Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

A. Smits, The metastable continuarion of the mixed crystal series of pseudo components in connection with the phenomenon of allotropy, in:
KNAW, Proceedings, 16 II, 1913-1914, Amsterdam, 1914, pp. 1167-1173

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Chemistry. - "The metastable continuation of the mixed crystal series of pseudo components in cumnection will the phenomenon of allotropy". By Prof A. Sarts (Communicated by Prof. J. D. vin der Wails).
(Communicated in the meeting of March 28, 1914).

1. For the case that a unary system is built up of two pseudocomponents the relation between the unary and the pseudo-binary system has been derived by me by makng use of Girbs's principle of equilibrium, which states that a system at constant temperature and pressure tends to pass to such a state that the thermodynamic potential (5 -function) is a minimum. ${ }^{1}$)
In this it has been assumed that when heterogeneous allotropy occurs in the solid state, the 5 - x-curve has a shape as indicated in iig. 1. This assumption comes to this that there exists continuity in the unstable region between the two mixed crystai series, which

Fig. 1.
l) Z. f. phys. Chem. : 76, 421 (1911).

Proceedngs Royal Acad. Amsterdam. Vol. XVI.
stari from the a and the β-side, and in general possess a different crystalline form.
As Herberte ${ }^{1}$) has demonstrated by an experimental way that such a continuous transition between mixed crystals of different - crystalline forms occurs for potassium and thallium tartrate even in the stable region, it must be admitted that the continuity in the unstable region given in fig, 1 , is a possibility, especially for mixed crystals whose systems of crystallisation are closely allied to each other.

On the other hand it should be pointed out, that it is very probable, that in many cases the continuity assumed here, does not exist, and the two halves of the ζx-line, which refer to mixed crystals of different forms, are not related. We might imagine that in this case two ζ - x-lines occur, which proceed continuously from one axis to another, as fig. 2 shows. The $\zeta-x$-line $c d$ would then relate to mixedcrystals of one kind, and $a b$ to those of the second kind. The $\zeta-x$ line $c d$ then indicates the ζ-values of different mixed crystals, in which the pseudo-component \boldsymbol{a} is compelled by $\boldsymbol{\beta}$ to crystallize in

Fig. 2.

[^0]the crrstalline form of β, whereas the line $a b$ refers to mixed crystals in which β is forced by a to crystallize in the crystalline form of a.

These states would certanly be realisable when the pseudo components presented the phenomenon of isodimorphy, but then we should have to assume that the pseudo components can occur in different crystalline forms, merely in consequence of a different arrangement in the "Raumgitter" of a same kind of molecules.

Without the slightest doubt such a case is conceivable, but it is by no means probable. We can hardly assume that when the pseudocomponents in the solid stable state are miscible to a limited extent, the phenomenon of isodimorphy always occurs. Besides it is in my opinion highly probable that a difjerence in composition is the cause of the difference in crystalline form. It is now the question whether another view is possible, which obviales the difficulty mentioned here.

It is clear that the stabulity of the "Ranmgitter" of the pseudo component α becomes smaller as there has been dissolved more of the pseudo component β, and thus it will be possible that at a certain concentration "the "Raumigitter" has become so unstable that it can

Fig. 3.
no longer maintain itself. It is now the question how this has to be expressed in the $\zeta-x$-figure.

There exist lere two possibilities. It is possible that as fig. 3 mdicates, the $\zeta-x$-line $a b$ starting from the α-axis, approaches the line $p q$ asymptotically instead of running to the other axis, which means that a mixed crystal of the concentration p is impossible, as this mixed crystal would require an infinitely large value of ζ.
In the same way the ζ - x-line $d c$ would then approach asymptotically to $r s$.
Then the expression $\left(\frac{\partial \zeta}{d x}\right)_{P I}=M R T \log \frac{x}{1-x}+\int_{v}\left(\frac{d p}{d x}\right)_{v, T} d v$ becomes infinite at a definite value of x, because then the second term of the second member becomes $=\infty$.

Another possibility is this, that the ζ - x-line ends suddenly in the figure, as fig. 4 shows. So this figure expresses that the possibility

Fig. 4.
of the existence of mixed crysials of the same crystalline form suddenly ceases at b resp. c, and that the prolongations of the lines

which 'might be imaginct, have thermodynamically absolutely no sense any more.
2. It is clear that as far as the metastable and unstable equilibria are concerned, the pseudo T - x-figure will be different according as one view or the other is held.

The assumption of continuity in the unstable region would lead to the T, x-figures 5 and 6 .

In Fig. 6 the lines $p d$ and me pass contmuously into each other, on the same way as in Fig. 5.

The assumption of isodimorplis of the pseudo components, which is less probable than the two following, yields the figures 7 and 8.

The assumption of an asymptotic course of the 5 - 2 -lines leads to the figures 9 and 10 .

$\left(\frac{\partial^{2} \zeta}{\partial x^{2}}\right)_{P T}$ becoming $=\infty$ for a definite value of x, and

$$
T\left(\frac{d x}{d T}\right)_{P}^{P}-\frac{\eta S L}{\left(x_{8}-r r_{L}\right)\left(\frac{\partial^{2} \zeta}{\partial x^{2}}\right)_{P T}}
$$

$\left(\frac{d x}{d T}\right)_{P}$ assumes the value zero for that definite value of x.
It appears at the same time from these figures that when the temperature of the three phase equilibrium lies between the mellingpoint temperatures of the pseudo-components, one of the metastably produced meltingpoint lines must possess a maximum temperature.

When in conclusion we consider the case that the $5-2$-ines for solid suddenly terminate in the ζ, x-igures, we find what follows for the corresponding T, x-figures.

We have-treated here systems of two psendo-components a and β, but it is clear, that the same holds also for any other binary system.

Amsterdam, 20 March 1914.
Anorg. Chem. Laboratory of the University.
(To be continued.)

[^0]: 1) Compt. rend. 140,1649 (1905):
