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8. Let (") be a pencil belonging to the net [¢*], which is pro-
duced by the intersection of the net [®*] with the plane . The
locus of the points which have the same polar line with regard to
a curve y» and the curves of a pencil (p7), is a curve y of order
2n 4+ p—31), hence a curve of order 9, if for y» the curve ot
coincidences y° is taken. In the points S w° like y°, has nodes
and there the same tangents as ¢°, so the two curves have 30 points
in common in S; Further both of them pass through the 12 nodes
of the pencil [¢*]. In each of the remaining 12 common 'points D,
y® is touched by w°, which means that there the curves of a pencil
belonging to [¢°] have three-poini contact. In ((J*) occur therefore
twelve groups, in which every time three points have coincided.

In" each of the 12 points D, »° is touched by the complementury
curve v'*, into which y°® is transformed by (Q,Q"); the latter is the
locus of the pairs of points which complete the coincidences of (Q")
into quadruples. The figure of order 48, into which y° is transfor-
med, consists of +¢ itself, of the 5 curves ¢3°, each counted twice,
and the complementary curve; the latter is consequently indeed
of order 12. With =* it has four points in common, arising from
the 1 coincidences of the [° lying on 7 ; the remaining 20 lie_ in
the points S;. From this it ensues that y** las quadruple points in
the 5 singular points S.

In S, 4%, and ¥ have,therefore 5 X 4 X 2 = 40 points in common,
they further touch in the 12 points D. The remaining 8 intersections
arise from quadruples of which twice two points have coincided; so
(@") contains jfowr groups, which censist each of #wo coincidences.

Mathematics. — “On ‘Hermite’s functions.” By Prof. W. Kaprryy.
(Communicated in the meetings of March 28 and Apnl 24, 1913).

1. The n derivative of ¢—2* may be put in this form, first given
by Hurare

dn . R
T (=) = (1) e=H,(2)
{u -
where - ;
‘ —1 —1)(n—2)(n—3
H, () = 2ay — "(’%—) @ap—2 + "C )("2‘_ 09 gy — . )

Al

These polynomia satisfy the following relations 2

) See e.g. Cremona-Curizs, Binleitung in eine geometrische Theorie der ebenen
Curven, p. 121.
%) Exerc. de Tisserand, 1877, p. 26, 27 and 140. '
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dan
Hy@y=(—=1)e— (. . . . . . ()

dan -

d*H, dH,

— 22 2 = e e e
= “ — -+ 2n H, 0 . ' 3)
H, -

%—27131_1=0 Y 3]
Hn — 2z fl,l_] + 2 (n -— 1) f!,,__g =0 . e (5)
f Hy (o) H, (#)ePdae =0 m ==n . . . (6)

’

(7)

f Hr@e=de=2".n!yn

The object of this paper is o examine these polynomia and the™
series connected with these, which also satisfy the differential equa-

tion (3).

2. To integrate the differential equation (3) by means of definite
integrals, put

H, =22
then we have
d*z dz g i
—+2—-+2r4+1)e=0
dat dz

To solve this, we assume *

Q
z:fe—xtTdt
P

where T 18 a function of ¢z, and P and @ are constants. The result
of this substitution is

. Q :
il Q dz‘ Idal
2 (t 1 e—u)P+fe—n — 2t — (¢ 2) T di= 0.
P

Now this equation will be satisfied, if we make
2
T = e_"f_
and
P=0 Q= =xicw.
Hence the general integral is

1% 12

2 —1®
gt —zt
3:-'01[3 4tndc—|—c,f e 4 g dt
0
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¢, and ¢, being arbitrary constants.

Putting

this talkes the form

P y?

t =i

z=. (¢ *ut (4, cos xu | B, sin au) du.

0

4, and B, bemng agamn arbitrary constants.

The general integral of
d’y
da?®

therefore may be written

L@ g2

d
Y _0s™ 4 ony =0
da

y = @ ‘fe 4un (4, cos au + By, swm au) du.

0
Choosing
—1) s
Ap = _z os n
Va 2

we get the particular integral

oc

— 1)1
_Bn = (—)— Sin n_n

Va 2

1 il no
o _—— o
y———0¢" e *u’cos| xu — — }du
Va 2
0

which for £ =0, reduces to

Ya=0 =

where

0 42

fe 4urdu —

0

Now we know that

H, (0) =

2ot
3(—1)2 —— (n even)
n
—

nmw
(08 ~— @ 4,2

——— e Hurdu

14
4]

nl
— Vo (n even)
iy

2

1 /n—1
! \
2( 2 ) (r 0dd)

)

2

0 (n odd) -
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therefore this particular integral is H, () and we have .

1 -t
H, (@) :V—_fe 17 cos (wu _n_za_z) dve . . . (9)
F14
0

Choosing again ~ -
—1)
A, = =1 sin o B, =

Va 2 Va 2

the second particular integral may be written

L2

1 (- . nIT
Ly (@) ::_l/—yz e Je *ursin | wu — —2—) du . . (10)
0

L}

3. This second integral satisfies also the relalions (4) and (5).
For, differentiating, we have

1, -8
Ly (0) = 22Ly (v) + —= elﬂﬁ Tt cos [ aw — — ) du
VRS ?

© 2

1 -
= 2aLly, (#) — = e’ j; 4t sin (a:u —
0

(-t 1)—2) du
x 2

or
Ly(&) = 2ely (@) — Ly (@). . . . . . (11)

Differentiating again, and remarking that L, (v) safisfies the differ-
ential equation (3), we find
@n + 2) Ly — 28 Lngy + Ly =0
or, changing n in 7 — 2
Li—2 Ly +2@—1)Lee=0. . . . . (12

which is in accordance with (5).
If now we substitute the value

Ln+1 =2z L, — 2n L,
from (12) in (11), we get

Li=2nL,_, . . N ( 1))

4

which is in accordance with 4).

4. The function L. (z) may be expanded in series of ascending
powers of 2.
If » is even, we have
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h

(—12 f =
Ly (#) = ~———¢7° e *un sin sudu
(#) = Vo " sin su
1]
- 2 ok e M
( ) ( 1)* f e 4 uktntl oy
Va 0 (27€+1)-’5
=D L (220, @apht!
— Vy—r a2 2( (<) g
or
(__1)1,1 [ ( ) ( :’27)5 :l
Loy(2)= 22m, g o 14
(=) o —( (14)
Proceeding in the same manner if n is odd, we get
~1)ym41 2 2a2)
Lon ()= gt [ 14 ) (et 1Y +2) - ](15)

Both these series are converging for all finite values of the variable,
and show that

{ 0 . (n even)
n4-1

n oddh

Vo (n odd)

5. Te investicate the value of L, (z) for large values of 2, take
the differential equations

d’H, dHn .
da‘; n
d’Ly, dLn
~ d(c n
Multiply the former by L, the latter by A, and subtract, so-
d*L. d*H, dL, all,
1{"___2._ L, —— -2 1{11“—1""Ln———‘ =0
dz? da? v 2
or integratfng
dL a4,
H, T;*Lyl Eb’_n: Ce!

C, being the arbitrary constant.
Introducing the relations (4) and (13) this may be written
2n [Hn Ln-—l — Ln }'[n—l] = Cé*,
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If 2= 0 we have ,
2n H, (0) Ly— (0) = C (n even) -
— 9 L, (0) Hyey (0) = C
therefore in both cases
o 2l -

Vx

thus finally
o (n—1)!
—_—
V'
Now « having a large value, we may wrile approximately
I, (@) = (2a\ I, (&) = (2a)r—!

H, ({L) [Jn—l (a,) — Ly (.l;) I, (‘U) = (17)

”

Ly ()= e &
and therefore
nl v :
Ln (.?}) = "V—g_r_ .I,‘"‘i‘l . (1 8)
6. Summation of some series containing the functions H,(2).
Let
@ LY 2 o« U Io
S (1) gy (2) Tt (@) _ P and 3 (—1) o (=) Moy (&) _ Q
0 (24)/ o 2k + 1)/

and write Ho; and~x Hy 4o as definite mntegrals by means of (9),
then we have

D 2 © g
1 — —— ® 2%k
P—=— ¢+ {o  4c0s avdy j; 4c0s 2udu X (— 1)k (0)
4 0 (2k)/
0 0
1 A S » k41
Q= —et+ ‘ﬁ 1 sin qudy j; 4 sin qudu 2 (—1)F (u2)
7 0 | (2[6—[— 1)./
0 0
where
@® 2k © 2841
ST $ap T
o k) k1)
Now
Pyl |- J
J:z + cos wu cos uvdu = % ‘]‘e——T [cos (x4 ) u 4 cos (w—v) ] du
0 0
and
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R 0 g2
ﬁ_T stn zu stn woduy = %ﬁ— 4 |cos (3—v) u — cos (& +v) u] du
5 i .
which may be reduced by means of the relation
w0 —_ 42
J:,"‘l)“'lt2 cos Apudy = Q e t. . . .. .. (@
2p

0

]

In this way we get

L l/’_
- 2U & — il —al—p? (200 —23,p)
e 4 cosoucosuvdy = -——e (62 4 e—2av)
0 ’
05 w2 ;
— . . v )]
J; + sin au sin uwody = -5 e—a%—v? (220 — g—2m)
-
0 N
and
1 @® 52 ,
— — e fe 4 cos aqu (e‘z:w + e—‘_’a.v) dv
Vg f
0
1 o 5u2
Q= ;=¢* j; 4 sin av (€27 — ¢—20) dy.
2Vn
0

To evaluate these integrals we may remark that the relation (a)
holds for complex values of 2. Putting therefore 2 =a 0 and .
equating the real and 1maginary part in both members of the equation,
we obtain

@ —_— al 62 N
- - : Va —=+= ab,
eV cos apu (eP¥ + e—tr)du=———e +  “4cos n
r
0 ) AN ()
o —_ a? b2
og Va —Z4+2  ab
e~V sin apu (ebpt — e=W¥) du == —e¢ + dsin—
Lop 2
0

which reduce the values of P and @ to

1 gy o Ho(e)Haie)

P=—0 5 w3k .. Q9
e s T e (%)
1 ) e« Hapr1(@) L
Q=m0 b sn-®— §aplan@an@
Ve 5 k1)

v

Investigading in the same way a second series

(8}
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8

2, O"H,(n),(a)
S = — - .
an . nt

o}

where 4 repiesents a value between O and 1, we get

ool U -I—v ;
H’E‘(m)[{”(@) et uneos wu—-z—)cos av— =\ dudy
27 .l T x.on n/ 2 2

and

. (ﬁuv)?k
g u?—}-v- o
w 2
5 72N 6?7H11('U)H71(ﬂ) ex2+,ff 08 ZBUCOS 0L 2 > 2 dude
0 971 «n/ 0 (2k)/

6m;)2k+1

23402 mf q—{;”' sin u sin o Z‘ 2 dude
‘ INEYY
fu: Buv

* u-v? —
- 2
— ef*i-*jff + cosaucosav\e? ¢ duds
rr u’+L~ Buv Buv
e“”-*f f sinausinav \e? —e 2 J dudv.
\

Now, by means of (b), we may write

Y uv fuv R 02p2
_—y T, T oVm, T
e tcosmul\et e 2 Jdu—=2Vame 4 cos Ouv

0

~_v bun B a2
Je sonau\e? —e¢ 2 Jdu=2V'me 4 sin Qo

0
therefore
1 v _ (b
SZV_e”er 4 cos(a—Bz)vdv . . . . (21)
s
or
1 22 enHL (o) Ho(el
:ﬁe 1—0"‘:%———2%!—&2 , . (22)

This result shows that the series is diverging when 6 =1.

7. We shall next determine whether any function whatever of a
real variable can be expressed in a series of this form.

s

-
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F@)=4,H, () + 4, H, () + 4, 5, (e) + ...

Supposing this expansion to be possible the coefficients 4, may be
found by means of the relations (6) and (7)

1 -
An e m‘f‘e—"" ‘f(a) Hn (a) da.

With these values the second member reduces to

S=Lim S o Ao Hy (3) )

=1 0
‘where
o 1 o 6 H, (v) H,
E 0” An Hn (17;') = ﬁ_JZj (a) da 2 -——'(L)— (a)
0 - oIn . mf
1 £ % (=g N
:—fj (@) daje 4 cos (a—6x) Bag.
T
— 0
Hence
N G 0 -
S = Lim fe 4 dgf 7 (e) cos ( .@)Sda
f=1
or

S:;lt— dﬁff(a) cos (¢ —a) B da.
0 —

Now the second member of this equation represents f(z), when
this function satisfies the conditions of DIrIcHLET between the limits
— o and - . Hvery funetion of this kind may therefore be
~expanded 1n a series of the functions H.

8. We now proceed to give some examples of this expansion.
I Let /() =ar, then we have
‘vP:Au'Ho+AlH1 +A2H2+"

where -
1 1
A, = —— — Ju¥ Hy e du .
2” n! ! Vn

-0

Evidently this integral is zero when x¢ f, 1s an uneven function

1) The idea of introducing # was suggested to me by Piof. P, Deve.
78
Proceedings Royal Acad. Amsterdam, Vol. XVI,

a

-10 -
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or if n 4 p is an uneven nunber, the integral vanishes also when
p < n. Supposing therefore p + n even and 7z < p, we have -

[+ . ] dn \
} ffuP H, e+ do = (—1)» f xp i (") dz
—Cl — 00 het
Fodfd
= (—1p far — =% | de
da \ den—1
or

= (—1p—1p |ar—t . e dy
' - dan—1 -

—o
or -
w W
ftw H, e-2da :pfz’#"l Hy ) e—*du.
——C0 -—
Hence
o
./ —
f'vl’ H, e-2'dp — —p——, Vi
P—nl
> op—n
and
!
}).
A’I —_— n —
P ‘p————! n!

which gives

plp—1)(p —-2)p—3)
2/ v

o

p(p—1)
Qe =H, + =—— H_o +
IL. In the second place expanding
e — AH + AH + AH, + ..
the coefficients are given by
1 1 ®
4, f e~(—2r H, (¢) da .

Tl Vg
—w

or, putting ¢ =y -+ B, by
1 1 [°® ,
A, = f e~y H, (y + B) dy .

—

Now, expanding H, (y + ) by Macravrin’s theorem we have

Ho g+ B)=H, () + BH () + .- ,{%Hn(") )

-11 -
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where according to (4)
' (y) = 2n H,y (y)
2, (f/) =2'n (n - 1) u—z(z/)

~

E(”)( )__ 211 n/H (t/)
thus

- B 2
I (y+B)=H (y) +2n 8 Hi (y) +2*n(n-1) o Huoly) + . 4200 % Hy(y)-
Introducing this value, we get immediately

0 @ n
A,, fnad ﬁ—_ e‘?/QcZy praed E
v nl!

—0
and

32 3
opr =1+ D@+ B @+ w4

From this equation seveml others may be deduced, for instance

e =1 — H (@ )—f—ﬁ I, (») — — H T
208z__ —2. T 2
e—ﬁli___7;-____.1-+-3 H, + B "H,
28r__ o—2pr 3 25
6_'3!'6;—‘)8_}‘ [ +6H3j‘[ +...
et cos Byw = (Zk)/ (@)
941
e sin 2y = E( 1)% ETRTY Iopy (2)

[TI. As a third example we will expand a discontinuous function.
Supposing f(@)=1 from =0 to x=1 and f(@)=0 for

1 <20, we have
Ao)= AH, + A H, + AH, + ...

1 1 L
Ay =——— | e H,(a)de.
- o, nt Vn

Q

where

This coefficient may be determined in the following way.
Let

1 1
I, ::f -2 A, () da —_—f (Qafly—y — 2 (n—-1) Iy_s) e=du
0 "

then
78%

-12 -
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j‘Zlae‘“z n—100 =—= — I;Zn__ld (e—“’) = — (e—* H-n_.l)l -—}— el‘“gﬂln_] da
0 ’ 0 }
— Hyy (0) — =1 Hyy (1) + 2 (a—1) ‘]‘el—“’Hn_gda
g 0
and

In=H, 1 (0) —e1H,_1 (1) (n>0)
Now H,-1(0) vanishes for odd values of 7, therefore -
Iop = — e—1Hap_1(1) *k>0)
' Igjga = — e~ 1Ho (1) + Haz (0) (k2 0)
The following relations hold between three successive values of /:
Iopyy — 2oy + 2 (2k—1) Lopq (0) =0 (&> 0).

2%—2)
-—((k_l))!' (k> 1).

Lo, — 2 Topmy + 2 (26—2) Loz (0) = (—1)% 2.

For .

Topq1 — 200 + 2 (2k—1) Isp—y = Hop (0) 4 2 (2k—1) Hop—0 (0) —

— =1 [Hop (1) — 2Hap—1 (1) + 2 (2k—1) Hyy (1)]

where the second member vanishes according to (5).

In the same way the second relation may be proved.

From this 1t is evident that all values of I depend upon the
values of I, and [,, and these may bLe obtained directly tor

1 2 —
I2:f ¢ (4o —2) da = — 26

0
I—-a‘~’ —1
I1:fe 20de =1—e¢
0

If 2=0 or =1 the expansion does not hold. For these values
however we may easily venfy that the second member reduces to
the value 3.

Taking @ =0, the second member reduces to

Lim ~——1 Ie_—'(2 de> __8" H—___" (0) Hu ()
=1 V7 0 o , q!
0

or, according to (22), to

ol

1 1 —
Lim —_— = € 1—0- da’
=1 anl/l — G
V]

Assuming

-13 -
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1
1 (Vi _n 1 [ ° e
Lim _—f e'dgz—_fe”’dﬁ_—_l.
9=1".7!o ‘»/.7! *
0

In the same way the value for # =1 may be found.
SECOND SECTION.

9. Considering the functions
3
Pn(@) = Cue ® Hy(z)"
and determining the value of the constant C, so that
oo

fgon" (¢) do =1

—>

we easily get

1
Cr= —
: YV
and
1 2
P (2) = —e ¢ H,(z)
22 Vit n

Putting these values in the integral equation

/ oo

On (€)= 24, f o (@) K (2, a) da
we shall now deternmne the unknown function K (z, ) and the
unknown constant A,, which verify this equa,tlon
The expansion Il irom Art. 8 gave

n

1 1 [ 8
= —(«—f2 H, =
A, = TR, V“f (o) da = y

—

thus, changing 8 into w«,

1 @
2wy = = e~ (=—u} H, (a) da.
w

-—_r

-14 -
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Substituting this value mm (9) we have

w 2 o “
1 - n
H, (2) = %eﬂ ‘j; 4 o8 (‘ou — 9—7'2—) du j; - —v? H, (a) de
¢ —a
1 [T - 5
_ o . 2y u— :uﬂ ’ nw
_%ezﬁ < H, () daj; cos| U — —- du.
—_—n Q
Changing « into — e, this gives
(—1y [ ¥l now
H, (v) = o e |e—*H, () daj‘e 4 cos (am — 7) du (o)
—o 0

and putting — w nstedd of «, the same equation leads to

0 0 5
1 R — g2 P
H, (2) = 27;‘3‘2‘[9_“2 H, (a) daﬁ e €08 (mu—l— %) du
® 7

which, by the relation

cos (mu—— 7-}215) -_ (_1)n cos (a:u-{— ?)

15 equivalent with

@ 5
— I\ — Qi — — .
b, (z) = (2nﬂ) e ﬁ— @ H, (a) dafe T s (mu — %r) du . (d) .

Now, adding the equations (¢) and (d) we tind

@ o .
— 1\ —3 _ 2 g
Hy(») = é—n‘_}% ez’ﬁ_ # H, («) daﬁ TR cos (a:u—- n?) du
—w — @
4
where, putiing % =v — g ¢
5 4 5
w_‘l““_I“z nIx p i A - 4 n 7
f@ cos | aU — -‘é— Uu===e 4 0sy &V — g ar — —2— r—
P —o»
i 4 nw i
=’ cos(ga.v+—§- e * cosavdy.

Accérdmg to formula (a) Art. 6, we obtain therefore

@ 5 _ 4 1,
f e = du = —-—2 1/_7: T (4 7
; e s | - ax +
e cos | au 5 U % €0 F 2

-15-
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and finally

as

4 w
1 3y 4
H, () = o fe ° H, (a) cos(gam—?)da.
—w

20V 5
2
Multiplying this equation by C,e™3 we have
® RICEE )
1 4 nry
= e Zan — —
@ () ) B f?’n (o) 008 z ax 5 a
thus
1 1 3(29+:¢2 A
ln=_§ K (z, 0) = = e cos(gam _%r)

To make K(z,o) independent of n, we distingwmish two cases-
1. n even = 2m, then
. ® 8(e24a?)
— ] 4:
Pom (%) (=1 ff/hm (@) e 0 cos 3 oz dw

T 9em Viin

—®

3(ata?)
10
e Cos — Qi .

_ =Dy
am = VEn 5 -

- 92m
2. n odd = 2m -1, then

K (z.0)=

® 3(e+a?)
(_ ]_)m 10 . 4
et )= gz | (@0 ¥ o de

—

3(at—22)
PN G ==
22m+1= W 3 (-’b ’ a) = I/SE ¢ szn—-g- ax.

According to the theory of integral equations we know that
0 Py (J‘) P2om (a)

Kl (w . a) —
0 l?m
K@@:%mewwﬂ)
’ 0 )'2 m41
or
224u
- = H2m (x) H‘Zm (a)
1 @) =—= 2 3 (—=]yn 2 T ERAT
e ‘/ﬂe 0 =D @m)!
K (.1" a) — —=€ - x’:-“g 2‘.0 (___ l)m H2m+1 (‘”) H2m+1 (a)
LAY o @mi-1)!

-16 -
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which may be verified by the equations (19) and (20).
10. We shall now show that the function -
IJn—{-l («'v) +Z Lu—{—l (-27)
H, (@) + k Ln(2)

where £ is an arbitrary constant, may be developed in a conti-

nuous fraction.
Differentiating and eliminating £, the differential equation for g,
takes the form

3

do dz dz,
(W5 —1%) - + | % — —z, o’ +
da dz dz

y dz dz, dy
+(23—‘—y1d@+yzd‘ z—)6+( ~ 4 )=0
where
h=Hupa@)  y,= Lota (@)
2, = H» (@) 2, = Ly ()
According to 17) the coefficients of this equation may be written
Y2y — Yy2, = — vl nl 2
dz, dz,
z, 71; —z, E’; = 2n (HyLyy1 — Hy—1Lp) == 2011 nl ¢#*
dy, 4 de,  d
22—y =Ry, = — 2 5 O (Ho L L) = — 272

dy, d
12—, 2 = 2 0t 1) (Hpa Lo — HaLug) = 204 (ut 1)/ 2

thus
d
Y e —204+2@F1) . . . . . . (29)
dz
Substituting
2n
6=2z — —
61
the function o, satisfies an equation of the same kind viz.
do
E;l = 6,* — 2z0, + 2n.
Substituting again
2 (n—1
6, = 2x — (n—1)
6?
the transformed equation is
do, .
— =0, = 20, + 2 (i—1).

-17 -
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and so on, until

do,
— = on* — 226, + 2.
de
Putting now
1
on' =2z + T
we have
- di ‘ 1
— + 2ad=—
thus

! A= g2 (C — J:zx’dm) '
0

C being an arbitrary constant.

Hence
6= 920 - oy 1) ) (24
=g, 207D 5y ’ )
w — —
26 —
J— E 312
2
iy
where
z
1= |e*dz,
0
Thus for |
' 2 H, (C—1I Qzer?
n=1 () — 284 — — 2( )+ mi
ev H (C-1)+ e
2z +
c—1

_H,(C—1) + (e'—1) &
T H,(C—1I)+ 2ze”®
_H,(C—I) + (80°—20a) *
T H, (C—1) + (i —4) &
_ Hypy (C—1) 4 Tye?
T H, (C—I)+ T e
The following relation holds betwecn three successive functions 7'
Tp= 28T —1—2nT"y_s. ’
as appears from the substitution of the values of o and 6t in
2n
o1y’ '

n—23 6(8) —

n=mn o(n) =

0(“) = Sa —
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Putting =0 in this relation, we obtain

T,(0) = (—1)2 2n (ﬁ)! (n even) ,
2 (29)
To(0) = 0 (n0dd)
If now we compare the two forms
. H71+1(0‘—'I) + T’ . Fln-{—l + ,an-{-l (e)

T Hn(C_I) + Jyn—lex‘; o Hn + kLn
we may determine the relation which exists between C and %. For
putting # = 0, we have /=0 and

TW(0
0) = kLp41(0) (n even) -
c
@) L) (n odd) - -
thus
L Va
— %-
ip . . Hn+1
Therefore if C—=c the continued fraction (24) represents
Ly,
and if C=0 the value of this fraction is L+1'
n

From (¢) we may deduce a new form for L,(z). For introducing
C instead of %, we have
8C & (HnTy—Hy i1 To1) — V& (C—1) (HppsLn—HnLng1) —
— V& @*(LyTn—Lyp1 Tre1) = 0.
Now the relations
Thn=2aT,_1—28T, o
Hyy = 20 H,—2n M,
Lyyq = 24Ly —2nLp_;

lead easily to
[InTn - }In-HTu——l =28, n!

LTy, — n+1Tn—-1 =2%.n/t Lo'
With these values, and (17) therefore, we find
9C. 2. 0! — (C—I)2Hn! — V.2 0! L, =0
or

z

=2 =2 fex’d 26
_ — —_— X . . . . . . .
TV Va, (26)
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This result leads also to a new form for all the functions L, (z), for

w U

Ty
ﬁ u cos audu — 2aL, ~~
0

ex?

22

I =— kil
Vi

- Vi
and, according to (12)

2
Li=Buly— =Ty o (@7)
14

where
Tpy = Hy_y — 2(n—2) Hy_3 + 2*(n—38) (n—4) Hp5 — .. . (28)

11. Applying the preceding expansion, the problem of the momenta |,
may be solved. ‘
Let

\

an = fm f(z;) yray
0

the question is to determine the function f(y) when ¢, is given for
all positive integral values of n.

Putting

Fy) =9 [bH,(y) + bel(y) +o.Hy(y) + .. ]
we have to determine the coefficients 6 from
o, = b5 bpﬁ—y’ynﬂp(y)dy
0

Here p-n is an-even number, for the integral vanishes for p 4 »

odd. Moreover the integral vanishes it p >>n therefore

-

- w
n
oy — = bpﬁ*—ynynﬂp(y)dy
0
—

or, according to the expansion I Art. 8

n b
o =n!yz=Z LA
0 271—pn;p!
which may be written
n b
,a,. —— A, == L .
n!V 0 gn—pﬁ_;:z.l

Solving these linear equations, we get immediately
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' <P
=2 Ap—% .
b :?(— y 9% | 1!
and accordingly -
o W
1 _¥
P=—1c¢ duEb uPcos u~—
Y l/ 14 ¥
i
where 0, has the preceding values. =
Writing this
w_W
fly)= 7[6 du feos yu S, + sin yu S;] -

we have
@ P
0.2
® 1
8, =2 (—1) ? byur
13
or, expressing b,, in function of the values 4

2 'A 'An A
S:l :Ao —u (A2 211,) + u ( 4 211/ + 2“_—4 .02!)- .

u? u?

foed 84_(Ao _—A:uz + A4u4 - ) = e—‘; Ew (_ l)k Agku2k
0

u3
= ¢4 = (—1)* hicid uk
Vx (2k)!
and in the same way
u¥

2%kt
8, = —— et 3 (—1)k T g2l
2t s T

therefore

1 [ :
/ly) = f du [cos Juz (- 1)7L u?’c -+ sinyu X (-—1)7»—(—2(;;—%1? u?k'i-l]

0
or finally '

1 woo P c
Ffly) = ;f%‘ (—1p % cos (yu + ]—)—22) du.
0

Of course this is only a formal solution, which holds when the
values e, are such as to make this integral convergent. This is e.g.

the case if
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Hy. (1
g1 =10 oo = (—1)k —;—;—,S—)

__1 v o Hop(1) / u 2k
@) =— fws yu = BT (?) du
0

or, according to the expansion II

for then

0 w2

1 -z
f(y)zé; cosyue 4 (et + e~ ) du,
0
which reduced by & Avt. 6, gives

Ffly)= i—te—ﬂ2 cos 2y .

Microbiology. — “On the wnitrate ferment and the formation of
physiological species”. By Prof. Dr. M. W. BEJERINCK.

(Communicated in the meeting of March 28, 1913).

It is a well-known fact that in soil as well as in liquids containing
a great many individuals of the nitrate ferment, large amounts of
organic substances may be present without preventing nitratation,
which is the oxidation of nitrites to nitrates by that ferment.

On the other hand it is certain, that when only few germs of the
ferment are present, so that they must first grow and multiply in
order to exert a perceptible influence, extremely small quantities of
organic substance are already sufficient to make the experiments fail
altogether, the nitrite then remaining unchanged in the culture media.

It is generally supposed, that this latter circumstance must be
explained by accepiing that the nitrate ferment can only then grow
and increase, when soluble organic substances are nearly or wholly
absent.

My own experiments, however, have led me to quite another
result, namely that the nitrate ferment very easily grows and increases
in presence” of the most various organic substances. But in this case,
that is, when growing at the expense of organic food, it soon wholly
loses the power of oxidising nitrites to nitrates and then changes
into an apparently common saprophytic bacterium.

This change may be called the formation of a physiological
species, and the two conditions of the ferment thus resulting, respec-
tively the oligotrophic and the polytrophic form.
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