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Physies. — “A mechanical theorem of Bovramany and its relation
to the theory of enerqy quania”. By Prof. P. Earnsrist.
(Communicated by Prof. H. A. Lorentz).

(Communicated in the meeting of November 29, 1913).

When black or also not black radiation is compressed reversibly
and adiabatically by compression of a perfectly reflecting enclosure,
it is known that the following takes place: The frequency », and
the energy [, of each of the principal modes of vibration of the
cavity increase during the compréssion in such a way that we get:

vy
for each of the infinitely many principal vibrations.

Relation (1) is of fandamental importance for the purely
thermodynamic derivation of WiEN’s law; it is no less so for every
statistic theory of radiation, which is to remain in keeping with
the second law of thermodynamics'). In particular it is also the
basis of Pranck’s assumption of differences of energy:?)

&
7::0,71.,27“.... N )

Of late Pranck’s supposition (2) of the original region (Conient
of energy of systems vibrating sinusoidally) has been applied to a
rapidly extending region. Of course tentatively. Two questions arise:

1. Does there continne to exist an adiabatic relation analogous
to equation (1) in the transiiion of systems vibrating sinusoidally
(in which the motion is governed by linear differential equations
with constant coefficients) to general systems?

1) P, EmrenresT. Welche Zige der Lichtquantenhypothese spielen in der
Theorie der Wirmestrahlung eine wesentliche Rolle? Ann. d. Phys. 36 (1911)
p- 91; § 5.

%) By way of elucidation: differences of energy e. g. of the form

1;:0,71.,271,,....

would lead to a conflict with the second law of thermodynamics. It is known
that PrLawck arrived at (2)‘by first carrying out his combinatory caleulation in
general on the assumption

e=0, f(v) , 2/(») , 83/®),....
and by then determining the form of f{v) from ihe condition that the formula of
radiatior found by the combinatory way shall satisfy WiEN's law. Thus he brought
his energy quanta smplicite in harmony both with relation (1) and with the second

law of thermodynamics.
38*

d”(pﬁ>::0 P=1,2....,%) . . . . . ().
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9. If so — how can it be applied heuristically, when Pranck’s
assumption (2) is eatended to systems vibrating not sinusoidally ?

The answer fo the first question is in the affirmative.”In the
search for the extension of the adiabatic relation (1) I perceived
that such an extension, and indeed a surprisingly far-reaching one,
follows immediately from a mechanic theorem found by Borrzmann
and Crausios independently of each other (see § 1).

For the present I can only answer the second question by giving
an example (§ 3). The difficulties which in general present them-
selves in this — Prof. Emsrriy drew my attention to the most
troublesscme one (§ 4) in a conversation — I have stated in § 2,
3, 4, without being able to remove them.

Another objection may be raised against the whole viz.: there is
no sense — 1t may be argued — in combining a thesis, which is
derived on the premise of the mechanical equations with the anti-
mechanical hypothesis of energy quanta. Answer: Wien's law holds
out the hope to us that results which may be derived from classical
mechanics and electrody namics by the consideration of maeroscopic-
adiabatic processes, will continue to be valid in the future mechaniecs
of energy quanta.

§1. Lel ¢,,..., qu be the coordinates of a mechanic sysfem.
The potential energy @ may depend, besides on the coordinates g,
also on some “slowly variable parameters” »,, r,,... Let the kinetic
energy 1" of the systemn be an homogeneous, quadratic function of
the velocities ¢,, and contain in its coefficients besides the ¢’s, even-
tually also the #’s.

Let further the system possess the following properties : For definite
but arbitrarily chosen values of the parameters s, r,,.... all the motions
of the system are periodical, no matter with what initial phase
(Q15eees Q. Prsees Pi) the system begins. The period P will in general
not only depend on the values of #,,r,,..., but also on the phase
(¢o» Po), With which the system begins.

By changing the parameters 7,,7,,... infinitely slowly we can
transform every original motion (4) of the system into another (B).
This particular mode of influencing the system is called “adiabatic
influencing” of the motion.

If moreover the respective periods of the motion are indicated by
Py and Pp, or their reciprocal values (the “frequencies”) by va
and vp, and further the temporal mean of the kinetic energy by

T4 and Tg, then
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With adiabatic influencing of a periodic system the quotient of
the temporal mean of the kinetic energy and of the frequency
remains unchanged (adiabatic relation). .

If J' denotes an 1nﬁmte51mal adiabatic change, P the original

period, then:
T P ;
d’(-—):d’fclt.T:O. N 07
v 0

(The action calculated over a period remains constant on adiabatic
influencing). The last assertion is nothing but a special case of the
thesis of Borrziaxy, Cravsws and SziLy, the derivalion and formu-
lation of which may be found in Borrzaann’s ““Vorlesungen uber
Mechanik”, Vol. II, § 48.7)

§ 2. Remarks.
a. In the case that there is no potential energy at all in the system,
or that the potential energy is in a fixed ratio to the kinetic energy *),

“the relation
E
"NM—-]1 =0 . . . . . . . . !
d (v) (II')

holds at the same time as equation (/) (compare equation (1) for
systems vibrating sinusoidally). But it is noteworthy that (1) only holds
in such particular cases, and is not of such general application as (/).

0. A practical extension of thesis (/) to non-periodical motions
would be very desirable. That it is not at once possible, follows
immediately from early investigations by Borrzmann®). 1 prefer not
to follow the way which Borrtzmany chose to extend his thesis to
non-periodical systems *), because it essentially rests on the untenahle )
hypothesis of ergodes.

¢. In case the adiabatic influencing leads to some singular motions,
in which a periodic motion begins to detach itself inio two or more
separate motions, assertion (II) must be modified accordingly.

3 Original papers: L. Borramany, Wissensch. Abh. L p. 23, p. 229. R. Crausius,
Pogg. Ann. 142 p. 433, Suwy, Pogg. Ann. 145.

%) @=T for systems vibrating sinusoidally, when the potential energy in the
stale of equilibrium is taken zero.

3) L. Borrzmany, Ges. Abh. I p. 126 \1877) Vorles. ub. Mechanik II § 41.

¥) Ges. Abh, Il p. 132, 139, 153.

8 P. u. T. Furcarcse Malhem. Eneykl. 1V. 32 § 10a (Rosenrman, Ann. d. Phys.
42 (1913) p. 796; M. Prancucrey, Ann. d. Phys, (1913) 42 p. 1061.
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Example?). Let a point move to and fro free from forces in a
inbe closed on either side. Let a repulsive field of force arise and
increase infinitely slowly in the middle of the tube. At last a moment
comes when the point with its store of kinetic energy cannot get
any longer through that “wall”, and only moves to and fro in one
half of the tube. If this field of force is of infinitely small extension,
the kinetic energy of the motion is the same at the end as at the
beginning ; the frequency on the other hand is twice the value, for
the path has been halved. Accordingly the original motion has split
up into two distinet separated branches during the adiabatic influencing.

§ 3. An example may illustrate the way in which the “adiabatic
relation” I may be applied. This example refers to the extension of
Pranck’s assumption (5) from resonators vibrating sinusoidally to
rotating dipoles.

A fixed dipole may be suaspended so that it can revolve freely
round the z-axis. Parallel to the a-axis a very strong directional
tield is made to act. We first consider infinitely small oscillations
of the dipole. The angle of rotation may be denoted by ¢, the cor-
responding moment (moment of inertia ) angular velocity) by p,
the frequency of the oscillation by »,. According to Pranck’s
assumption (2) the image point (g, p) of sach a dipole can. lie
nowhere else in the (g, p)-pl'ane than on certain ellipses, which
belong to the quantities of energy 0,hv,, 2Av,,.... and for which

therefore :
T o o A 5
'DO_ 3 'é:, '2-, ..... ’ﬂz—,..... . v . ()
We have namely (sinus vibration !):
- €
T=—. . . . . . < ..
=3 @

The infinite number of points of rest and equilibrium :

p=20 g=20, =+ 2, =x 4nm, =+ 6, ..
belong to the valne of the energy ¢ =0.

Some congruent ellipses, which have these points (5) as centres,
belong to the value & = nkv,. ‘

We now consider an adiabatic influencing of such an initial
motion of the dipole by an infinitely slow change of the orientating
field of force, and eventually alse of the moment of inertia. In this
way 1t is possible to convert the infinitely small oscillations into

1) Mr. K. Herzroep gave this example on the occasion of a discussion. |
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oscillations of finite amplitude, till at last the dipole changes its
form of motion and begins to rotate to the right or to the left; at
first still noticeably irregularly, at last with constant velocity of
rotation. When we consult Fig. 1, the continuous change of the
motion will become eclear, particularly also the transition through
the singular motion G'H. A complete oscillation corresponds in the
final state to a double rotation of the uniformly rotating dipole

P
p TS B —T—>—___[F
PN A
SEESE
dmﬁ\/T
d 0 o 21 b
Fig. 1.

(0= ¢<4n): ABE. Hence if we wish to derive the kinetic energy
T, of the uniform rotation by the aid of the “adiabatic relation”
from the mean kinetic energy 7', of the original oscillatory motion,
we must take as corresponding period the time

Plzﬂ.........(ﬁ)

7

where ¢, is the constant velocity of rotation of the dipole; so as
corresponding frequency

_ &

m=i oo ()

Then according to (7) (I) and (8), we have

T 4aT, (T Lok I
—_ ) =——=-])=0,=-,2=,...08-,.. . (8
(”)1 A (”)o 2’ 2’ nz ®)

or also, as

1'1=}%.........(9)
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—o, 2w " . (10))
=" iz’ dx ' g ' -

If other values of p were admitied for a uniformly rotating dipole,
it would be possible that by reversal of the described adiabatic process
sinusoidal vibrations were obtained; with an amount of energy which
would come in collision with PLANCK’S assumptions (3) and (2).

It we have N dipoles, and if with given total energy, we wish
to calculale the “most probable” distribution of the dipoles over the
possible motions (10), it is still to be fixed by definition to what
regions in the (g,p)-plane ihe same probability must be assigned.
By the “adiabatic influencing” every separate ellipse of PLaNCK’s in
the (¢, p)-plane passes finally into a definite pair of straight lines of
the length of 2x, which lie symmetrically on either side of the
g-axis. If in the statistic trealment of dipoles vibrating sinusoidally
with Praxck we consider all the separate ellipses as regions of
equal probability, we are naturally led to treat the just-mentioned
pairs of lines for the uniformly rotating dipoles as regions of equal
probability ¥) (Hypothesis A). However natural this may be, yet it
is a new hypothesis. Is this hypothesis inevitable?

Seemingly the following course is open. Let us start from NV
dipoles vibrating sinusoidally (frequency w»,), which are distributed
over Pranck’s ellipses in the most probable manmer. Apply the
above-described “adiabatic influencing” to all the poles at the same
time. Then an enfirely definite distribution of the N-dipoles over
the different modes of motion is obtained finally (10). This distri-
bution (distribution B) is, however, another than follows as the most
“probable” from the hypothesis 4 (distribution 4). Is distribution B
to be taken as the distribution which corresponds with the state of
equilibruim, and is therefore the distribution 4 and ihe hypotlhesis
A to be rejected? The remarks made in the following § try to
demonstrate that the distribution B cannot be considered as a distri-
bution of equilibrium. g

§ 4. In case of adiabatic compression black radiation is trans-

1) In my monograph: “Bemerk, betreffs der specif. Wiirme zweiatomiger Gase”,

Verh. d. deutsch, phys. Ges. 15 (1913) p. 4563, 1 have erroneously put:
L
1:% 50 Pr=....En—....

This, however, has no further influence on the derivations given there than that
the numerical value of the moment of inertia J. of the hydrogen molecule calenlaled
finally must be divided by four.

2) P. Earcwvesr. Bemerk. betreffs der specif. Wirme zweiatomiger Gase. Verh.
d. deutschen phys, Ges. 15 (1913) p. 458. -

-
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formed into black radiation as well when there is a “black grain”
in the contracting reflecting enclosure, as in the absence of such a
“catalyser’”’. Else we should get into collision with the second law
of thermodynamics.?) If there are N monatomic molecules in a
vessel with rough walls, distributed according to Maxwrrl’s law,
and if this ideal gas is compressed by an infinitely slow shifting
of the walls of the vessel, the distribution finally follows again
MasxwrLL’s law, both when the molecules during the compression
can , collide, and when they could penetrate perfectly through each
other. Probably more examples might be found in which through
an ‘“adiabatic influencing” of the separate degrees of freedom a
state of equilibrium arises from a state of equilibrium.?) But in
general this is not the case, e.g. for molecules consisting of more
than one atom or for mon-atomic molecules on which an external
field of force acts.?®)

Chemistry. — “Zquilibria in ternary systems. X1’ By Prof.
F. A. H. SCHREINEMAKERS. ' |

In all our previous communications we have always contemplated
the case that the occurring solid substances are ternary compounds.
Now we shall assume that a binary compound occurs.

It is evident that we may deduce the saturationcurves under their
own vapour-pressure and the boilingpointcurves of a binary compound
in the same way as has been done in the previous communications
for a ternary compound.

We take a compound composed of B and (, we represent this
in fig. 1 by the point F on the side BC of the components-triangle
ABC. We now take a definite temperature 7° and a pressure P in
such.a way, that no vapour can be formed and the isotherm consists
only of the salurationcurve of /. This is represented in fig. 1 by
curve pgq.

On decvease of I, a gasregion occurs somewhere and also the
region L —@,which separates gas- and liquidregion from each other.

1) M. Pranck, Wirintestrahlupg 1L Aufl. § 71.

%) The two mentioned cases have this in common that the pressure only depends
on the total enmergy of the system, and not on its distribution over the different
degrees of freedom.

% In an analogous way we can see that a canonical cnsemble of gases
generally does not remain canonical after an “adiabatic influencing™.



