
curve d,e, must go through the point
Jfi- Fig. 2 may also be imagined to
have arisen from fig. 1 in that the
threephasetriangles FF"z, Fua, and
Fyy, move until they touch along
one side.

Of the two solutions « and f,
saturated with F -+ I, the latter
may be in equilibrium with the
vapour fl; al the temperature and
under the pressure to which fig. 2 Fig. 2.
applies, therefore, the fourphaseequilibrium I'4 F -4 liquid f -+
vapour f; occurs. |

If the pressure decreases still more, a diagram occurs which we
shall call figure 2¢. We obtain this figure 24 when we leave the
point / in fig. 2 out of account. The two saturationcurves and
curve (e then go no more through one point; nor the two
vapoursaturationcurves and curve d,¢;,. Only one solution now exists,
nl. u, salurated with I+ F”; the other is metastable and replaced
by the vapour f,, which may be in equilibrium with the complex
I+ F'. The fourphaseequilibrium occurring in fig. 2 has vanished
of course also in fig. 2a.

We shall now contemplate the diagram, occurring at the mini-
mum-melting point of the complex ¥ -+ 77, one of the many pos-
sible diagrams is drawn in fig. 3, wherein also are indicated the
metastable paris of the two saturationcurves and of the liquid- and
vapour-curve of the heterogeneous region.

Fig. 3 can be imagined to have arisen
from fig. 2 in the following way. We
change the temperature and the pressure 4
in such a way, that we retain a diagram /
as ftig. 2; the fourphase equilibrium
F 4 F +liquid f + vapour f, there-
fore remains, althougb f and f, change
of course their composition. A similar
change of pressure and temperature is
always possible when we change thesc
in accordance with the P, 7-cnrve of the
fourphase equilibvium F4-F"—+L-4G.

We take this change now in such
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divection thal the liquidcurve ed of the heterogeneous region, and
therefore also the point f in fig. 2 shifis towards the line FE". At
a definite temperature and pressure the points u and f coincide
then on the line FF” and fig. 3 may arise; herein Lowever f is
replaced by S and f, by .S, Therefore the fourphaseequilibrium
F 4+ F' 4 liquid S 4 vapour S, occurs, wherein the liquid .S is
represented by a point on the line F/”. The pressure and tempe-
rature to which fig. 3 applies, agree therefore with the minimum
meltingpoint of the complex F -+ F".

From the situation of S with rvespect to & and F” it follows that
in fig. 3 a congruent melting of the complex F'+ F’ is assumed.
With an incongruent melting either F or F” should be situated
between the two other points.

Because the point .S is situated on the line FI7”, the two satura-
tioncurves must touch cach other in .S. We now imagine in S the
common tangent of the two saturationcurves and also the tangent to
carve e¢d to be drawn. For the sake of simplicity we shall call
the first the tangent S and the second the tangent de.

Now, as is known, the tangent S and the line FF” are conjugated
diameters of the indicatrix in .S; the same applies to the tangent
ed and the line SS,. Because the indicatrix in .S is an ellipse, on the
turning of a diameter its conjugated one moves in the same direction ;
the lines SS,, FI" and the (wo tangents must therefore be situated
with respect to each other as in fig. 3. The point S, must therefore
in fig. 3 Dbe situated on the same side of the tangent S as the
point £”, when however " is situaled within the liquid region and
I outside that region, then S, is situated on the same side of tan-
gent S as the point F. Also in the case, that the points F and F”
are situated both at the same time either within or outside the
liquidregion, the situation of S,, with respect to the tangent S is
easy to indicate.

Besides the cases treated above, there ave still numberless others
which the reader can easily deduce for himself. For that reason
we shall only still contemplate some points more in detail.

We take at a definite P and 7' the two solid phases F and F";
perpendicular to the concentration diagram we draw the § of these
substances ; we shall call these points (F) and (X").

When the point (F) is situated below the liquid- and the vapour leaf
of the § surface, then the compound I occurs in solid state. We can
then consiruct two cones, which have both their apexes in (/) and
of which the one touches the liquidleaf and the other the vapourleaf
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of the § surface. As well a saturation- as a vapoursaturationcurve of
the eompound F' exists therefore. When we contemplate the two
carves with respect to each other, then either one completely or a
part of both is metastable.

When the point (F) is situated below the liquid- but above the
vapourleaf of the § surface, the compound F only exists in vapour- -
form. Then not a vapoursaturalioncurve exists, but a metastable
saturationcurve of /, therefore a series of metastable solutions,
saturated with F. -

When the point (F) is sitvated below the vapour-, but above the
liquidleaf of the & surface, the compound £ exists only in liquid state.-
Then not a saturation-, but a metastable vapoursaturation curve of
F exists, therefore a series of metastable vapours in equilibrinm with 7.

When the point (F) is situated above both the leaves of the & surface,
then the compound [F occars in liquid or in vapour-state, according
as below the point (#) the liquid- or the vapourleaf is situated
the lowest. Then neither a saturation- nor a vapoursaturationcurve of
F' exists.

The four above mentioned cases apply of course also to the com-
pound F’.

We now take a pressure and a temperature at which # and F”
are both solid. The poinis (#) and (F”) are then situated below
both the leaves of the & surface and each of the compounds has
then a saturation- and a vapoursaturationcurve.

We distinguish now four cases:

1. the line (F){F") iniersects both the leaves of the & surface.

We cannot construct through the line (F) (F”) a plane of contact
on one of the leaves of lhe §surface; the two saturationcurves, there-
fore, do not intersect each other, nor the two vapoursaturationeurves.
The two saturationcurves may now be situated completely outside
each other, or the one may surround the other; the same applies
to both the vapoursaturationcurves. Therefore neither a liquid nor a
vapour exists in equilibrium with - .

2. The line (F)(F’) intersects the liquidsurface, but is situated
below the vapourleaf of the § surface.

Because we cannot construct through the line (I7) (F”) a plane of
contact on the liquidleaf, the two saturationcurves do not intersect
each other, so that the one is situated outside the other, or the one
surrounds the other.

We can (however) quite well construct two planes of contact on
the vapourleaf through the line (F') (#"). The two vapoursaturation-
curves, therefore, intersect each other in two points.
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There exists therefore no lLquid saturated with # - F’. Two
vapours exist however, each of which may be in equilibrium with
F4+F.

3. The line (I")(J™) intersects the vapourleaf, but is situated
below the liguidleaf of the § surface.

It is evident, that now the two saturationcurves intersect each
other in two points, while the two vapoursaturationcurves are situated
outside each other or the one surrounds the other. Therefore two
solutions exisi, saturated with # 4 £, but not a vapour which can
be in equilibrium with F -+ F".

The equilibria existing in the three cases treated above may become
completely or partly metastable, by the occurrence of the heterogeneous
region LG. Also it is evident, that in the previous cases not yet a
fourphaseequilibrium I 4- F' -+ [, + G can exist.

4. the line (&) (F") is situated below the two leaves of the § surface.

We can now constrnet through the line (F) (F”) two planes of
contact on each of the two leaves of the § surface. The two saturation-
curves therefore, intersect each other in two points, situated on both
sides of the line FF". The same applies to the two vapoursaturation-
curves. Therefore two solations exist, saturated with F—+ F” and
two vapours, saturated with 7' F”.

In fig. 1, z and u are the points of intersection of the two satu-
rationcurves ; the points of intersection of the two vapoursaturation-
curves @, 0, and z, y, have not been drawn; we shall call these z, and
u, ; we imagine z, on the same side of the line FF” as the point z,
and w, on the same side as w. Under this pressure and at the tem-
perature to which fig. 1 applies, the systems F - F¥ - liquid z,
F -+ F' + liquid w, I'++ F’ 4 vapourz,, and F -} F' -+ vapour u,
occur.- Of these four threephaseequilibvia of fig. 1, only the two
first however are stable.

Now let us contemplate a point of intersection of two saturation-
curves and the point of intersection of the two vapoursaturation-
curves situated on the same side of the line FF” (therefore in fig. 1
the points z and z,, or u and w,). If we imagine that through the line
T(F) (M) the two planes of contact on bath the leaves of the ¢ surface
are constructed, then the one point of contact is usually always
situated above the other surface. Because the projections of the two
points of contact of these surfaces represent the above mentioned points
of intersection, only one of both these points of intersection will
represent a stable phase.

Therefore, if we have a stable solulion saturated with F 4 I,
then the vapour saturated with /- F”, being situated on the same
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side of the line FI”, is metastable Reversally, if we have a stable
vapour saturated with 74 /7, then the liquid saturated with
F 4+ F, sitvated on the same side of the line FF” is metastable.
Only in the case that a fourphase equilibvivm F'+ 7 + L+ G
occurs, this liquid and vapour are stable at the same time.

Let us now consider the oceurrence of this system 74 7" ++ L+ G. For
the occurrence of this fdurphasecquilibiium it is not suficient that
the two threephaseequilibria F 4 £ 4 L and F -+ F' 4 G exist.
In addition it is also necessary for this, that the liquid Z of theone,
and the vapour G of the other threephase system-shall be .in equili-
brium with each other. The liquid curve ed of the heterogeneous
region LG then must go through the point of intersection of the
two saturationcurves and also the vapourcurve e,d, of the hetero-
geneous region must go through the point of inteisection of the two
vapoursaturalioncurves. Because this is not the case in tig. 1, no
fourphaseequilibrium can occur, at the temperature and under the
pressure to which fig. 1 applies. In fig. 2 however, this is indeed the
case. Therein curve ed goes through the point of intersection f of the
saturationcurves and also curve ¢,d; goes through the point of inter-
section f, of the vapoursaturationcurves. At the temperature and
under the pressure, to which this figure applies, therefore the system
F -+ F + liquid f+ vapour /, can occur. This is also the case
in fig. 3 wherein the fourphase equilibrium F - F” - liquid S 4~
vapour S, occurs. .

Now we shall consider more in detail yet two points, nl. the
situation with respect to each other of the four points F, 7, f and f,
and also that of the three curves going through the points fand f,.

In the previous communications the first point has already been
treated here and there. We have seen there that the four points
can be situated with respect to each other in seven different ways,
so that between the four phases of the system F - F' 4 L+ G
one of the seven fourphasereactions: F4F'+L2G, F+F +GZL,
CFPHLZ2F 4G, FP+L2F4-G, F+H-F'2 L+ G, #2F+ L4 G and
2 F+ L+ G oceurs.

" In the particular case that three of the four points are situated’
by chance on a straight line, (fig. 3) a threephasereaction occurs.

Let us contemplate now the three curves, going through the points
S and f,. With the aid of the indicatrix theorem, we can deduce
the rule !):

When iwo equilibrivmeurves (P and 77 constant) intersect each

Yy F. A. H. Scuremcuagers, Die heterogenen Gleichgewichie von H., W. Baxnuis
Roozepoom. 1112 116.
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other, their metastable prolongations are situated in the vieinity of
the point of intersection, both within or both outside the corresponding
threephasetriangle.

Whether the two curves themselves with respect to the other
phases are already melastable or not, does of course not effect the
validity of this rule.

When two equilibriumecurves intersect each other in a point X,
the phase X, (liquid, gas, mixed crystal) may be in equilibrium
with two other phases which we shall call A/ and N (liquid, gas,
mixed crystal ete.). The lines XM and YN form four angles; we
shall now call the angle XMN ‘thervefore, the angle being one of
the angles of the three-phase(riangle, and its opposite angle, the
threephaseangle of the point X. ,

We can express now the abovenientioned rule also in this way:

When two equilibriumcurves (£ and 7' constant) intersect each
other, buth curves are situated in the vicinity of the point of inter-
section, either within or outside the threephaseangle of the point
of intersection.

In the figures 1, 2, and 3 we see, that the position of the curves
in the vicinity of their points of intersection is in agreement with
this rule.

Let us take for instance the point of intersection a in fig. 1 or 2.
In this point @ the curves dz and wa intersect each other and
therefore the equilibrium £ - liquid # - vapour &, occurs. The
threephaseangle of the point 2 therefore is /@, @ F” and its
opposite angle. The curves de and wa are drawn in fig. 1 and 2
within this angle, in fig. 3 (herein wzx is veplaced by S:) outside
this angle.

Let us now take a point of intersection of three curves as for
instance the point f in fig. 2. Taking these curves two and iwo,
we have three pairs of curves; the abovementioned rule is appli-
cable to each of these pairs.

If we contemplate the pair of curves fz and uzf, the equilibrium
F'+  liquid f-- vapour f, occurs in f. The threephaseangle
of the point f is therefore , f,fF and its opposite angle. The
curves dfe and uxf are both drawn within this angle.

If we contemplate the pair of curves dfe and ubf, then in f
occurs the equilibrium I+ liquid /- vapour f,; the threephase-
angle of the point f is therefore  f,/F and ils opposite angle.
The curves dfe and udf arve both drawn within this angle.

If we contemplate the pair of curves wuxy and wubf, then in f
occurs the equilibrinm F - I 4 liquid £, the threephaseangle of
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the point f is now FfF and its opposite angle. The curves wzf
and ubf are both drawn within this angle.

Similar contemplations apply also to thé three curves which inter-
sect each other in the point f.

A relation exists also between the position of the curves in the
point f and in the point f,. This however we shall not diseuss~
any further here.

In all our previous considerations we have always contems<
plated saturationcurves under their own vapourpressure and boiling
pointecurves of a simple form, nl. curves existing only of a
single branch. Under definite circumstances however also curves
of a more composite form may occur. Here we shall briefly treat
such a boilingpointcurve.

We take a ternavy wmixture, wherein the system L—G has a
ternary point of minimum pressure, therefore also a ternary point
of maximum temperature.

We suppose now that at a definite P and 7’ the relations of
fig. 1 (III) occur. Herein we find a closed region L—@G and within
the liquid region the saturation line of the compound F. We
keep the pressure constant and raise the temperature; the liquid-
region then becomes smaller or in other words:

The liquid curve of the region L-—( contracts. Further we assume
that heat is required for dissolving F, so that the saturationcurve
of F contracts also.

1f the saturationcurve of F contracts more rapidly than the liquid
curve of the region Z—(, then no points of intersection arise and
therefore under the assumed pressure also no boilingpointcurve of
F exists.

When the liquidcurve of the region L—G contracts more rapidly
than the saturationcurve of ZF, at a definite temperature 7, contact
takes place. We imagine in fig. 1 (III) that the curves are shifted
in such a way, that anywhere on the left side of F a point of
contact m arises. If the temperature rises still more, now two points
of intersection arise, which move away from each other and shift
towards the right. Now different cases may occur of which we have
already treated some in communication (IlI). We assume that on a
further increase of 7' the two points of interscction coincide any-
where on the right side of /' in a point M.

We may now obtain a diagram as fig. 4. While at the tempe-
rature 7, the saturationcurve of /' is surrounded by the liquidcurve
~of the region L—@, at the temperature 77y (fig. 4) it is just the

-10 -
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reverse. In ﬁg 4 the point FF is siluated within the region L—G;
- of course it may also be situated in the

liquid- or gasregion.
Further in fig. 4 the vapourcurve of
! the region L—@ intersects the saturation
curve of F'; however, it may also sur-
round this curve so that the saturation-
eurve is situated completely within the
Fig. 4. region L—(@. We shall confine ourselves

in the folloywing to the case drawn in fig. 4.

When on further increase of 77 the liquid curve of the region
L-—G contracts now still more rapidly than the saturationcurve
of F, no new points of intersection make their appearance.
We have then obtained a boilingpointcurve of a simple form
with a minimum boilingpoint in m and a maximum boilingpoint
in M. It surrounds the point F and is itself surrounded by its
corresponding vapourcurve.

We will assume however that the saturationcurve of F and the
liquideurve of the region L—G move in the point M of fig. 4
with the same rapidity (further we shall see under what conditions
such a ecase is possible). While at a temperature somewhat lower
than 77y the saturationcurve of F moves in the vicinity of M more
slowly than tbe liquid curve of the region L—@, at a temperature
somewhat higher than 77y this is just the reverse.

Consequently on increase of 7 above T’y in the vieinity of the point M,
two points of intersection occur (again), which shift towards the left on
further increase of 7 and finally coincide in a point . At this tempera-
tare 7'q the saturationcurve of I and the liquid curve of the region
L—@G touch one another again therefore in a point Q. However
the two curves are situated now completely outside each other. The
liquidregion therefore is now situated completely oulside the saturation-
curve of /7 and not as at the tcmperature 7'y (fig. 4) within this
curve. On further increase of 7’
points of intersection occur no
more.”

The boilingpointcurve will
now have a form as curve
mMQ in fig. 5: it shows a
double point in M. The tem-
perature increases in the dirvec-
tion of the arrows, it is" a
minimom in m, a maximum in

-11 -
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Q. The corresponding vapour-curve m A/ Q, is dotted. Tn fig 5
the part M,Q,M, is drawn cwcumphased. Of course it-may be
also exphased. -

If we determine the boilingpointcurve of & under a pressure somewhat
different from that, to which fig 5 applies, the boilingpointcurve
will suffer also a small change of form. The double point M dis--
appears and either two branches separated from each other occur,
of which the one surroands the other, of one single curveis formed which
is very concave and which has two parts which are curvéd sharply
towards each other. The same applies to the corresponding vapour-
curve. When in a system Dboilingpointcurves as deduced above,
occeur, some of our previous deductions must be changed to a certain
exlent and they must be completed, this however is left to the 1eader.

Now we may shll determine under what conditiors the
ligndeurve of the region L—G and the saturationcurve of F will
move with the same rapidity mn the pomt M of fig. 4.

To the saturationcurve of F applies:

[(a—a)r + (B—y)slda + [(a—a)s + (B—p) t]dy = BdT . (1)
To the liquidcurve of the region L—G':

[(z,—2) 7 + (4, —y) sl de + (&, — &) s + (y.—y) t] dy = — Dde  (2)
(For the significance of B and D see communication (II)).
We now take any point M of the saturationcurve of #. We call
I the length of the line FA1. The saturationcurve of the temperature
7+ dT will mtersect the line M in a point 3/’ in the vicmity
of M. We put MM’ =dl and we take d/ positive in the direciion
from 1M towards F. We then have:
da d dl
a_@:g—_q——:—l— R )]
: ¥
If we substitute these values of dv and dy in (1), it follows that:
BldT

dl = - — . 4
e N Y | R @
or:
B
Al —=—-—dt
1K cos® )
wherein :
K—=v»+4 2‘3—‘1/3 + (ﬁ—2> t and (a—x) =1’ cos* ip.
a—a a—a

Therefore ¢ is the angle which the line /7 M forms with the X-axis.
We now take any point M/ of the liquideurve of the region L—G-

-12 -
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We put /, the length of the conjugationline MM, which joins the
ligmd Al with its corresponding vapour M,. The liquidline of the
temperature 7'+ d7' will now iniersect this conjugationline in a
point M’ in the viemty of 3. We represent MM’ by dI, ; we take
dl, positive in the direction from M towards M,. We then find from (2)
D

d, = ——————d7r. . . . . . . (6
! [, K, cos® p, ()

wherein :

K =r+2 h¥, + (y‘_'y) t and (s,—a)® = ,® cos® ¢p,.

¢, —& Ty—C

¢, therefore is the angle which forms the conjugationline MM,
with the X-axis.

We now suppose 1st that the saturationcurve of /' and the
liquidcurve of the region L— G go through a same point M;

214 that the two curves touch each other mn that point.

From 1stit follows that », s and ¢ have the same value in K and K
and that B and D apply to the same liquid.

From 2vd it follows, as is easily deduced, from the equations of
the two curves, (P and 7 constant) that:

B—y _y.—y

a—a 8,—

and therefore also ¢ =, The meaning of this is that the lines
FM and MM, coincide. This follows as we saw already before,-
also immediately from the indicatrix theorem. From this now it
follows that we may substitute /, £ and ¢ in (6) for /,, %, and ¢,.
We then obtain:

D

dll = — m d] . . . . . . . (7)

Now D is positive; il we assume further that heat is to be
supplied for dissolving solid /7, then B is also positive. From this
it follows that d/ and d/, always have an opposile sign. In order that
the liquidcurve of the region L—G and the saturationcurve of 2
may move in the same direction, when 7' 1s changed, the point M
must therefore be sitnated between the points /' and M,. This 1s
then also in agreement witk fig. 4.

From (5) and (7) it follows, thal the two curves will move with
the same rapidity as
B D
=7

ll........(S)

-13 -
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We may find this condition also in the following way. The
boilingpointcurve of F' is fixed by :

[(a—a) 7 + (B—y)s] de + [(a—2)s + (B—3) ] dy = BdT . (9)

M)+ (g,—y) o] do -+ ((m,—2) s + (y—y) ] dy = — D.aT (10)
From this follows -
(Pr+ Qs)de + (Ps+Q@dy=0. . . . . (1)
wherein .

P=(r—a) D + (z,—=) Band Q= B—~y) D + (y,—y) B.
In order that the point of the curve under consideration may be -

an isolated or a double point, the coefficient of dx and dy must be
= 0. Therefore P=0 and Q=20 or
(«—2) D + (1,~a) B=0 and (B—y) D + (3,—) B=0. (12)
If B and D are not = 0, then
B—y. 4%~y
a—s & —a
follows, which we have also found for this. This means, that the
considered point, its corresponding vapour and the point /' are
situated on a straight line. Further it follows that the liquidcurve
of the region L—G and the saturationcurve of F touch each other
in the contemplated point. If we substitute for B and D their values
in (12), then we find: ’

@—2)H, + (v—a ) + (v, —a)H=10 . . . . (13)

or
F—nH, + G-y + @—HE=0. . . . (14
The first part of (13) and (14) represenis the change of entropy
when a reaction takes place between the three phases F, L,and G.
From this it follows {herefore, that the contemplated point of the
boilingpointcurve will be an isolated or a double point, when an
isentropic reaction takes place beiween the three phases /, L and
(; in other words, svhen no leat must be supplied or removed.
In (8) the same is expressed in quile an other form as in (13) and
(14). In order to examine whether the contemplated point is an
isolated or a double point, we must calculate terms of higher order,
namely Ade® + Bdady + Cdy*.
Because the fixing of 4, B, and (C gives cause for extensive
calculations, we will leave that aside.

To be continued.
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