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Physics. — “On the law of partition of energy”” V. By Prof.
: J. D. vax pegr Waars Jr. (Communicated by Prof. J. D. van
DER WAALS)

{Communicated in the meeting of March 28, 1914).

§ 10 bis. In § 10 of this series of communications®) 1 have drawn
up a formula for the dissociation equilibrium of a di-atomic gas.”
This formula, however, requires emendation. In the first place, namely,
the ¢, of the gas would not correspond with 5, but with 7 degrees
of freedom on the suppositions introduced l.c. And besides the
vibrations of the atom would consist of three equivalent degrees of
freedom, and there was no occasion to ascribe the ordinary equi-
partition amount to two of them (together representing a rotation
round the other atom), and the amount U of Pranck’s formula to
the third (the vibration in the direction of the radius vector).

To correct this we shall have to take care that the degrees of
freedom do not remain equivalent. Then it will no longer be permis-
sible to consider one atom as a point which moves in-the quasi
elastic region of the other. We shall then infroduce the following
suppositions. Every atom will have a point P, which we shall call
the pole. The line from the centre M to the pole will be called azis.
There will be a quasi elastic region G round the pole. Two atoms
will now be bound when they lie with their poles in each other's
regions (. The poteniial energy will be minimum when the poles
coincide, and when moreover the axes are one another’s continuation.

We shall introduce the fo]lowin\g coordinates for the diatomic
molecules :

1." The three coordinales of the centre of gravity 2, y:, z.. The

3
kinetic energy corresponding to them will be 5 6.

2. The distance of the centres of the atoms, or rather the displace-
ment in the divection M, M, of the points P, and P, out of the
state of equilibrium (in which they coincided). This displacement
will be called r; it will give rise to vibrations with the frequency »,

. . : N 1
in which the potential and the kinetic energy are both equal to 3 U.

3. Displacements of P, and P, with respect to each other normal
to M, M, or what comes to the same thing rotations of the axes
out of the position A, M,. These coordinates will give rise io rotative

»

1) These Proe, XVI, p. 88,
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vibralions. In agreemen( with Rurrgrrorp, Prremy, and ofthers I shall
assume the moment of inertia of the atom to be very small, even
in comparison with ma® (m = mass, a = radius of the atom). Then
the frequency of this rotative vibration will be great compared with
v. In connection with this we shall put the energy of these vibra-
lions equal to zero, and entirely disregard possible atomic rotations.

4. The rotation of the molecule. Of this we may assume for all
the cases of equilibrium that have been experimentally investigated
that they represent two degrees of freedom, which present the equi-
partition amount, whereas the rotation round M, M, practically has
an energy zero. We shall represent the position of the axis of the
molecule by the aid of the angles ¢ and 8 indicating the longitude
and the latitude.

Instead of equation (19) p. 88 loc. cit. we now find for the
number of dissociated pairs of atoms:

£, & |
7 s
n, = N 0j; 6dw1dy,dzl (m1> da,dy dz, X
3 -
dezdugd:a(mz) dody,de, = ¢ .. (%)
&

) 3 3
= N? 0(2:177219) /s X (2::)@0) /s

For the number of bound pairs of atoms we find, representing
the moment of inertia of the molecule by M :

’ IR Y .
n, = Ne {ﬁz 0 y(rro)dasdyade(m, +m,) dv.dy.de. X
nmn.m . . .
dr ——— dr sin* edadBM*dadB. —
X m,—+m, s (19'a)

&

-5 h
=N 9 2n(m,+m) 6k ——— X 47 X 2w b
(2

l— &

m,m,

1
For &, depends on 7 through the term 2 m,+m,

we shall call &,. In connection with this equation (18) loc.cit. muqF
‘now be written as follows:

r*, which term
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This gives for the. equilibrium constant:

vh
3 i::f_ﬂ 3 1 ] _F 1 0 ) -
w0 ( MM, >/2—“>< —e X““[/““ . (200)
Ty m,+m, M h 2 2w

$ 18. Zero point energy and chemical binding.

In the above given formula PLANCK’s later supposition concerning
the existence of a zero point energy has not been taken into account.
We shall now examine some consequences of this supposition for the
chemical phenomena. In the first place we shall show that according to
this supposition the entropy of a number of particles does not change
at the absolute zero point, when they pass from a binding in which
they can vibrate with a definite period into another combined state,
in which they have another period. For this purpose we shall make
use of Borrzuany’s quantity H, which we shall represent as follows

H :f 4‘Z(If‘>m"dmd‘ydé dadydz.

So we think here again of a three dimensional vibrator with three
equivalent degrees of freedom, though this case probably never
occurs in veality. If we had taken a linear vibrator, this would
have come to the same thing. But then we should have had to
speak Dbesides of vibrations, also of rotations of the molecule, which
would have rendered the question somewhat less simple.

According to Praxck’s supposition the value of F for 7=0 is
consiant for an energy smaller than v/, equal to zero for a larger
energy. Let us put:

m® dedyds dedyds = do,
and

m® dudydz dedyds — G

e < sh
then for 7'=0:

dew::Ffdw:FG:N,
when IV represents the total number of particles, and fariher:
H=[TF) 'dew =UF). N= N{(N)— (@)
We may write for G:
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me

lG:_—_Tf;/-ﬂ

fdml dw, du, de, de, dw,

eI

when we introduce 2 y/m =z, y Vm=a, 2V m=u, & VI =u,

yWf=uw;and 2/ f = @, s0 thate = &," 4+ 2,* + 2, 4 2.* + 2, + 2,
The inlegral occwrring in @, therefore, represents the content of

a sixdimensional sphere with a radins /24, and is therefore pro-

portional to (vA)°. Bearing in mind that » = 2% l/%, we see that
G and with it also H, becomes an absolute constant. |

If we assume for a limear vibrator that besides vibrations with

//
appears here in the same way that G and H become absolute
constants.

Hence we see that on these simple suppositions Pranck’s supposition
about the zero point energy directly leads to Nurnsr’s heat theorem.

As known Pranck formulated Nernst’s theorem by assuming that
the entropy remains finite at 7’=0, and does not become — co, as
it would have to do according to'the older theory. According to
the older theory, e.g. according to Bourzmans, one would Zzave to
come to the value — oo, because at 7’= 0 the molecules would all
have a velocity zero, and there would, therefore, he only one
possible distribution of the points of velocity in the diagram of
velocity. At every higher temperature there would be o many
velocities possible for every molecnle; there would therefore be
infinitely many possible distributions of the points of velocity. The
probability at higher temperature would therefore be oo times as
great as at 7'— 0, which leads to an o« difference of entropy.

It is interesiing to observe how the two suppositions mtroduced
by Praxck into physics evade this difficulty and make the entropy
difference finite in the two only ways possible. The infinite entropy
difference could namely be evidently evaded in two ways; namely
1. by assuming that there is a finite number of\ distributions of the
points of velocity also at high temperature, and 2. by assuming that
there are infinitely many also at 7’=0. The former hypothesis is
that of the energy quanta, the second that of the zero point energy.
Each of these two suppositions leads to a finite relation of the number
of possible distributions at T=0 and at 77>> 0, and hence to a
finite entropy - difference.

Let us now: examine the distribution of the energy at higher
temperature. We ‘shall continue to assume that a number of mole-

a frequency v rotations occur with a frequency » —
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cules will possess an energy < vh, and that for them every value

of the energy is equally probable. So in this region the chance that

the energy lies between & and &-- des will be represented by F'(0v) de.

In the region where &>7vA 1 shall continue to assume that the
&

4

-

function is represented by e «(ev) de *). If we now put:

i o €
I:fF(ﬁv)ds—I—fe Oyenyde . . . .>. (21
0 Jh

the equilibrium constant of a chemical conversion is represented by:
JAY: -
K=e¢ %mr. . . ... . 200

In this As represents the difference in potential energy which
would oceur when the substances passed from the compounds of
the lefthand member of the reaction equation into those of the
righthand member. In order to obtain the energy amount Ae then,
it would however be mnecessary that the atoms in the compounds
always occupied the positions of minimum potential energy, so in
the centres of the quasi elastic regions. IIl represents a fraction with
the product of the quantities /, referring to substances in the lefthand
member in the numerator, and with that in the righthand member
in the denominator. The equation is evidently nothing but a general-
isation of (20a), in which besides the J’s are determined in agreement
with the supposition of the zero point energy.

Now

dE A 1 dr
‘iz

w - TE TS Tw

On the other hand the law of the equilibrium change requires:

(22)

T
=2 1CAT
dE Q G+ f.,C g
Eg— == Eé/: ————T—-— (22“)
Further we have:
Q=@QLe+ i) . . . . . . (23

1) Besides in my previous communications this function had already been
introduced by ExgrenrEsT, Amn. d. Phys. 1V, 86 p. 91, Ann. 1911, which paper
I have not sufficiently taken into account in my previous considerations; the same
refers to PoiNcar®’s paper, Journal de Physique theor. et appl. V serie I p. 5.
Ann, 1912.
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7
6% dI &
—_— =23k T — e
z=— 2”*%?“ SU (234)

In all these summations the_quantities must have the sign - or

— according as they relate to the righthand or the lefthand member

of the reaction equation. The equations having to hold for every
chemical reaction, independent of the values of the »’s, we shall
be allowed to omit the = signs in {23a), and write such an equation
for every coordinate separately.

We then get:

vh o . k3

’ :f e F(Op)de + | e v ¥(#,)de
0 Jh s G* di

U— —_
I I d6

or

@ & P &

sh ©

1 3 ar ;)

n (vh)® F(Ov) + |ze 6 w(&w)ds = 0* ’f&@ de 4 g; e ¥ % (&,v) ds E

s 0 sh

or

dF{
) 0% . vh
ao

1
5 wh): F(Op) =

from which follows:

vh

Fevy=Cxe 20 . . . . . .. (29
It is evidently not impossible to assign such a value to the C
[

that F(0,») and ¢ g # (5v) continuously pass into each other at
more than a single temperature. In general a discontinuity will occar
m the function of probability at e=w»h. I do not know a way to
determme C. The value x(e,v)e_vk suggests 1iself most naturally

Then the function of probability becomes continuous, at § = w0,

which is in accordance with the fact that at high temperatures the

deviations from classical mechamcs ‘become smaller. With this

value of C we see that the number of molecules having an energy

slightly smaller than vh, is greater that the number having a some-
ke ’

what greater energy. The ratio is 0. This is in harmony with
PrLanck’s theory according to which for vibrators which are absorbing
energy of radiation, only a part continues to absorb when &=k
71
Proceedings Royal Acad. Amsterdam. Vol. XVI,

Al
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is reached, and passes therefore to the group for which £>wh,
whereas another part emits all the stored energy. For the chance
of emission we find another «alue than Pranck. This is not astonishing
as we assumed that for e>vh the function of probability would be
" continuous, whereas according to Pranck it exhibits new disconti-
nuities at & = 2v% etc. At all events we see that PLanck’s hypothesis
concerning the zero-point energy can only be reconciled with the
thermodynomic law of the equilibrium change, when the function
of probability shows a discontinuity at & =— »4, of entirely the same
nature as had already been assumed by Pranck.

In conclusion we will calculate Z, as this quantity occurs in the
formula for the equilibrinm constant. Integration of (23e) with

{

vh 1 .
= +?v/e yields:
e —1 \
1vh
7 he 20
\ _ vh
N 1—, 0
This expression differs from the value which we found without
L 1vh
zero-point energy, and which we shall call I’ by the factor e 26,
Mence we may write (200) in the following form:
he 1 _zh
K=c¢ 4 e 2 4 r.
1
And @, being = (Ae+ = 3 vh), we find the same expression

as without zero pomnt energy, since then @, = Ae, and we may,
therefore, always wrile.

_4
: K=¢ 9 ar.
Chemistry. — “A new hydrocarbon from the pinacone of methyl-

ethylketone” . By Prof. P. van Romsuren and Miss D. W. WENsINK.

(Communicated in the meeting of March 28, 1914),

When studying the action of formic acid on this pinacone this
scemed {o take a course quite contrary to expectation. Whereas in
this reaction the ordinary pinacone is almost completely converied



