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SUMMARY.

1. We delermined the progressive change of the acid formation
from some aliphatic saturated acid anhydrides in presence .
of an excess of water at 0° and 25°.

2. In the case of the lower acid anhydrides including the butyric
acids this proved to be a unimolecular reaction with a relative
small temperature coefficient. -

3. As from previous investigations it had appeared that the
reaction constant is closely connected with the dissociation
constant of the acids forming, it could be deduced, by elimi-
nating this influence, that the hydratation constant decreases
as the mass of {he caturated group increases, and that the
branching of the saturated carbon chain has little influence
on this constant.

4. From the fall of the “constant” for the acid formation from
isovaleric anhydride it was deduced that the formation of acid
usually takes place in two phases: a. Absorption of water,
b. splitting of the hydrate; that with the lower acid anhydrides
the first reaction occurs very rapidly so that only the last
unimolecular reaction gets measured; that in the case of the
wsovaleric anhydride the first reaction no longer takes place
infinitely in regard to the second so that we must get the
image of a follow-reaction with unequal reaction constants.

Delft, December 1913. -
Lab. Org. Chem. Techn. Univ., Delft.

Mathematics. — “Bilinear congruences and complexes oy plane
algebraic curves.” By Prof. Jan pe VRIEs.

1. We shall consider a doubly infinite system of plane curves
of order n, consequently a- congruence [y*]. We suppose that through
an arbitrary point only one curve passes, and that an arbitrary
straight line is cut in » points by only onre curve. The congruence
is in that case of the first order, and of the first class; we shall
call it for the sake of brevity a bilinear congruence.

As a y» of the congruence is determined by-a straight line » of:
its plane ¢, all planes ¢ must pass through a fixed point Z, which
we shall call the pole.

A ray f passing through I (polar ray) bears o' planes ¢; the
curves y* lying in it form a swface 2 of order (n+41), for any
point of f lies on only one curve y. '
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. We consider now the surfaces Zn+!, belonging to the rays fand
’; they have in common the vy lying in the plane ( //*), and intersect
further along a curve o of order (n*+n-1;, which passes through /).

Through a point S of 6 pass two curves y», the planes of which
contain successively the straight lines f and f’. S is therefore a
singular point and lies consequently in o' curves y». The planes of
these y» form the pencil with axis FS, the curves themselves lie
on a ="+l which has a node in S, for a straight line passing
through S meels =7+ in (n—-1) points situated outside S.

Let /" be an arbitrary ray through F, s—= FS a bisecant of tlie
curve 6; %" in the plane (/"s) passes through S. The surface =
belonging to /" contains therefore the curve ¢ and the latter is
base-curve of the net which is formed by the oo® surfaces =. The
y* which is determined by an arbitrary powmnt P, forms with ¢ the
base of a pencil belonging to the net.

A y» can meet an arbitrary surface 2"+, in singular points S
only, consequently it rests in n (n -+ 1) points on the singular curve
on* ' while 1its plane cuts o still in the pole F.

4 bilinear congruence |y] consists of the curves y', which cut a
twisted curve of the order n*-4~n —+ 1) i (n 4 1) points, and send
their planes through a fized pomt of that curve®).

The curve ¢ may be represented by
an hn on
x €X z

=0,

a, Bz vz
hence the | =»+1] by

A @ v

an bn ¢t =0,
& 2 z T

@, Bz Yz

and the congruence [y*] by the relations
Qa’; -+ Gbg + rc;:O, 0ta + 03 + vy, = 0.

2. The surface = formed by the y», which rest in a singular

1) ¢ is of the rank n (2n*+n 1) and the genus & # (n—1) (2n+1); it sends
1n2(n?+ 1) bisecants through one point.

%) For n =2 this has been pointed out by Monrrsano (“Su di un sistema lineare
di coniche nello spazio”, 4itr di Torno, XXVII, p. 660—690). Gopeaux arrived
at the congruence [y»] by inquiring into linear congruences of y» of the genus
Yo (n — 1) (. —2), which poscess one singular curve, on which the 5= rest each
in % (- 1)points. (“Sulle congiucnze hneari di curve piane dotate di usa sola
curva singolare”, Kend. di Pulermo, XXXIV, p. 288—300).

47
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point S on o, is cul in (n 4 1) points by an arbifrary straigl

line /; consequently o is an (n 4 1)-fold curve on the snrface 4

the cnrves y7, which are cut by /. As two surfaces 4 apart frox

6 can only have in common a number of y», which agrees wit

the order of 4, we have for the determination of that order z the relatio
#*=ax -} (o + 1) (@* + n 4+ 1);

from which ensues @ = (n -} 1)

The y» resting on a straight lne [ jform a surface of orde
(n+ 1) on which the y», of whick the plane passes through 1, isa
n-jold curve ; the singular curve is (n - 1)-fold.

4 is cut n(n-1)° times by an arbitrary y» of the congruence
from this appears again that y* rests in n(n - 1) points on o.

Two arbitrary straight lines are cut by (n -+ 1) curves of th
congruence. )

A plane ¢ passing through [ intersects .4/ moreover along a curve
which is appavently cut n (2 —1) tices on [ by the y*, of whicl
the plane passes through /; in each of the remaining (n -4 1)*—I—
n(n—1) = 3n points ¢ is touched: by a y".

The curves yr, which touch a given plane have their points o,
contact on a curve of order 3n, which possesses (n*+-n-1) double poinis

The last mentioned observation ensues’ from the fact that th
surface =»t!, which has a node in a singular point S, is cut by
¢ along a curve with node S; ¢ is therefore touched in S by two y»

The curve ¢3 found just now is the locus of the coincidences o
the involution formed from collinear sets of 7 points in which ¢ i

cut by [v*].

8. The surface A belonging to an arbitrary straight line, no
lying in ¢, has apart from the (n* 4 n 4 1) points S 3n (n +1)*—
2 (n+1) m*4-n+1) = +1) *+n—2) = (n+2) (n*—1) points ir
common with 32,

There are (n+ 2)(0* —1) curves in [y*], which touch a giver
plane, and at the same time cut a given straight’ line.

We can arrive at the last mentioned result in an other way yet

The surface =#t!, which contains the y», the planes of whiclk
pass through a polar ray f, is cut by a straight line { in (n + 1
points; so the planes of (n 1) curves y* pass through f, whict
curves rest on /. Consequently the planes of the y» lying on A4 envelof
a cone of class (n +1).

A plane ¢ cuts =+ along a curve ¢mtl, which passes through
the point of intersection of f, and sends (n-1n—2 = (n42)(n—1,
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tangents through that point. From this follows that the planes of
the y», touching ¢, envelop a cone of class (n-+2) (n—1).

Each common tangent plane of the two cones, contains a y», which
cuts [ and touches ¢ ; for the number of those curves we find there-
fore again (n-2)(n*—1).

The two cones of class (n+2)(n—1), which are enveloped by the
planes of the y», which touch two given planes have (22)* (n—1)
tangent planes in common. As many curves y* consequently touch
two given planes.

4. A surface =»+1, belonging to the polar ray f, contains a
number of y* with a node; such a y” is the intersection of = with
a tangent plane passing through f.

In orvder to determine the number of those planes, we consider
the points which = outside f, has in common with the polar surfaces
a» and Br of two points 4 and B lying on f. A plane ¢ passing
through f cuts these surfaces along two curves a*—!and 6*—, which
cut f in two groups of (n—1) points A, and Bj. If ¢ is made to
revolve round f, these sets of (n—1) points describe two projective
involutions so that a ecorrerpondence (n—1,n~—1) arises on f. In
each coincidence C, f is cut by two curves g*!, {"—! lying in the
same plane ¢; there «* and P» have therefore the same tangent
plane which contains at the same time the tangent of the curve
o of the order (n*~—1), which «*and g have in common, apart from f.

The 2(n—1) points (' are at the same time the coincidences of
the involution of the nth degree, which is determined on f by the
curve 7, out of which X is built up; in each point C, = is there-
fore touched by the plane ¢ and moreover by the curve ¢. Conse-
quently ¢ has on f 4(n—1) points in common with X', the number
of intersecting points of ¢ and ' lying outside J/ amounts therefore
to (n*—1)in+1) — 4(n=1) = (n—1)*(n-3)." .

Through each polar ray f pass consequently the planes of
(n—1)*(n-+3) nodal curves y7;.

The planes of the nodal curves y%s envelop a cone of class
(n—1)*(n}3); the planes of the »», which rest on a straight line /,
envelop a cone of class (n+1). From this follows that the nodul
curves Y% form a surface A of order (n+3)(n+4-1) (n—1)".

On a straight line f lie n (n—1)* (n-+3) points of the nodal curves
y"s, of which the planes pass through f; in the pole I the sulface
A is cut by f in (n+3) (n—1)* points.

}) For n+ 1 =3, we duly find the five pairs of lines which rest on a straight
line of a cubie surface.

47+
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Let S be a point of the singular curve ¢; the ray FSis cutin S
by the (n4-3) (n--1)* curves yé*, of which the planes pass through I'S.

In connection with what was mentioned above we may therefore
conclude that the singular curve ¢ is (n43) (m—1)*fold on the
surface A. )

5. If all y» pass ihrough the pole 7, so that the latter is a
Sundamental point of the congruence, then all surfaces ="+ have
a node in . Two surfaces have four points in /' in common in
that case; one of them belongs to the y», which forms part of the
intersection, consequently the singular curve ¢ has now a triple point
in F. In an arbitrary plane ¢ passing through F.the two = have
(n 1) —4 points in common, apart from F, (n—1) of those
points lie on the common y7, the remaining (n’+n—2) on o.

In those points ¢ is cut by the curve of the congruence lying in
. The curves y* consequently pass through the triple point of the
singular curve, and rest moreover in (n-}-2) (n—1) other points on it.

Any plane passing through a tangent #; in F' to ¢ contains a 7,
which touches # in . In the plane passing through two of those
tangents lies therefore a ys", which has a node in F. Each of the
three bitangent planes of ¢ which are determined by the three
tangents in I contains therefore a y;» with node £

The quadric cones of contact in I’ of the surfaces of the net
[Zn+1] form apparently a net which has as base edges the ihree
tangents of the singular curve o. To that net belongs the figure
consisting of the plane # # with an arbitrary plane passing through
tn; so the net [3n+1] contains three systems of surfaces, which
have a biplanar point in F; the edge of the pair of planes into
which the cone of contact degenerates lies in one of the three

planes £ ¢;. -

6. We shall now consider a triply infinite system of plane algebraic
curves ¥, which form a b&ilinear complez {y"}'). In an arbitrary
plane lies therefore one y*, and the curves y», which pass through
a point P, lie in the planes of a penci! (cone of the first class);
the axis p of that pencil we shall call for the sake of brevity, the
axs of P. )

The curves of {y"}, of which the planes pass through an arbitrary
straight line = form apparently a surface of order (n-+1), which we

1) The hilinear complexes of conics have been fully treated by D. MonTEsano
(“l complessi bilineari di coniche nello spazio”, At R. dcc. Nupoli, XV, ser,
2a, n0. 8).



731

shall indicate by =,»t+!'. Through a point P of » passes only one
v*, namely the curve lying in the plane (pr).

The surface X),"+! belonging to an axis p has a node in I’; for
a line [ passing through P cuts the y* of the plane (p/) in (n—1)
points lying outside P. B )

If » is made to revolve in a plane ¢ around a point O then
2n+1 describes a pencil. In order to determine the surface = which
passes through an arbitrary point P, we have only to find the ray
r, which cuts the axis p of P. The base of this pencil consists of
the curve ¢ lying in ¢ and a twisted curve pn*ta+!, which cuts
y" in n(n4-1) points.

Any point P of this curve lies on o' curves y”; its axes p must
meet all the rays of the pencil (O, ¢), consequently pass through (.

To the net of rays of the straight lines », lying in ¢, corresponds
a net of surfaces Z»+1. Through. two arbitrary points P, P’ passes
the surface belonging to the straight line r, which cuts the axis p,p’.

7. Let us now consider the surfaces of this net belonging to
three straight lines, =,7,1" of ¢, which do not pass through one
point. The curve ¢t*+!, which two.of thesé surfaces have in com-
mon, cuts the third surface in (n+41) (n*+4n-41) points. To these
points belong n (n-+1) points of the 4 lying in ¢.

Let H be one of the remaining (n41) *4n-41) — 1) n =
m+1)(n*+1) intersections. Through H pass the curves y" lying in
the three planes which connect H with r, 2,7 ; these planes do not
belong to a pencil, consequently H bears oo® curves y» and is therefore
a cardinal point (fundamental point) of the complex {y*. Any straight
line through A is apparently an axis and determines by means of
its intersection with ¢, a pencil (Z#+1), consequently a curve g#*+n+1,

The complex {ym} has (n4-1)n*+1) cardinal points; they are at
the same time cardinal points of the complex of rays {p} and of the
complex of curves {ortnti}.

The cardinal points are apparently base points of the net {=-+1
belonging to the plane ¢, or, more exactly expressed, of all the nets
which are indicated by the planes ¢ in space.

8. Let us now consider the curves of {y»} which send their planes
through an arbitrary point J7. Through a point P passes the y* of
the plane (Fp); through a straight line r passes the plane (Zr) and
this plane contains one y7. So we have sel apart out of the complex
a bilinear congruence [yr] which has I' as pole. Its polar rays are
the axes p of the points P of the singular curve o¢*t++1; they
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project this curve oui of the pole ' lying on il, consequently form
a cone of order n(n--1). From this follows that the axes of {37} form
a complex of rays of order nn--1). ) .

In any plane passing through a cardinal point H lies a ¢, which
passes through HA. The w*® y* passing through A form therefore a
special congruence [y*], which has H as fundamental point; the
singular curve ¢ of this congruence has therefore a triple point in
H (§ 5); it is the ok, which has H}, as pole. _

Lach point H is triple point of a singular curve e, whick passes
through the remaining cardinal points.

This curve is base curve of a net of surfaces =, which have all
a node in H. -

The planes of the nodal curves y"; envelop a surface of class _
(n—1)*(n+3), for this is the naomber of tangent planes of =,n+1,
which pass through a straight line » (§ ).

The curves y7y form apparently a congruence of which the order

and class are (n—1)*n-}3).

9. We now assume a tetrahedron of coordinates and consider
the net of surfaces = belonging to the straight lines of the plane
x#, = 0. This net may then be represented by
bnz dnx ey dnx

@, &, By b,

ay ar z

=0.

a

+8
&, o,

The cardinal points are therefore found from
I ary by ony dn,
i &, &, @ a,

From this ensues readily that the curves of the complex may be

represented by the relations:
aaty o7+ y¢t - dd ==V, aw + P, ya,4-du,=0.

If we consider here «, 8, v as given, but ¢ as variable, then there
arises by elimination of d the above mentioned equation of the surface
= belonging to the straight lne z,=0, az,+g2,4yz, = 0.

For the curves passing through a point ¥ is

= aa;_=_ aa;; + Bb; + ;/c; + Jd; =0 and X ay =0.

= 0.

By ehmination of «,8,y,d out of these equations and Z‘aazzo,
Sar, =0, we find for the surface ="' belonging to Y, the
equation

‘ hoa @ 1:0.
The awis of ¥ is indicated by ’
| o s =0
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In order to determine the surface =11 belonging to the straight
line which joins the points ¥ and Z, one has to eliminale «, 8, v, d
out of T ey, =0, T az, =0, T ar, =0 and = eql = 0; then one
finds

C s wa =
while the straight line Y'Z is mdlcated by
Ny s w 1=0

Through the point X pass the axes of the points Y, for which

we have

Yo @ 2 ¥ Op

Y. b;} 2, | =0 and Ys C;; z; | =0,

Ys €, Ys CZZJ‘ Ty
These surfaces of order (n-+1) have the curve
Ya b;’ 2,
=0

Ys c; &y

in common, which is of order n, but is not situated on the two
other surfaces of order (n41), which are indicated by

o e o |[=0
The last mentioned relations determme therefore a curve of order
(n* +n 4 1) as locus of the points Y. From this ensues again that
the axes form a complex of rays of order n (n--1).

Mathematics. — “A4 bilinear congruence of twisted quartics of the
first species.” By Prof. Jan pr Vris.

1. As we know, we distinguish with congruences of algebraic
twisted curves two characteristic numbers, called order and cluss.

The order indicates how many curves pass through an arbitrary
point, the class the number of curves which have an arbitrarily
chosen straight line as a bisecant If both numbers are one the
congruence is called dilincar. In volume XVI of the Rend. del Cire.
mat. di Palermo (p. 210) E. VeNeronr has proved that there exist
principally two kinds of bilinear congruences of twisted cubics. An
analogous inquiry concerning congruences of twisted quartics of the
first species, ¢, has not been made till now. *)

1) The bilinear congruences of conics have becen trealed by Montosano (Atti di
Torino XXVII p. 660).




