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Chemistry. — “Egquilibria in ternary systems. XIV. By_ Prof.:
- SCHREINEMAKERS. .

(Communicated in the meeting of March 28, 1914).

After the previous discussion of the saturationcurves under their
own vapourpressure and of the boilingpointcurves of a component,
we must vet deduce its soluiionpaths under its own vapour-pressure.
As, however, we discussed already formerly those of binary and
ternary compounds the reader may easily deduce those of a component.

In the previous communications VII—X we have discussed the
fourphase-equilibrium X4 " - L 4 G; for this we have assumed
that ' and F” are both ternary compounds. It is, however, easily
seen. that these considerations apply also to binary and unary sub-
stance§, provided that F and [I” contain together the three com-
ponents ; the line FJF” is then situaied, perhaps its extremities
oxcepted, completely within the componentstriangle. Then the
liguid contains aiso the three components, so that the quantity of
nene of them can approach to zerd in it. When F and F’ contain
together only two components, the linve FI” coincides with one of
the sides of the componentsiriangle. The quantity of one of the
components may then approach to zero mn the liquid and in the
vapouar, so thal we must contemplate this case separately.

When we take e.g. the ternary equilibrium B 4+ C - L 4+ G, it is
evident that the quantity of A can become equal to zero in the
liquid and in the vapour. If the liquid and thé vapour, in which
the quantity of one of the components becomes equal to zero, is
represented by L, and G, then the binary equilibrivm B4+ C4L,+ G,
arises. Herein- L, is the eutectical liquid under its own vapour-
pressure of the binary system B4 C; @, is the corresponding
vapour; the corresponding temperature and pressure we call 7', and
P,. The ternary equilibriunt B+ C+ L -+ G terminates, therefore,
when the quantity of 4 becomes zero, at the temperature 7°, and
under the pressure 2, in the binary euntectical point with the phases
B+C~+L,+ G, '

Reversally we may also say that by addition of A4 the fourphase-
equilibrium B4+ C4 L 4 G proceeds from the binary eutectical
point with the phases 54 C+4 L, 4+ G,. ]

When we take a eulectical point B -4 C - L, under a constant
pressure, so that no vapour occurs, the threephaseequilibrium
B+ C- L 1s formed on addition of 4 and the eulectical tempe-
rature is always lowered. From this .naturally ;the question -follows ;

>
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what influence has the addition of a new substance A4 on the
temperature 7, and the pressure P, of the eutectical point under
its own vapourpressure with the phases B+ C + L, + G..
. We may put this question also more generally; for this we replace
the eutectical point with the phases B+ C+ L, + G, by a qua-
druplepoint with the phases F - I+ L, + G,; F and F" are
then either the components B and C or binary compounds of
B and C.

When we take a constant pressure so high, that the vapour
disappears, and when we add the substance A to the equilibrium
'+ F 4 L, then the temperature is lowered. We may express
this also in the following way - the common meltingpoint or point
of inversion of two substances 1s lowered under a constant pressure
by addition of a third substance?).

We now must put the question whal influence has the addition
of a new substance A on the temperature 7, and on the pressure
P, of the quadruplepoint with the phases JF' 4 L, + G,.

Firstly we shall consider the general case treated in communication
VII1 more in detail. Instead of the equations (2), (3), and (4) (VILl)
we write :

[(c @ + (v —B)s] do + [(w—a)s + (y—P)f] dy=AdP—BdT . (i)
(@) + (y,-B)s)da + [(2,-)s + (y,-B)ildy = (A+ C)dP-(B+D)dT (2)
[(d-a)yr + (B-B)s)de + [(d—a)s + (F'-B)t)dy = (A-A') dP- (B-B)dT . (3)

We find from (1) and (3), eliminating dy:
Ert—s*)de = [(¢'—2)d + (s—a)d'}s + {(8'—y)4 + (y—P)4'}] dP ‘ 4
— [(d—2)B+ (¢ - 9)BYs +{(F~9)B +(y §)BY] dT
We find from (2) and (3):
E (rt—s*) do =
[(o-2,) A +(2, ) A' ('~ a) Cls+-[(3-y.) A+ (y-B)4' + (8-B)C}e]dP
~[{(e'~2,)B + (2,-a)B'+(«'~) Dis+{(8-y,) B+ (y-B) B+ (8-H) D}t]dT
Herein E is equal to:
(¢ — )(B—y)+(o— a)(B—y)=(F—B)(5—a) +- (! —a)(B - y)=
=(F—B)( - ) +(a'—a)(B y)-
We find E, by substituting in E2, and ¥, for wand y. For the sake
of abbrevxatlon we put the following: ~

()

L) F. A, H. ScHReINEMAKERS. Heterog. Gleichgewichte 1T,
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(@ — @) V+(w—a')v+(a——m)v'+Ea—V=(a'—a) 7,

>
(—ﬁ’)V+(y—B')v+(5—y)v—E— @ -7V
Y | - )
W=D+ =+ e+ By = — ),

0H
E—BH+@G—Fut+tB—yy—Es—=F _'.B)Hz
When we replace Z, V, H, # and y by El, V., H, « and A
oV, 0V
(B 5o etc. rest unchanged) we obtain the corresponding quantities
y Oz
1711/: V1 Hi,y and H.. -
The followmg relations exist between these eight quantities, as
we may easily deduce.
E\V, — EViy= E\V, — EVi, z .
B d, — EHl_y —=EH,— FEH| ,
We find another relation by eliminating %, and E from both
these equations.
Substituting in (4) and () their values for 4, B ete., we find
with the aid of (6):

E@i—sYdo=[d— @) Vy .5 +(§ —@) Vo t]dP : ®
— ¢ —)Hy s+ @ — ) Hy .4]dT

E, (rt —s)de=[(¢' —a) Viy.s + (8 — B) V15.t] dP ‘ ©
— [« —e)H1y s+ (f' — B) Hiz. t] 4T

Eliminating dz from (8) and (9) we find, when we make use of
the relations (7):

E, E,
e = - 0

b

Vl.y—f-m le——ET z

Herein H,, H, etc. have the meaning indicated in (6), from (10)
it follows however, that this is also true when the term, in which
Ll ov I, ocenrs, is omilted in each of the eight relations (6).

Farther we may deduce from (8) and (9):

E,
p P__ (rt—s )E(II g I—Ix)
duo ~ (d'— a)(VyHy y— Vi yHp)s+(8'—B)( Ve L ~— V1 11}t

E,
o (rt—s?) ( V1 5 V;)

—= = N )]

(11)
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In (12) N indicates the same denominator as in (11).

Let us now consider the case that both the sohd substances of
the equlibrium F 4 F” + L 4 G are binary compounds of 5 and C.
We must then put e« =0and ¢ =0. As E becomes —=(#'—8) »
and B, = (@ — ) x,, it follows from (10), (11) and (12):

T

- —_ 7 13
dT @, (13)
Vl.x—_ Va,
z
(rb—s*)a| Hy,—2H,
dP . @ 4
dw (VzHLx— Vl.xH:t)t ( )
&
ar (rt——s"’)a;( Vz— j *x)
= (15)

dr — (VeHie— Vi Ho)t

Let us now consider the terminating point of the ternary equihibriam
R4 " 4 L + G in the quadvuplepoint # - ¥ + L, 4+ G,. For
this we make in the previous equations 2 and #, approach to zero.
As Limrz = RT it follows:

L,
—(2\ 8
dP_Hl (m)u x
ar »
le“‘(—l) Vx
A%/,

& &
RI| Ih,—(2) & RT| Vi, —(2) v,

de =~ VeHip— V1 .Hy de ~  VoHy,—Vi H,

(16)

. & ) z,
Herein (—1> _is the value which — assumes for #=0and 2, =0.
z/, x

Further is:
E—BYV +@ —Bv+E—y)'=E—0T . (1§
@@=V +@—B8ov+@—y)'=E@—8 V. . (19
@—8H +@ —Bu+@—y)n=@-—-8H - (20)
@—BH, +@ -1+ @—y)v=0@—H., . @)
wherein to all quantities (y,y,, V, V,, etc.) we must give the values,
which they have in the quadruplepoint /' F’ 4 L, - G,. Herein
L, has the composition: y quantities of B - (1 —y) quant. of C;
G, has the composition: y, quant. of B+ (1 —y,) quant. of C.
Between the three phases F, F” and L, always may occur the reaction:

sy
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(8'—B) quant. of L,~+(y—13") qnant. nt F4-(3—y) quant. of 7V =0 (22),
in which always one of the coefficients is negative. This reaction
represents, according to the sign of the coefficients :

" 1. a congruent melting or soliditication of F - F" viz. the reaction
F4+F 2L, -

2. an incongruent melting or solidification of F -4 F” viz. the
reaction ' 2"+ L, or " 2 F+ L,

Consequently the incongruent melling or solidification of F -+ F
means: the inversion of '/ in F”-or reversally, by the side of liquid
and vapour. _

From (18) and (20) it follows that V, vepresents the change of
volume and A, the change of entropy, when one quantity of vapour
is formed at this reaction. Therefore, V. is the increase of volume,
H, the increase of entropy at the congruent or incongruent melting ~
of ' F". .

Between the three phases [, £” and (7, the reaction :

(B'—B) quant. of G, + (y,—f) quant. of F' - (8—y) quani. of F' =0 (23)
may take place. From (19) and (21) it follows that V1, represents

‘the 1ncrease of volume, Hi, the increase of entropy when one quahtity

of vapour is formed at-the veaction (23). Vi, is, therefore, the
increase of volume, Hj, the increase of entropy al the congruent or
incongruent sublimation of F - F".

If we call W, the (congruent or incongruent) heat of melting, and
W1, the (congruent or incongruent) heat of sublimation of F -4 B,

Wa. Wl .
then H, = - and Hi, = _il Fuvther we put for the sake of

abbreviation
Vg  Wo—Vo Wiy=—=K . . . . . . (24)
When V,, the change of volume on melting of 7' - F is positive,
K is certainly positive; when, however ¥, is negative, this form
will nevertheless still be also positive, by reason of the great value
of V1, with respect to. V,. For this we shall assume A positive.
When we put further :
AV = 1x_(7’_;> V, and AW = le~(%‘) W,.. . (25
o 0 ¢ ]
it follows:
AP AW dP . RT ar RI?

AN A
i~ AY K

de K

AV . (26)

(ﬁ) is the ratio of the quantify of 4 in the vapour to thal in the
T/

Jiquid when we add a little 4 to the binary equilibrium 7 -+ B 4
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“+ L, + G, we may call this ratio the limilratio of A m I' F" -
—l"‘ Lo + Go' ! -

Considering the cases ({—1) <1 and (%) >1 in connection with
the values of V1., Vi Wi, and W, (V, can also be negative)it follows :

The P,T curve of the ternary equilibrium #+ # 4 L 4- G ends
in the quadruplepoint /' #” 4 L -} G, ; it is a curve ascendant
with the temperature, when the limitratio of 4 is smaller or only
a little larger than 1; it may have a point of maximumpressure
when the limitratio of 4 is much greater, than 1; it may have,
besides the point of maximumpressure, also a point of maximum-
temperatare, when the limitratio of 4 is very large (e. g. larger than
10000) and when the volume increases at the congruent or incon-
gruent melting of /- F”.

We may express the previous also in the following way :

The congruent or Iincongruent mellingpoint of two substances
(' F"y is always lowered by addition of a new substance, when
we take the pressure constant; generally this is also the case when
this addition takes place under 1ts own vapourpressure. In the latter
case the temperature may however, before it decreases, yet first
rise a little. This can take place however only in the case that the
limitratio ({l) of the new substance in F +- I + L, -} G, is very

A .
large and when the volume increases at the formation of liquid
from F 4+ F".

The vapourpressure of the congruent ov incongruent meltingpoint,
can by addition of the mnew substance according to the value of
(%‘), either decrease immediately or, before it decreases, firstly in-

z ), ~
crease. This latter is certainly the case when the temperature mereases
also firstly, but it may also take place then, when the temperature
decreases immediately.

.

l’l} « -
Let us now consider the case that (j) is exceedingly small or
|

approacl:e§ to zero. This will be the case when the quantity of A
is exceedingly small in the vapour, therefore, e.g. when 4 is a salt,
very little or not volatile. From (25) and (26) then follows:
dP Wi, dP RT ar RT*
T— =" —=—— W ; — == WM . (27
T V1. v X Y i x e - @D
As Wy, represents the (congruent or incongruent) heat of subli-
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mation and V), the increase of volume at the (congruent or in-

congruent) sublimation of F+F’, Wy, and Vi, are both positive.
Therefore, the equilibrium F + F - L -4 G proceeds from the

quadruplepoint immediately towards lower temperatures and pressures.

Let us imagine a P,7T-diagram with the quadruplepoint - F’ -~

+ L, -+ Gi. Four triplecurves proceed Trom this point viz. the

. (congruent or incongruent) binary meltingcurve F - F' - L, the

(congruent or incongruent) binary sublimationcurve F -+ F' 4 G,

and further the two binary solutioncurves under their own vapour-~
pressure, viz. the carves F 4 L, 4 G, and 7’ + L, 4+ G,. When

we draw in this P,7-diagram also the curve for the ternary

equilibrivm F A4 F¥ + L -+ @, this touches, according to {27y the

binary sublimationcurve F' 4 #' 4 G, in the quadruplepoint.

An example of this case will be found when we add a third -
substance, which is not volatile, to the equilibrium: /C! - ICI, -
+ L, + G, occurring at T, = 22,7° and under P, =42 m.m., in
which @, contains the two components /, and C/,. The same shall
also be the case when we add a substance, svhich is not volatile,
e.e. VaCl or Na O, to the equilibrium Na,S0O, .10H,0+Na,S0,--
+4-L,+G, wherein ¢, consists only of water-vapour.

ﬂ) is very large; as limit-

0

Let us now consider the case that (
&

case we shall assume (—%—) infinitely large. From (25) and (26) then
vl
follows :

LB _
a7~ v,
As W, represents the heat, required for the congruent or incon-
gruent melting of F - F”, and V, the increase of volume at this
reaction, W, is positive, while V., may be as well positive as
negative. lmagining in a P, 7T diagram the quadruplepoint -} F” |
- L,+ @, and the binary (congruent or incongruent) meltingcurve
F 4 F' + L,, proceeding from this point the curwe of the ternary
equilibriom F -+ F” -4 L+ G will touch this binary meltingcurve
in the quadruplepoint.
In the quadruplepoint F 4 F 4 L, + G, always between the
phases L,, G, and Z the reaction; \
(y, —B) quant. of L, 4 (8-—y) quant. of G, 4+ (y—y,) quant. of ¥ =0 (29)
may occur. The changes of entropy and of volume at this reaction are:

(1,—H+ B—NH, +y—y)y - . . . (30)
=BV +B=-yV,+@—y)v. . . . . (8])

(28)
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It follows from the values of V,, V1., H., and H.[(18)—(21)]
that we may aiso write for (30) and (31):
I N P )
and
= Vie—@B—y) Ve - - - . . . (33
(30) and therefore also (32) represent the increase of entropy,
when at the reaction between L,, G, and F in all f—y quantities
of vapour are formed; (31) and (33) represent the change of volume
at this veaction. From this it follows: when between the phases I,
G,, and I' a vreaction takes place, so that one quantity of vapour

is formed, the increase of entropy 1s: '
m.—"Ng .
' B—y
consequently the heal which is to be added
We— "W, . . ... @)
B—y
and the increase of volume:
Vie— Py L (36)
B—y

Let us now imagine in a P, T-diagram the quadruplepoint F -
-+ " + L,+ G, and the binary solutioncurve of / under ifs own
vapourpressure, prbceeding from this point, ‘therefore, the curve
F+ L, -+ G, its direction in the quadruplepoint is fixed by

Wi, B—y, W,

P By 87
S 144
8—y

We imagine also in this P, 7-diagram to be drawn the curve of
“the ternary equilibrium F 4 F*+ L 4 G proceeding from this
quadruplepoint F 4+ # -+ L, 4 G,- Its direction is fixed in this
'point by (25) and (26). When accidentally :

Ty B_yx
— = . . . . . . . (38
(‘?")n B—y ( )

both the curves will touch one another in the quadruplepoint.

The meaning of (38) is the following. We imagine in the con-
centration-diagram on the side BC the liquid of the quadruplepoint ¢.
Through this poinl ¢ runs a saturationctirve under its own vapour-
pressure and a boilingpointcurve of 7. The meaning of (38) is that
the point of maximum or minimum pressure or temperatme falls
exactly in ¢.
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In the same way we find that in a P, T*diagram the binary
solutioncurve under ils own vapourpressure of J” proceeding from
the quadruplepoint, therefore, curve £ -+ L, - G,, and the curve of
the ternary equilibrivm /- '+ L+ G proceeding from this point-

touch one another when
(ﬁ>:€_—l‘“ e 39)
& Jy 6—“:7

We can summarise the previous results in the following way. We
imagine a P, T-diagram with the quadruplepoint #' + ¥ + L, + G,,-
the four triplecurves proceeding from this point and the curve of the
ternary equilibrium F 4 F' 4 L + G proceeding from this pomt
This last curve touches in the quadruplepoint: !

the binary (congruent or incongruent) meltingeurve of F - F’

‘curve 4 " 4 L,) when (ﬁ> =
&

0
the binary (congruent or incongruent) sublimationcurve of /' I

I
(ecorve F'4 I + (,) when (;,L) =0
& /o
the binary solutioneurve under its own vapourpressure of F

(curve F' 4+ L, + G,) when (38) is satisfied

the binary solutioncurve under its own vapourpressuve of F'
(carve F" + L, -+ G,) when (39) is satisfied.

The above considerations apply of course also to the ternary
cryohydric curves under their own vapourpressure. As in a binary
cryohydric point under its own vapourpressure the equilibrium
F 4 Iee + L, + G, occurs and as from this point the ternary
cryohydric curve F - fee 4+ L+ G proceeds, we have to replace
only F" by [ce in our previous considerations. Then we must equate
g’ to 0 in (18)—(21), (25) and (26); we then may summarise our
previous results in the follox;ving way :

The erychydric pomnt of a substance is always lowered by addition
of a new substance when we kéep the pressure constant; generally
this is also the case when this addition takes place under its own
vapourpressure. In the latter case the temperature, however, may
also firstly increase a little, before it decreases; this may take place
however only then, when the limitratio —1—‘ of the new substance
in 7+ Ice + L, + G, is very large and when the volume increases
at the formation of liquid from F - fce.

The vapourpressure of the cryohydric point, may, according to the

value of (——1> by addition of a new substance either decrease im-
&
0

-10 -
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mediately or, before it decreascs, first increase. This lalter is
certainly the case when the lemperature also increases a litle at first,
but it may also take place then when the temperature decreases
immediately.

We have assumed in all our previous considerations of the equi-
librium F 4 F” 4 L 4 G that the four phases have a different
composition ; now we shall consider the case that two of these phases
have the same composition. This will amongst others be the case
when Z' and F’ are modifications of the same solid substance or
also when F or I is one of the components and when the vapour
consists only of this component. This latter is e.g. the case for the
cryohydric curve under its own vapourpresswre F 4+ Ice + L + G
when of the three components only the water 1s volatile and the
gasphase contains consequently only watervapour.

Let uns first consider the latter case; we take, therefore, the
cryohydric curve under its own vapourpressnre F 4 Jlce -+ L + G
and we preassume that the gas contains only watervapour. The results,
therefore, of course remain also valid, when we replace the ice by
another component. Now we must equate in our previous consider-
ations ¢’ =0, /=0, 2, =0 and y, = 0; from this follows: £ =
ay—Bz and B, = 0, from (6) follows V,,'= V,—v’ and H,,— H,— o’
Now it follows from (10):

dP  Hy. H, —

Rl L L : 40
T~ V,, V,—4 (40)

Herein H, and V| represent the entropy and the volume of the
gas, therefore of the watervapour; %’ and v’ are the entropy and
ar

I

[«
same for the ternary equilibvium ¥ 4 Jee 4~ L+ G and for the
unary equilibrvium fce 4 watervapour. This is evident, also without
calculation ; removing viz. from the ternary equilibrium £ - Jce 4+
L+ G the solid substance /' and the liquid L, we retain, as G
consists only of waltervapour, the unary equilibrium ice + watervapour.

If we imagine the sublimationcurve of the ice and the eryohydric
curve fM4-ice+ L+ G to be drawn in a P,T-diagram the two
curves must, therefore, coincide. As the first curve is experimentally
known, we know, therefore, also the carve It ice 4+ L -4 G-

A cryohydric curve under constant pressure (consequently the
equilibrium F - ice 4 L) has in the concentrationdiagram the point
of maximumtemperature in its point of intersection with the line,
which joins the two solid phases [7 and ice. This is also the case

is the

the volume of the ice. From this follows, thevefore, that

8

-11 -

\I
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with the eryobydric curve under its own vnpourﬁressure. In the

point of miersection of this curve with the line /' ice is viz. ay=pz, .
iherefore Et=0. From (11) and (12) it follows therefore, that dP=0

and A7 =0. In this pomt of intersection pressure and temperature

are, therefore, either maximum or minimum. In order to examine

more in detail whether a maximam or a minimum occurs, we assume

the conditious of equilibrium for the system # - e - L 4+ G.

These are:

07 0Z :
B by — Z 4 U =0
0z oy
T (41)

0Z 0Z
a— +B+—+8—8=0andZ, —§ =0
0x 0y
Now it follows from the first of these conditions:

oV oV
-[—yé)da:-{—(ms—}—yt)dy*.—{—(mg;%—y@——V—{—v')dP
O
aH+J il H+?Z'>dT-’r% 7'4.'—ﬂ"—7-+ya—8 da® & ) (42)
oy 0z 0y

0
+< +°«— +y )d»'bder (t+ Z~+1/ t>dJ + E=0

From the second it follows:

-
(wr + 89 d + (a5 + Bt) dJ+( L L +1»'-v)czp

OH
( . —H? +n—n)d1’+%(a—+ﬁ )dm (43)

Os ,
+ (0‘5‘;/ +65§)dwd_1/ + a(a@-l-ﬁ‘az)d?/ +R=0

Herein R and R' contain terms with dPdz, dTda ete., which we
may neglect as will appear later. From the third condition follows:
(V,—v)dP — (H,—y)dT =10 - . . . . (44
wherein the terms of higher order can also be neglected. As in the
point of intersection of the curve with the line F'—Ice ay = Bz, so
we may substitute in (#3) e =22 and §=
When we subtract (42) from (43) after having multiplied (42)
by 3, we find:
MV—v') + v—-—v} dP—YP(H—7) + v'—nldT | 45
= }(rda* + 2sdedy + tdy®) -4 R" joor (42)
Let us .substitute the value of dy from (43) into (45); it is apparent
from (45) that it is sufficient that:
(s + B)ydy — — (ar + Bs)da
and that we may neglect the terms with dP, d7 etc. We may

'

-12 -
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write then for the second term of 45). 12Q.dz*, wherein @ is
positive. From (6) it follows that we may wrile V7, and H, for the
coefficient of dP and dT'; (45) passes into:

Vx.dP—Hx.deé.%.Q.dmz. .. (46)

From (44) and (48) follows:
2 [Ho V' —0) — Vi (H,—1)] 4P = — o(H,—) Qda® . (47)
24 [Hal V,—0)— Vs (H—n)] dT = — a(V,—v) Qda* . (48)

As V,—v' = Vi, and H—v' = Hi., we see from (24) that the
coefficients *of dP and d7 in (47) and (48) are positive. Theretore,
dP and dT are zero at first approximation, at second approximation
negative so that pressure and temperature are maximum.

We may summarise the previous results in the following way: in
a P,T-diagram the sublimationcurve of the ice and the cryohydric
curve under its own vapourpressure (K - ice } L -+ G coincide.
The cryohydric curve under a constant pressure has its maximum-
temperature in the pure solutionpoint of Z7; the eryohydric curve
under ils own vapourpressure has in this point its maximumtempe-
rature and -pressure.

When F is a binary compound, we must in the previous consi-
derations not only put ¢ =0, ff=0, 2,—=0 and y, =0, but
also « =10. From this follows: = —fz, B, =0, Vi,= V,—v
and H ;= H,—. From {10) again it follows that:

aP__H,—v

ar V,—v'
$0 Ithat in a P,7-diagram again the sublimationcurve of the ice and
the cryohydric curve F - Jece + L + G coincide.

Considering the ecryohydric curve in the vicinity of the binary
cryohydric point F 4-ice 4 L, -+ G, it follows from (25) and (26):

(49)

dP RT RI* ) RT:
Ve — Wy —m— — Hj = — — —n). .

s Vrd la X 1z Ve (H,~—n) (50)

dT RT* RT*

—_— - _— — (V,—2"y . . ., AN 51

du x xz (=) 61

From -the binary cryohydric point, therefore, pressure and tempe-
rature decrease along the cryohydric curve.

We can also obtain these results by substituting Z= U+ RT«
log 2 in lhe three equations (41).

Now we shall suppose that I and I’ are modifications of a same
substance, so that 7 - F’ 4~ L - G represents the modificationcurve
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under its own vapourpressure and its corresponding vapourcurve.
We put in the formulae (2)—@)(VII) o’ =« and p’=pL We
then may write these: )
(v ap + (y—B)s] dv + [(o —c)s + (y ~B)e] dy = AdP—BdT. (59)
(1= + (5, —B)s] de + [(@,—a)s + (y,—B)] dy 65
= (A + C)dP—(B 4 D)iT
(0'—v)dP- (f—n)dl =10 . .. (54)
Let us first take the substance F. The P,7-diagram of this
substance was already discussed formerly and is drawn in fig.
3 (III) and 4 (IV). In fig. 1 arX represents the sublimationcurve,
F'd the meltingcurve and KF a part of the limitcurve mKFM of
the substance /. We find also in fig. 1 the P,7T-diagram of the
_substance F”; herein a’rK’ is the sublimationcurve, F'd’ the melting
curve and K'F” a part of the limitcurve m’ K’ F” M’ of the substance J.
The two sublimationcurves rouch one another in r; consequently
in » the equilibrium # + -+ G' occurs, wherein G has the com-
position F'=— F”. Therefore from r also a curve rh proceeds, which
represents the equilibrium F - /7. This curve may proceed from
7 as well towards higher as towards lower temperatures; in fig. 1
the first case has been assumed. It is apparent from the position of
the different curves that we have assumed »' >v, %" >, V >
and ¥V >,

dP >
From (54) it follows that o7 for the equilibrium F4-F'+ L4 G
[«

and JF4-F' 15 the same. This is also apparent without wmore
eaplanation ; when we remove wviz. ibe liquid and the gas from

'Id d/!
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P4+ F' - L+ G, then F 4 F remains. Therefore, in fig. 1 curve
F4+F + L+ G must coincide with »2%; it will, however, only
partly cover this curve. It is represented in fig. 1 by ww, wherein
w and w are the points of intersection of mAXFM and m’K'F'M'.

In order to see this we take any point  of the curve F4- ' L4-G.
When we remove F” and when we keep further the quantity of
vapour always exceedingly small, the liquid L of the remaining
equilibviom F- LG traces al change of temperature a solutionpath
of I under its own vapourpressure. The P,7-curve of this path is
represented in fig. 1 by y2F. When we remove ‘F and when we
keep again the gquantity of vapour exceedingly small, the liquid /.
races a solutionpath of F' on change of temperature; this is indi-
cated in fig. 1 by y" 2 F".

Only the part yw of the first solutionpath, only the part & /7 of
the second represent stable conditions. Restricting ourselves to stable
conditions, we may say therefore. from each point of the modifi-
cationcurve F -+ F' 4+ L 4 G one solationpath of I proceeds towards
lower temperatures, and onc of /7 towards higher temperatures.
From this it follows that the one extremity of the modificationcurve
must be situated in u, and the other in w.

In order to deduce the modificationcurve and its corresponding
vapourcurve in the concentrationdiagram, we may act in a similar
way as e.g. at the deduction of the saturationcurves under their own
vapourpressure. When we take a definite 7’ and 2 and when at
this 7" and under this £ a Ssaturalioncurve of F exists, this is
circmuphased ; the same applies to thal of Z’. When art the assumed
T and P the modification /' is the stable one, its saturationcurve
surrounds that of £, when F’ 1s the stable form, the saturation-
cuve of /¥ surrounds that of F.

The two saturationcurves can never intersect each other, they can
completely coincide. This is the case when we choose P and 7" mn
such a way that they are in accordance with a point of curve =/
in fig. 1, so that the two modifications /7 and /7 may exist by the
side of one another. Then these two coinciding curves form the modifi-
cationcurve under a constant P and at a constant 7; it represents
the liquid L of the equilibriom I + F 4- L.

Now we change not unly the 7" or the P, but both together and
in such a way that they are always in accordance with a point of
the curve =/ in fig. 1; also .we consider the vapowregion and the
heterogeneous region L—(@G. Then we find easily that the modifi-
cationcurve under its own vapourpressure and its corresponding
vapourcurve are circumphased.
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AN

It follows amongst others from the formulas (52)—(54) that this
modificationcurve cannot go through the point A= F’; when we
put heremn z =« and y =33, it follows that

1 !
H-——-n:H—n I (55)
Vv V' v'o=v
must be satisfied:

This means that the curves Fd,F’d’ and »h of fig. 1 touch one
another 1 one point. Now it 1s apparent that these curves may
intersect one another mn one point. When viz. two of these curves
mtersect one another, necessavily the third goes also through this
point of intersection, only very accidentally they can, however,
touch one another. In the same way we find that also the corre-
sponding vapourcurve cannot go through the point F= F’. From _
(52)—(34) 1t follows that P and d7' become zero at the same time
and that this 1s the case when

yP_n B s

r—a &,—a

This means that the solid substance (F = F”), the liquid and the
vapour are siluated on a straight line. It is evident that on each
closed modificationcurse two such points 4 and w oceur and on the
corresponding vapourcurve two corresponding points u, and w,.
Pressure and temperature of the equibthriom F 4 /7 4+ L, + G,
are in accordance with point « of fig. 1, pressure and temperature
of the equilibrium F + F' 4 L, 4 Gw,, with' the point w of fig. 1.

From (54) it follows that the pressure can as well increase as
decrease at increase of temperature, therefore we may distinguish
two cases.

1) P- and T-maximum coincide and also P- and 7-minimum.

2) P-maximnm and 7-minimnm coincide and also P-minimum
and 7-maximum.

The case sub 1 occurs when the pressure increases at increase
of temperature; curve rh is then situated as in fig. 1. The case
sub 2 occurs when the pressure decreases at increase of temperature,
curve 7 A preceeds then in fig. 1 from » towards lower temperatures.

Now we shall assume that /' and consequently also " is a binavy
compound of B and C; to the P, T'diagram again then fig. 1 applies,
in which now however the solutionpaths no longer touch the melting-
carve in For I,

In the concentrationdiagram the modificationcurve # -+ F' + L + @
ends in two points on the side B C, the same applies to its corre-
sponding vapourcurve.

-16 -



1151

Let us assume that point F in fig. 3 (XI) represents the two
modifications " and J” and that ha b n is the modificationcurve and
hya,bm, the vapourcurve.

Therefore, in the binary syslem two temperatures and pressures
of mnversion occur, viz. in the points 4 and n. Considering the equi-
libria under a constant pressure, 7}, = 7),; under their own vapour
pressure, however 77, and 77, as well as Py and P, are different. The
points /& and n of fig. 3 (XI) resemble viz. » and w of fig. 1. Although
solid substance, liquid and gas of the equilibrium F+F"+ LGy,
and I+ I -+ L, Gm are represented by pomts of a straight line,
yet in 2 and n dP=0 and «7'=0 is not the case. In order to
see this, we substitute in (52)—(54) a¢ = 0; from this we find: .

1 dpP _a (8 n'—y 57
RT ' \de),— a s, ) (—AV—(—v)AH =

1 a1 _ o8 : v'—v X8
ﬁ(%)xzj——_; —sl)(n’——n)AV—(v’—v)AH - 69

so that dP and d7 in /& and n are not zero. AT is the increase of
volume and AH is the increase of entropy when between F, L,
and G of the equilibrium F4F'+L,4G, or F+-F'+ Li+G4
a reaction takes place, at which one volume of vapour is formed. [We
may also replace in (57) and (58) AV and AH by AV’ and AH',
which indicate then the same increases when the phases #”, L, and G
veact]. When 1n fig. 3 (XI) 4 and » are situated not too close to
F, or in other words, when the temperatures of inversion 7’ and 7,
are situated not too close to the meltingpoint 7’5, AV is >0 and large
with respect to v' — v, the denominator of (57) and (58) 1s then
generally positive.

That there may be accordance with fig. 1, we take first v’ >w.
In fig 3 in the vicinity of 4 and A, (see & Faa,) s >s,; in the
vicinity of n and n, (see A f0b)) s<(s,. From (57) and (58) now
follows: >and T increase along the modificationcurve from n towards /.
When we {ake v’ < v then it follows: 7' increases from £ towards
n, P from n towards .

At last we may still consider the case, that /' and consequently
also I’ is one of the comporents, e.g. B. The reader can easily draw
‘himself the P, T-diagram, which is now simpler than in fig. 1.
In the concentrationdiagram the modificationcurve ends then in two
points, the one on B( and the other on BA. If we determine the
modificationcurve under a constant pressure, 7" 15 the same in each
point of this curve; in this case 7 and P will change however again
' 75
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along the curve from point to point and either in the same or in
opposite direction. , ‘ -

When we determine, therefore, e.g. the temperature of inversion
and pressure of inversion of rhombic in monoclinic sulfur, or-of
two modifications of KNO, etc. in a mixture of two solvents and
under its own vapourpressure, this 7" and P of inversion change
with the composition of the solvent. These changes are, however,
very small, as it follows from the previous considerations.

' (o be continued.)

Mathematics. — “On the singular solutions of ordinary and
partial differential equations of the first order”. By Prof. Hx. pe
Vries and G. SCHAAKE. B

(Communicated in the meeting of March 28, 1914).

IntropucTION. If the complete integral of a partial differential
equation of the first order with two independent variables, I (z,y,2,p,q)
=0 is represented by f(vy,2.c,,c,) =0, and if the result of ihe
elimination of ¢, and ¢, from the rhree equations

f=0 ) ;i = ) z

c, de,
is called for the sake of brevity & =0, the following peculiar

phenomena may arise. 1f the general solution f(z,y,c) =0, of an -
ordinary differential equation of the first order F' (z,y,p) = 0, possesses
a nodal locus, it belongs generally speaking to the resull of elimination

of ¢ from the two equations - B

of
f—— 1 a_czo’

=0 -

and only in one particular case it does not belong to it; with the
partial equations it is just the reverse, at least if in this case the
locus of the nodes consists of one or more curves; if there is a
nodal surfuce, it does belong in general to /=20, though there is
a possibility that it does not. Co

It is a matter of course that all possible cases may be arrived at
by a purely analytical method; but it appears that considerations
derived from polydimensional geometry throw a vivid light on.those
various analytical possibilities and so to say increase the differences
and render themn more essential; 1o prove this is the aim of the °
following paragraphs.

§ 1. Let in the first place be given an ordinary rlifferential equation
of the 1st order ,
F (2, y,p) = 0,
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