Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

F.A.H. Schreinemakers, Equilibria in ternary systems. X, in:

KNAW, Proceedings, 16 I, 1913, Amsterdam, 1913, pp. 540-552

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Chemistry. - "Equiitibria in ternary systems." X. By Prof. F. A. H. Sclireinemakers.

After having deduced in the previous communication the diagrams for a constant temperature (the saturation- and rapoursaturationcurves under their own vapourpressure), and for a constant pressure (the boilingpointcurves and their corresponding rapourcurves), we will deduce now the diagrams for a constant temperature and pressure. We may act for this in the same way as in communication I. For this we imagine for instance in figure 1 (1) besides the saturationcurve of the compound F also one of the compound $F^{\prime \prime}$. Both these saturationcurves may then be situated either outside each other or they may intersect each other, or the one may surround the other. We imagine both curves situated completely in the liquid-region.

Becatse the heterogeneous region shifts on decrease of pressure in such direction that the liquidregion becomes smaller and the vapourregion becomes greater, under a certain pressure the liquid-curve $e d$ of the heterogeneous region will touch one of the saturationcurves. When it touches that of F, sve obtain figure 2 (I) wherein the saturationcurve of $F^{\prime \prime}$ is to be unagined. This is then still completely situated in the liqudregion and may be situated with respect to that of F in the abovementioned ways. Of all the solutions saturated with F or with F^{\prime} at this pressure, therefore, only one exists, namely saturated with F, that can be in equilibrium with vapour.

On further decrease of pressure figure 3 (l) now arises; herein we imagine the second saturationcurve, still completely in the liquidregion, and whether or not intersecting that of F. Of all solutions saturated wilh F or with F^{\prime} at this pressure now two liquids exist, saturated with F (a and b) which may be in equilibrium with vapour (a_{1} and b_{1}). On further decrease of pressure very many cases may now occur. At first we assume that both the saturationcurves are situated completely outside each other and rest also outside each other in the comtemplated pressure-interval. On decrease of pressure the heterogeneous region shifts over the saturationcurve of F, attains at a certain pressure the saturationcurve of F^{\prime}, and on further decrease of pressure shifts also over this.
We may distinguish for this two principal cases:

1. the saturationcurre of A is situaled already completely outside the liquidregion before the liquidcurve ed of the heterogeneous region touches the saturationcurve of $\vec{F}^{\prime \prime}$;
2. the salurationcurve of F is situated still partly in the liquid-
region, when the liquidcurve ed of the heterogeneous region touches the saturationcurve of $F^{\prime \prime}$.

In the latter case, therefore, there is a series of pressures under which at the same time two liquids saturated with F and two with $F^{\prime \prime}$ may be in equilibrium with vapour. Solutions saturated with $F+F^{\prime \prime}$ do not exist.

When both the liquidcurves intersect each other numberless cases are to be distinguished, of which we shall only discuss a few. Imagining for instance in fig. 3 (L) that the vapoursaturation curve of $F^{\prime \prime}$ is also drawn, then we can obtain a diagram as fig 1 . The liquidline $d-e$ of the heterogeneous region. intersects the saturation-

Fig. 1. curve of F in a and b and that of F^{\prime} in n and y; the vaponrcurve of the heterogeneous region intersects the vapoursaturationcurve of F in a_{1} and b_{1} and that of F^{\prime} in x_{1} and y_{1}. The saturationcurves of F and of F^{\prime} intersect each other in u and z.

At the temperature and under the pressure to which figure 1 applies, therefore, besides the solutions satirated with solid F of branch $b u$ and $a z$ and the solutions saturated with solid $F^{\prime \prime}$ of branch $x u$ and $y z$, there still exist also the two solutions u and z, saturated with $F+F^{\prime}$. The liquids of branch $d x$ may be in equilibrium with the vapours of $d_{1} x_{1}$; the liquids of $y a$ with the vapours of $y_{1} a_{1}$, the liquids of $b e$ with the vapours of $b_{1} e_{1}$. The solid phase F can exist together with the vapours of branch $a_{1} b_{1}$; the solid phase $F^{\prime \prime}$ together with the vapours of branch $x_{1} y_{1}$.

Further there are four liquids saturated with a solid phase which may be at the same time in equilibrium with a vapour. Therefore, there exist four threephasecomplexes: solid + liquid + vapour, nl. $F+$ liquid $a+$ vapour $a_{1}, F+$ liquid $b+$ vapour $b_{1}, F^{\prime}+$ liquid $x+$ vapour x_{1}, and $F^{\prime}+$ liquid $y+$ vapour y_{1}. Besides the great. liquidregion, indicated by L we find also in the figure the small liquidregion $a z y$.

On decrease of pressure figure 1 may pass now into figure 2. The points a, y, and z of figure 1 coincide in figure 2 in the point f, the points a_{1} and y_{1} of fig. 1 coincide in fig. 2 in the point f_{1}.

The metastable part $b x$ of curve de must therefore go through point f and the metastable part $x_{1} b_{1}$ of curve $d_{1} \rho_{2}$ must go through the point f_{2}. Fig. 2 may also be imagined to have arisen from fig. 1 in that the threephasetriangles $F F^{\prime \prime} z, F a a_{1}$ and Fyy move until they toucb along one side.

Of the two solutions u and f, saturated with $F+F^{\prime \prime}$, the latter may be in equilibrium with the vapour f_{1}; at the temperature and under the pressure to which fig. 2

lig. 2. applies, therefore, the fourphaseequilibrium $F+F^{\prime}+$ liquid $f+$ vapour f_{1} occurs.
If the pressure decreases still more, a diagram occurs which we shall call figure $2 a$. We obtain this figure $2 a$ when we leave the point f in fig. 2 out of account. The two saturationcurves and curve de then go no more through one point; nor the two vapoursaturationcurves and curve $d_{1} c_{1}$. Only one solution now exists, nl. u, saturated with $F+F^{\prime}$; the other is metastable and replaced by the vapour f_{1}, which may be in equilibrium with the complex $F+F^{\prime \prime}$. The fortrphaseequilibrium occurring in fig. 2 has vanished of course also in fig. $2 a$.
We shall now contemplate the diagram, occurring at the mini-mum-melting point of the complex $F+F^{\prime}$, one of the many possible diagrams is drawn in fig. 3, wherein also are indicated the metastable parts of the two saturationcurves and of the liquid- and vapour-curve of the heterogeneous region.
Fig. 3 can be imagined to have arisen from fig. 2 in the following way. We change the temperature and the pressure in such a way, that we retain a diagram as tig. 2 ; the fourphase equilibrium $F+F^{\prime}+$ liquid $f+$ vapour f_{1} therefore remains, althougb f and f_{1}^{\prime} change of course their composition. A similar change of pressure and temperature is always possible when we change these in accordance with the P, T-curve of the fourphase equilibrium $F+F^{\prime}+L+G$. We take this change now in such

Fig. 3.
direction that the liquideurve ed of the beterogeneous region, and therefore also the point f in fig. 2 shifts towards the line $F F^{\prime}$. At a definite temperature and pressure the points u and f coincide then on the line $F T F^{\prime \prime}$ and fig. 3 may arise; herein however f is replaced by S and f_{1} by S_{1}. Therefore the fourphaseequilibrium $F+F^{\prime \prime}+$ liquid $S+$ vapour S_{1} occurs, wherein the liquid S is represented by a point on the line $F F^{\prime}$. The pressure and temperature to which fig. 3 applies, agree therefore with the minimum meltingpoint of the complex $F+F^{\prime \prime}$.
From the situation of S with respect to F and $F^{\prime \prime}$ it follows that in fig. 3 a congruent melting of the complex $F+F^{\prime}$ is assumed. With an incongruent melting either F or $F^{\prime \prime}$ should be situated between the two other points.

Berause the point S is situated on the line $F l l^{\prime \prime}$, the two saturationcurves must tonch each other in S. We now imagine in S the common tangent of the two satarationcurves and also the tangent to curve ed to be drawn. For the sake of simplicity we shall call the first the tangent S and the second the tangent $d e$.

Now, as is known, the tangent S and the line $F F^{\prime}$ are conjugated diameters of the indicatrix in S; the same applies to the tangent ed and the line $S S_{1}$. Because the indicatrix in S is an ellipse, on the turning of a diameter its conjugated one moves in the same direction; the lines $S S_{1}, F F F^{\prime}$ and the two tangents must therefore be situated with respect to each other as in fig. 3. The point S_{1} must therefore in fig. 3 be situated on the same side of the tangent S as the point $E^{\prime \prime}$, when however $F^{\prime \prime}$ is situated within the liquid region and F outside that region, then S_{1} is situated on the same side of tangent S as the point F. Also in the case, that the points F and $F^{\prime \prime}$ are situated both at the same time either within or outside the liquidregion, the situation of S_{1}, with respect to the tangent S is eass to indicate.

Besides the cases treated above, there are still numberless others which the reader can easily deduce for himself. For that reason we shall only still contemplate some points more in detail.

We take at a definite P and T the two solid phases F and F^{\prime}; perpendicular to the concentration diagram we draw the ζ of these substances; we shall call these points (F) and $\left(F^{\prime \prime}\right)$.

When the point $\left(F^{\prime}\right)$ is situated below the liquid- and the vapour leaf of the ζ surface, then the compound F occurs in solid state. We can then construct two cones, which have both their apexes in (77) and of which the one touches the liquidleaf and the other the vapourleaf
of the ζ surface. As well a saturation- as a rapoursaturationcurve of the compound F exists therefore. When we contemplate the two curves with respect to each other, then either one completely or a part of both is metastable.

When the point (F) is situated below the liquid- but above the vapourleaf of the ζ surface, the compound F only exists in vapourform. Then not a vapoursaturalioncurve exists, but a metastable saturationcurve of F, therefore a series of metastable solutions, saturated with F.

When the point (F^{F}) is situated below the rapour-, but above the liquideaf of the ζ surface, the compound F exists only in liquid stateThen not a saturation-, but a metastable rapoursaturation curve of F exists, therefore a series of metastable vapours in equilibrium with F.

When the point (F) is situated above both the leaves of the ζ surface, then the compound F occurs in liquid or in vapour-state, according as below the point (F) the liquid- or the vapourleaf is situated the lowest. Then neither a saturation- nor a vapoursaturationcurve of F exists.

The four above mentioned cases apply of course also to the compound F^{\prime}.

We now take a pressure and a temperature at which F and $F^{\prime \prime}$ are both solid. The points (F) and $\left(F^{\prime \prime}\right.$) are then situated below both the leaves of the ζ surface and each of the compounds has then a saturation- and a vapoursaturationcurve.

We distinguish now four cases:

1. the line $(F)\left(F^{\prime \prime}\right)$ iniersects both the leaves of the ζ surface.

We cannot construct through the line $\left(F^{\prime}\right)\left(F^{\prime}\right)$ a plane of contact on one of the leaves of the ζ surface; the two saturationcurves, therefore, do not intersect each other, nor the two vapoursaturationeurves. The two saturationcurves may now be situated completely outside each other, or the one may surround the other; the same applies to both the vapoursaturationcurves. Therefore neither a liquid nor a vapour exists in equilibrium with $F+F^{\prime}$.
2. The line $\left(F^{\prime}\right)\left(F^{\prime}\right)$ intersects the liquidsurface, but is situated below the vapourleaf of the ζ surface.

Because we cannot construct through the line $\left(F^{\prime}\right)\left(F^{\prime}\right)$ a plane of contact on the liquidleaf, the two saturationcurves do not intersect each other, so that the one is situated outside the other, or the one surrounds the other.

We can (however) quite well construct two planes of contact on the vapourleaf through the line $(F)\left(F^{\prime}\right)$. The two vapoursaturationcurves, therefore, intersect each other in two points.

There exists therefore no hquid saturated with $F+F^{\prime}$. Two vapours exist however, each of which may be in equilibrium with $F+F^{\prime \prime}$.
3. The line $(F)\left(F^{\prime \prime}\right)$ intersects the vapouleaf, but is situated below the liquidleaf of the ζ surface.

It is evident, that now the two saturationcurves intersect each other in two points, while the two vapoursáturationcurves are situated outside each other or the one surrounds the other. Therefore two solutions exist, saturated with $F+F^{v}$, but not a vapour which can be in equilibrium with $F+F^{\prime}$.

The equilibria existing in the three cases treated above may become completely or partly metastable, by the occurrence of the heterogeneous region $L G$. Also it is evident, that in the previous cases not yet a fourphaseequilibrium $F+F^{\prime}+L+G$ can exist.
4. the line $(F)\left(F^{\prime}\right)$ is situated below the two leaves of the ζ surface.

We can now construct through the line $(F)\left(F^{\prime}\right)$ two planes of contact on each of the two leaves of the ζ surface. The two saturationcurves therefore, intersect each other in two points, situated on both sides of the line $F F^{\prime \prime}$. The same applies to the two vapoursaturationcurves. Therefore two solutions exist, saturated with $F+F^{\prime}$ and two vapours, saturated with $F^{\prime}+F^{\prime}$.

In tig. 1, 2 and u are the points of intersection of the two saturationcurves; the points of intersection of the two vapoursaturationcurves $a_{1} b_{1}$ and $x_{1} y_{1}$ have not been drawn; we shall call these z_{1} and u_{1}; we imagine z_{1} on the same side of the line $F F^{\prime}$ as the point z, and u_{1} on the same side as u. Under this pressure and at the temperature to which fig. 1 applies, the systems $F+F^{\prime}+\operatorname{liquid} z$, $F^{\prime}+F^{\prime}+$ liquid $u, F+F^{\prime}+$ vaponr z_{1}, and $F+F^{\prime}+$ vapour u_{1} occur.- Of these four threephaseequilibria of fig. 1, only the two first however are stable.

Now let us contemplate a point of intersection of two saturationcurves and the point of intersection of the two vapoursaturationcurves situated on the same side of the line $F F F^{\prime}$ (therefore in fig. 1 the points z and z_{1}, or u and u_{1}). If we imagine that through the line $(F)\left(F^{\prime}\right)$ the two planes of contact on both the leaves of the ζ surface are constructed, then the one point of contact is usually always situated above the other surfare. Because the projections of the two points of contact of these surfaces represent the above mentioned points of intersection, only one of both these points of intersection will represent a stable phase.

Therefore, if we have a stable solution saturated with $F+P^{\prime \prime}$, then the vipour saturated with $F^{\prime}+F^{\prime}$, being situated on the same
side of the line $F F^{\prime}$, is metastable Reversally, if we lave a stable vapour salurated with $F+F^{\prime \prime}$, then the liquid saturated with $F+F^{\prime \prime}$, situated on the same side of the line $F F^{\prime \prime}$ is metastable. Only in the case that a fourphase equilibrium $F+F^{\prime \prime}+L+G$ occurs, this liquid and vapour are stable at the same time.

Let us now consider the occurrence of this system $F+F^{\prime \prime}+L+G$. For the occurrence of this forurphaseequilibium it is not sufficient that the two threephaseequilibria $F+F^{\prime}+L$ and $F+F^{\prime}+G$ exist. In addition it is also necessary for this, that the liquid L of the one, and the vapour G of the orher threephase system-shall be in equilibrium with each other. The liquid curve ed of the heterogeneons region $L G$ then must go through the point of intersection of the two saturationcurves and also the vapourcurve $e_{1} d_{1}$ of the heterogeneous region must go through the point of intersection of the two vapoursaturationcurves. Because this is not the case in fig. 1, no formphaseequilibrium can occur, at the temperature and under the pressure to which tig. 1 applies. In fig. 2 however, this is indeed the case. Therein curve ed goes through the point of intersection f of the saturationcurves and also curve $e_{1} d_{1}$ goes through the point of intersection f_{1} of the vapoursaturationcurves. At the temperature and under the pressure, to which this figure applies, therefore the system $F+F^{\prime}+$ liquid $f+$ vapour f_{1} can occur. This is also the case in fig. 3 wherein the fourphase equilibrium $F+F^{\prime}+\operatorname{liquid} S+$ vapour S_{1} occurs.

Now we shall consider more in detail yet two points, nl. the situation with respect to each other of the four points $F, F^{\prime \prime}, f$ and f_{1} and also that of the three curves going through the points f and f_{1}.

In the previous communications the first point has already been treated here and there. We have seen there that the four points can be situated with respect to each other in seven different ways, so that between the four phases of the system $F+F^{\prime \prime}+L+G$ one of the seven fourphasereactions: $F+F^{\prime \prime}+L \rightleftarrows G, F+F^{\prime \prime}+G \rightleftarrows L$, $F+L \rightleftarrows F^{\prime}+G, F^{\prime}+L \rightleftarrows F+G, F+F^{\prime} \rightleftarrows L+G, \vec{\rightleftarrows} \rightleftarrows F^{\prime}+L+G$ and $F^{\prime} \rightleftarrows F+L+G$ occurs.

In the particular case that three of the four points are situated. by chance on a straight line, (fig. 3) a threephasereaction occurs.
Let us contemplate now the three curves, going through the points f and f_{1}. With the aid of the indicatrix theorem, we can deduce the rule ${ }^{1}$:

When two equilibriumcurves (P and T constant) intersect each ${ }^{\text {1 }}$) F. A. H. Schreincmakers, Die heterogenen Gleichgewichte von H. W. Bakhuis Roozeboom. III $^{2} 116$.
other, their metastable prolongations are sitnated in the vicinity of the point of intersection, both within or both outside the corresponding threephasetriangle.

Whether the two curves themselves with respect to the other phases are already metastable or not, does of course not effect the validity of this rule.

When two equilibriumcurves intersect each other in a point X, the phase X, (liquid, gas, mixed crystal) may be in equilibrium with two other phases which we shall call M and N (liquid, gas, mixed crystal etc.). The lines $X M$ and $X N$ form four angles; we shall now call the angle $X M N$ therefore, the angle being one of the angles of the three-phasetriangle, and its opposite argle, the threephaseangle of the point X.

We can express now the abovenentioned ruie also in this way:
When two equilibriumcurves (P and T constant) intersect each other, buth curves are situated in the vicinity of the point of inter'section, either within or outside the threephaseangle of the point of intersection.

In the figures 1, 2, and 3 we see, that the position of the curves in the vicinity of their points of intersection is in agreement with this rule.

Let us take for instance the point of intersection a in fig. 1 or 2 . In this point x the curves $d x$ and $u x$ intersect each other and therefore the equilibrium $F^{\prime}+$ liquid $x+$ vapour x_{1} occurs. The threephaseangle of the point x therefore is $\angle v_{1} x F^{\prime}$ and its opposite angle. The curves $d x$ and $u x$ are drawn in fig. 1 and 2 within this angle, in fig. 3 (herein $u x$ is replaced by S_{u}) outside this angle.

Let us now take a point of intersection of three curves as for instance the point f^{\prime} in fig. 2. Taking these curves two and two, we have three pairs of curves; the abovementioned rule is applicable to each of these pairs.

If we contemplate the pair of curves dfe and uaf, the equilibrium $F^{\prime}+$ liquid $f+$ vapour f_{1} occurs in f. The threephaseangle of the point f is therefore $\angle f_{1} f F^{\prime \prime}$ and its opposite angle. The curves dfe and urf are both drawn within this angle.

If we contemplate the pair of curves $d f e$ and $u b f$, then in f occurs the equilibrium $F+$ liquid $f+$ vapour f_{1}; the threephaseangle of the point f is therefore $\angle f_{1} f f^{7}$ and its opposite angle. The curves $d f e$ and ulf f are both drawn within this angle.
If we contemplate the pair of curves urf and ubf f, then in f^{\prime} occurs the equilibrium $F+F^{\prime \prime}+$ liquid f, the threephaseangle of
the point f is now $F f^{\prime} F^{\prime \prime}$ and its opposite angle. The curves uref and $u b f$ are both drawn within this angle.

Similar contemplations apply also to the three curves which intersect each other in the point f_{1}.

A relation exists also between the position of the curves in the point f and in the point f_{1}. This however we shall not discussany further here.

In all our previous considerations we have always contem= plated saturationcurves under their own vapourpressure and boilng pointcurves of a simple form, nl. curves existing only of a single branch. Under definite circumstances however also curves of a more composite form may occur. Here we shall briefly treat such a boilingpointcurve.

We take a ternary mixture, wherein the system $L-G$ has a ternary point of minimum pressure, therefore also a ternary point of maximum temperature.

We suppose now that at a definile P and T the relations of fig. 1 (III) occur. Herein we find a closed region $L-G$ and within the liquid region the saturation line of the compound F. We keep the pressure constant and raise the temperature; the liquidregion then becomes smaller or in other words:

The liquid curve of the region $L-G$ contracts. Further we assume that heat is required for dissolving F, so that the saturationcurve of F contracts also.

If the saturalioncurve of F contracts more rapidly than the liquid curve of the region $L-G$, then no points of intersection arise and therefore under the assumed pressure also no boilingpointcurve of F exists.

When the liquidcarve of the region $L-G$ contracts more rapidly than the saturationcurve of F, at a definite temperature T_{m} contact takes place. We imagine in fig. 1 (III) that the curves are shifted in such a way, that anywhere on the left side of F a point of contact m arises. If the temperature rises still more, now two points of intersection arise, which move away from each other and shift towards the right. Now different cases may occur of which we have already treated some in communication (III). We assume that on a further increase of T the two points of intersection coincide anywhere on the right side of F in a point M.

We may now obtain a diagram as tig. 4. While at the temperature T_{m} the saturationcurve of F is surounded by the liquidcurve of the region $L-G$, at the temperature $T_{M L}$ (fig. 4) it is just the
reverse. In fig. 4 the point F is siluated within the region $L-G$;

Fig. 4. of course it may also be situated in the liquid- or gasregion.

Further in fig. 4 the vapourcurve of the region $L-G$ intersects the saturation curve of F; however, it may also surround this curve so that the saturationcurve is situated completely within the region $L-G$. We shall confine ourselves in the following to the case drawn in fig. 4.
When on further increase of T the liquid curve of the region $L-G$ contracts now still more lapidly than the saturationcurve of F, no new points of intersection make their appearance. We have then obtained a boilingpointcurve of a simple form with a minimum boilingpoint in m and a maximum boilingpoint in M. It surrounds the point F and is itself surrounded by its corresponding vapourcurve.

We will assume however that the saturationcurve of F and the liquidcurve of the region $L-G$ move in the point M of fig. 4 with the same rapidity (further we shall see under what conditions such a case is possible). While at a temperature somewhat lower than T_{M} the saturationcurve of F moves in the vicinity of M more slowly than the liquid curve of the region $L-G$, at a temperature somewhat higher than T_{M} this is just the reverse.
Consequently on increase of T above T_{M} in the vicinity of the point M, two points of intersection occur (again), which shift towards the left on further increase of T and finally coincide in a point Q. At this temperature T_{Q} the saturationcurve of F and the liquid curve of the region $L-G$ touch one another again therefore in a point Q. However the two curves are situated now completely outside each other. The liquidregion therefore is now situated completely outside the saturationcurve of F and not as at the tomperature T_{M} (fig. 4) within this
 curve. On further increase of T points of intersection occur no more.
The boilingpointcurve will now have a form as curve $m M Q$ in fig. 5 : it shows a double point in M. The temperamre increases in the direction of the arrows, it is a minimum in m, a maximum in
Q. The corresponding vapour-curve $m_{1} M_{1} Q_{1}$ is dotted. In fig 5 the part $M_{1} Q_{1} M_{1}$ is drawn crrcumphased. Of course it may be also exphased.
If we determine the boilingpointcurve of F under a pressure somewhat different from that, to which fig 5 applies, the bollingpointcurve will suffer also a small change of form. The double point M disappears and either two branches separated from each other occur, of which the one surrounds the other, or one single curve is formed which is very concave and which has two parts which are curved sharply towards each other. The same applies to the corresponding vapourcurve. When in a system bollingpointcurves as deduced above\% occur, some of our previous deductions must be changed to a certain extent and they must be completed, this however is left to the reader.

Now we may stall determine under what conditions the liqudcurve of the region $L-G$ and the saturationcurve of F will move with the same rapidity in the point M of fig. 4.

To the saturationcurve of F applies:

$$
\begin{equation*}
[(\alpha-a) r+(\beta-y) s] d a+[(a-x) s+(\beta-y) t] d y=B d T \tag{1}
\end{equation*}
$$

To the liquideurve of the region $L-G$:

$$
\begin{equation*}
\left[\left(x_{1}-x\right) r+\left(y_{1}-y\right) s\right] d x+\left\lfloor\left(x_{1}-x\right) s+\left(y_{1}-y\right) t\right] d y=-D d t \tag{2}
\end{equation*}
$$

(For the significance of B and D see communication (II)).
We now take any point M of the saturationcurve of F. We call l the length of the line $F M$. The saturationcurve of the temperature $T+d T$ will mtersect the line $F M$ in a point M^{\prime} in the viemity of M. We put $M M^{\prime}=d l$ and we take $d l$ positive in the direction from M towards F. We then have:

$$
\begin{equation*}
\frac{d x}{a-x}=\frac{d y}{\beta-y}=\frac{d l}{l} \tag{3}
\end{equation*}
$$

If we substitute these values of $d v$ and $d y$ in (1), it follows that:

$$
\begin{equation*}
d l=\frac{B l d T}{(\alpha-x)^{2} r+2(\alpha-x)(\beta-y) s+(\beta-y)^{2} t} . \tag{4}
\end{equation*}
$$

or:

$$
\begin{equation*}
d l=\frac{B}{l K \cos ^{\theta} \varphi} d t \tag{5}
\end{equation*}
$$

wherein:

$$
K=r+2 \frac{\beta-y}{\alpha-x} s+\left(\frac{\beta-y}{\alpha-a}\right)^{2} t \text { and }(\alpha-x)^{2}=l^{3} \cos ^{2} p
$$

Therefore φ is the angle which the line $\vec{F} M$ forms with the X -axis. We now take any point M of the liquidcurve of the region $L-G$.

We put l_{1} the length of the conjugationline $M M_{1}$ which joins the liquad M with its corresponding vapour M_{1}. The liquidline of the temperature $T+d T$ will now mtersect this conjugationline in a point M^{\prime} in the vicmity of M. We represent $M M^{\prime}$ by $d l_{1}$; we take $d l_{1}$ positive in the direction from M towards M_{1}. We then find from (2)

$$
\begin{equation*}
d l_{1}=-\frac{D}{l_{1} K_{1} \cos ^{2} \varphi_{1}} d \underline{T} . \tag{6}
\end{equation*}
$$

wherein:

$$
K_{1}=r+2 \frac{y_{1}-y}{x_{1}-v} s+\left(\frac{y_{1}-y}{x_{1}-x}\right)^{2} t \text { and }\left(v_{1}-a\right)^{2}=l_{1}^{2} \cos ^{2} \varphi_{1} .
$$

φ_{1} therefore is the angle which forms the conjugationline $M M_{1}$ with the X-axis.
We now suppose $1^{\text {st }}$ that the saturationcurve of F and the liquideurve of the region $L-G$ go through a same point M;
$2^{\text {id }}$ that the two curves touch each other in that point.
From $1^{\text {st }}$ it follows that r, s and t have the same value in K and K_{1} and that B and D apply to the same liquid.

From $2^{\text {nd }}$ it follows, as is easily deduced, from the equations of the two curves, (P and T constant) that:

$$
\cdot \frac{\beta-y}{a-x}=\frac{y_{1}-y}{x_{1}-x}
$$

and therefore also $q=f_{1}$ The meaning of this is that the lines $F M$ and $M M_{1}$ coinside. This follows as we sav already before, also immediately from the indicatrix theorem. From this now it follows that we may substitute l, k and p in (6) for l_{1}, k_{1} and φ_{1}. We then obtain:

$$
\begin{equation*}
d l_{1}=-\frac{D}{l K \cos ^{2} \varphi} d T^{\prime} \tag{7}
\end{equation*}
$$

Now D is positive; if we assume further that heat is to be supplied for dissolving solid F, then B is also positive. From this it follows that $d l$ and $d l_{1}$ always have an opposite sign. In order that the liquidcurve of the region $L-G$ and the saturationcurve of b^{2} may move in the same directon, when T ' is changed, the point M must therefore be situated between the points F and M_{1}. This is then also in agreement witb fig. 4.

From (5) and (7) it follows, that the two curves will move with the same rapidity as

$$
\begin{equation*}
\frac{B}{l}=\frac{D}{l_{\mathrm{t}}} . \tag{8}
\end{equation*}
$$

We may find this condition also in the following way. The boilingpointcurve of F is fixed by :

$$
\begin{array}{r}
{[(\alpha-v) r+(\beta-y) s \mid d u+[(\alpha-u) s+(\beta-y) t] d y=B d T} \\
\left.\cdot\left[\left(x_{1}-x\right) r+\left(y_{2}-y\right) s\right] d x+\mid\left(x_{1}-x\right) s+\left(y_{1}-y\right) t\right] d y=-D \cdot d T \tag{10}
\end{array}
$$

From this follows

$$
\begin{equation*}
(P r+Q s) d x+(P s+Q t) d y=0 \tag{.1}
\end{equation*}
$$

wherein

$$
P=(\alpha-a) D+\left(x_{1}-x\right) B \text { and } Q=(\beta-y) D+\left(y_{1}-y\right) B .
$$

In order that the point of the curve under consideration may be an isolated or a double point, the coefficient of $d x$ and $d y$ must be $=0$. Therefore $P=0$ and $Q=0$ or

$$
\begin{equation*}
(a-x) D+\left(v_{1}-x\right) B=0 \text { and }(B-y) D+\left(y_{1}-y\right) B=0 \tag{12}
\end{equation*}
$$

If B and D are not $=0$, then

$$
\frac{\beta-y}{a-v}=\frac{y_{1}-y}{x_{1}-v}
$$

follows, which we have also found for this. This means, that the considered point, its corresponding vapour and the point F are situated on a straight line. Further it follows that the liquidcurve of the region $L-G$ and the saturationcurve of F touch each other in the contemplated point. If we substitute for B and D their values in (12), then we find:

$$
\begin{equation*}
(\beta-x) H_{1}+\left(v-a_{1}\right) \eta+\left(a_{1}-\alpha\right) H=0 . \quad . \quad . \tag{13}
\end{equation*}
$$

Or

$$
\begin{equation*}
(\beta-y) H_{1}+\left(y-y_{1}\right) \eta+\left(\dot{y_{1}}--\beta\right) H=0 . . . \tag{14}
\end{equation*}
$$

The first part of (13) and (14) represenis the change of entropy when a reaction takes place between the three phases F, L, and G. From this it follows therefore, that the contemplated point of the boilingipointcurve will be an isolated or a double point, when an isentropic reaction takes place belween the three phases $l r, L$ and G; in other words, when no heat must be supplied or removed. In (8) the same is expressed in quite an other form as in (13) and (14). In order to examine whether the contemplated point is an isolated or a double point, we must calculate terms of higher order, namely $A d x^{2}+B d x d y+C d y^{2}$.

Because the fixing of A, B, and C gives cause for extensive calculations, we will leave that aside.

To be continued.

