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In order to determine the surface =11 belonging to the straight
line which joins the points ¥ and Z, one has to eliminale «, 8, v, d
out of T ey, =0, T az, =0, T ar, =0 and = eql = 0; then one
finds

C s wa =
while the straight line Y'Z is mdlcated by
Ny s w 1=0

Through the point X pass the axes of the points Y, for which

we have

Yo @ 2 ¥ Op

Y. b;} 2, | =0 and Ys C;; z; | =0,

Ys €, Ys CZZJ‘ Ty
These surfaces of order (n-+1) have the curve
Ya b;’ 2,
=0

Ys c; &y

in common, which is of order n, but is not situated on the two
other surfaces of order (n41), which are indicated by

o e o |[=0
The last mentioned relations determme therefore a curve of order
(n* +n 4 1) as locus of the points Y. From this ensues again that
the axes form a complex of rays of order n (n--1).

Mathematics. — “A4 bilinear congruence of twisted quartics of the
first species.” By Prof. Jan pr Vris.

1. As we know, we distinguish with congruences of algebraic
twisted curves two characteristic numbers, called order and cluss.

The order indicates how many curves pass through an arbitrary
point, the class the number of curves which have an arbitrarily
chosen straight line as a bisecant If both numbers are one the
congruence is called dilincar. In volume XVI of the Rend. del Cire.
mat. di Palermo (p. 210) E. VeNeronr has proved that there exist
principally two kinds of bilinear congruences of twisted cubics. An
analogous inquiry concerning congruences of twisted quartics of the
first species, ¢, has not been made till now. *)

1) The bilinear congruences of conics have becen trealed by Montosano (Atti di
Torino XXVII p. 660).
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In a communication which appeared in Volume XIV of these
Proceedings, 1 have (p. 235) considered the bilinear congruence [¢],
which arises if the quadrics of two pencils are made to intersect. )

It is not difficult to understand that no bilinear congruences
of curves of a higher order can be produced by two pencils of
surfaces. For, if these pencils are of the degrees m and n, they
intersect an arbitrary line in two involutions of the degrees m and
n and these have in common %= (m—1) (n—1) pairs; so we find
a congruence [¢™] of the tirst order, and the class (m—1)(n—1);
only for m—=n—=2 we find £ =1.

2. In order to arrive at another group of bilinear congruences,

I consider a net of cubic surfaces [#*]. Through an arbitrary point _

P pass o' surfaces @*, which form a pencil included in the net,
of which pencil the base curve in the general case will be a twisted
curve o° of genus 10. All the curves ¢° included in the net conse-
quently form a congruence of order onme. On an arbitrary line the
net determines a cubic involution of the second rank; the latter
possesses as we know a neutral pair N,, NV,; all the ¢° through
N, pass through N, as well, consequently the congruence is also
of the first e¢lass, therefore bilinear.

If all the ®°® have a curve in common, the curves ¢° degenerate
into an invariable and a variable part, and a bilinear congruence of
curves of a lower order is found. We shall now consider the case

in which we have to do with a congruence [o'].

3. Let o° be a twisted curve of order five, and let the genus be
2, so the remaining section of a @°® and a &*, which have a straight
line in common. Any surface ®° passing through 14 points of @°
contains this curve®); consequently the @* passing through ¢°. and
three arbitrarily chosen points H,, H,, H,, form a net. Two of these
surfaces have Dbesides o°, a g' of the 1st species in common, which

intersects o° in eight points?). With a third @°, ¢* has 12 points in

common, of which 8 lie on o, the other four, and to them belong
of course H,, H, and H, lie apparently on all ®? therefore on
all o*.

L If the Dbases of the two pencils have a straight line in common, one of the
two congruences [9%] found by VEneron arises. ’

% R. Srurw, Synthehische Untersuchungen uber Fldchen dritter Ordnurg
(1867, p 23%). P. H. Scmoure, Lo courbe d'intersection de deux surfaces
cubiques et ses dégénerations (Archives Teyler 1901, t. VI, p. 219). M. Stuvvaerr,
Cing dtudes de geomdirie analytique (Mem. Soc. Liége, 1907, t. VII, p. 40).

8) Scuoute, (I ¢. p. 241), Sruyvarrr, (. ¢ p. 41).
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Here we have consequently a bilinear congruence [o*] with four
cardinal points Hyp and a singular curve ¢°; ie. all ¢* pass through
the four cardinal points and rest in 8 points on ¢**).

4. Let ¢ be a trisecant of ¢°; the pencil of net surfaces determined
by a point of ¢ has for base the complex of ¢, ¢ and a plane cubic
y*, which Dbas a point 7" with ¢ in common, and 5 points with ¢°.
This y* must contain the four cardinal points H; consequently the
cardinal points are situated in o plane @.

Any curve y* connects the 4 cardinal points and the 5 points Ry,
in which ¢° cuts the plane ¢, with the intersecting point 7 of the
trisecant belonging to it. As the trisecants form the quadratic ruled
surface @, on which ¢® lies, the points R, together with 7" may
be connected by a conic . )

The curves y* form a pencil with base (R, He); any v® intersects
7" in the point 7, through which the straight line ¢ passes, which,
considered together with y* belongs to the congruence [o*]?).

The locus of the degenerate figures (y* 4 t) is apparently the com-
plex of @* and ¢, and consequently belongs to the net [¢°].

5. Let b be one of the four bisecants of ¢°, which pass through
the ecardinal point Hj. All the ®° which contain b, have moreover
a ¢° in common, which has { as bisecant and restsin 6 points on g°.

Consequently there are sirteen jigures (o° - b) in [o*].

A third group of complex figures is formed by pairs of conics
(a®, 7). Let &® be a conic passing through H,, A,, intersecting ¢° in
4 points, the @* passing through «® and ¢' have an other conic §* in
common, which intersect> «* in 2 points, ¢* in 4 points and passes
through H,, H,

The number of «* we deduce using the law of permanency of the
number. We replace ¢° by the complex of a ¢® and a ¢*, which
have three points in common ; through a point [ pass consequently
3 straight lines, which rest on ¢* and *; with the bisecant of ¢°
they form the 4 straight lines which replace the 4 bisecants of ¢°;
consequenily (6° - 6*) is to be considered as a degeneration of ¢°.
In any plane passing through f, and H, lies a conic ¢* connecting
these points with 3 points of 6°; as the straight line H _H, cannot

1) If the base of the nct consists of a curve (S, of genus 3, and a cardinal
point I, the second bilinear congruence (%] is formed.

2) That the figure (y®--¢) Is a special case of a o1, appears from the fact that
through an arbitrarily chosen point P, two siraight lines may be drawn which
inlersect ,$ and #; they replace the bisecants which ! sends out through P,
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apparently be a part of a degenerale ¢, the ¢* form a quadrie.
This is cut by ¢* in 4 points; among them are the 3 common points
of ¢® and ¢°; through the fourth intersecting point passes a ¢%
which has four points in common with the figure (¢* 4 6?).

From this we conclude that one conic e® can be drawn through H,
and H;. As each «® is coupled with a §* (which passes in that case
through H, and H,), [o*] contains three figures (a® + B°).

6. Through a point S of the singular curve ¢* pass o' curves g*.
They cut the plane ¢ in the points H. To this system of ¢* belongs,
however, also the figure consisting of the trisecant ¢ passing through
S and a v® lying in ¢@. From this ensues that the locus of the o*
meeting in S, is a cubic surface =°, passing through ¢° aud the
points H, and consequently belongs to the net [®°].

An arbitrary line passing through .5, is a bisecant of one ¢,
and so intersects =*, apart from S in one point. Consequently =
has a double point in S. Through .S pass 6 straight lines of =3,
one of them is of course the ¢ mentioned before ; each of the remaining
5 is a bisecant p of w' curves ¢*, so a singular bisecant.

All the o* intersecting p twice pass through S; so they determine
on p a parabolic involution, of which all pairs have the point Sin
common; we shall call p a singular bisecant of the first species.

Through each point of o° pass therefore five sinqular bisecants of
the first species. ‘

Any line & passing through a cardinal point H is as well a
singular bisecant of the first species.

The monoids =* having two points of o° as double points, inter-
sect apart from ¢° in a o' Through any two points S passes
therefore only one curve of the congruence.

7. Let ¢ be a bisecant of a ¢f, and at the same time a secant
of of The smface ®* passing through o° and ¢* and a point of ¢
contains ¢, and belongs to the net [®#°]. Consequently all #° passing
{hrough & point @ of ¢ will cut this straight line moreover in a
second point @’. Consequently ¢ is a bisecant of o' curves g, and
the pairs of the intersections Q,Q’ form an involution. We call ¢ a
singular bisecant of the second species.

In order to find the number of lines ¢ that pass through a point
P, we consider the cubic cone 4°, which out of P projects the o*
conlaining P, and the cone Z° which has P as vertex and ¢° as
curve of direction. To the 15 common generatrices belong the lines
drawn to the eight intersecting points of ¢* and ¢°. The remaining
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7 are Dbisecanis of ¢* intersecting ¢°, therefore lines ¢. Consequently
the lines ¢ form a congruence of order seven.

We can also arrive at this result in another way. A straight line
passing through P is generally speaking, a bisecant of one ¢*; we
call R, R’ its intersections with ¢* and consider the surface s, which
is ke locus of the pairs B, R’. On any generatrix of the cone A3
one of those points lies in P, hence = has in P a triple point with
i* as tangent cone; m is consequently a surface of order 5. It passes
through ¢° and has nodes in the four cardinal points. For an arbi-
trary ¢* has in common with a the intersections with the bisecants
which it sends through P, and in 8 poinis of 9% so twice in each
point” H.

Now a* and 4° have in common the o* which passes through 2
further they can, by reason of the definition of a, only have lines
in common which contain ' pairs 2, B’ each. Therefore eleven
singular bisecants pass through P. To these the four straight lines
hi; = PH;; belong; for through any point of PH; passes a g*, which
meets this straight line again in the cardinal point H;, so that PH; is
a singular straight line of the first species (which, however, does
not rest on ¢°, and consequently may not be interchanged with a
straight line p). The remaining 7 singular bisecants passing through
P are therefore straight lines ¢.

For a point S of ¢° the surface a° degenerates, and consists of
the monoid @° with node S and a quadratic cone, formed by the
straight lines ¢, which intersect ¢° in S.

In an arbitrary plane lie five points of ¢, consequently 10 straight
lines ¢; they belong therefore to a congruence of rays of class ten.

The singular bisecants of the second species form a congruence
(7y 10), whick has ¢° as a singular curve.

The section of a® with a plane passing through P is a eurve
with a triple point, consequently of class 14, of its tangents 8 pass
throngh P. Therefore the tangents of the curves o* form a comples
of order eight.

8. The ¢* which [intcrsect a given line /, form a surface 4, of
which we intend to determine the order x. Any monoid #° contains
three ¢*, which intersect /, and rest in the vertex S on ¢°; conse-
quently ¢° is a triple curve of A.

The surfaces A, A’ belonging to two lines /, I have, besides the
threefold curve g¢° only the x curves ¢* in common, resting on [
and /. So we have the relation x* = 4x -4 3.5, hence = = 9.

On A° lies one trisecant {; for the curve y®, which intersects /,
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determines ou z* the point 77 of the trisecant with which it forms
a degenerate o* (§ 4). -

The curve ¢%, which has / as a bisecant belongs to two points
of I, and is consequently a twofold curve of A°. ’

The locus of the ¢* inlersected by [ is-therefore a surface of order
nine with a twofold curve ¢*, a triple curve o° and two straight
lines [ and ¢

9. A plane through / intersects 4° in a curve 2°; the latter has
the two intersections of o*; and six points R in common with /; in
each point 72, % is touched by a ¢*. -

The points in which a plane is touched by curves o lie therefore
on a curve y*; it is the curve of coincidences of the quadruple -
inwvolution (', in which the plane 2 is intersected by the congruences
[0"].

The five intersections S; of o° with A are apparently singular
points of Q'; to Sp are namely conjugated o' triplets of points,
lying on the cubic curve ¢°;, with double point Si, in which the
monoid ®* (with vertex .5;) is intersected by A. In S, 2 is therefore
touched by two ¢*; the curve of coincidences v has consequently
nodes in each of the five points S, and in S the same tangents
as oi’.

Any point D of the conic ¢* through S is the intersection of a
trisecant ¢, consequently determines a quadruple, of which the
remaining three poinis are produced by the intersection of the curve
y® coupled with ¢ On the section f of ¢ we have therefore a cubic
involution /7, of which the groups are completed into quadruples
of Q' by the points D. It is evident that @, as long as A remains
an arbitrary plane, cannot possess any other collinear {riplets.

In each of the points of intersection 7, T, of f with =* (§ 4) a
¢t is cat by a ¥°, consequently these points are coincidences of the
@Q*. The remaining coincidences, lying on f, belong to the involution
I, from this appears again that the order of the curve of coinci-
dences is siz.

As the singular point .S, lies on d® and therefore may be considered
as a point D, the curve o,° is intersected by f in a triplet of the
cubic involution 7., of which the groups are completed into quad-
vaples of Q' by S,. As [,° cannot possess a second -collinear
triplet, it is not a central involution; so it can be determined in
o' ways by a pencil of conics of which the base points are S,,
an arbifrary point of 6,°, and moreover {wo points of the line f.
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10. Any coincidence of the @' is completed into a quadruple
by two complementary points. The locus d of those points which
we shall call the complementary curve has apparently quadruple
points in S ; for I has four coincidences. Of the four coincidences
of I?, four of the complementary points lie on ¢*; with this conic
the curve dJ has therefore 4 4 5 < 4 = 24 points in common.
Consequently the complementary curve is of order 12.

The curves o¢f, which touch the plane 2 in the points of the
curve of coincidences #°, interseci 2 moreover on the complementary
curve d'*; so they form a surface of order 24, which passes eight
times through the curve ¢°.

This surface is intersecled by a plane A’ along a curve of order
24 with 5 octuple points S;. As the curve of coincidences ¥ lying
in A" has double points in ,S; the two curves outside S; have
24 56 —5X 8 X 2=64 poinls in common. Consequently there are
64 curves o', touching two given planes.

The surface A° belonging to the straight line [ intersects an
arbitrary plane ¢ along a curve ¢°, which has 5 triple points on
¢°. As the curve of coincidences ¢° lying in ¢ has 5 nodes on ¢,
it intersects p® moreover in 9 X 6 —5 X 3 X 2 = 24 points. From
this appears once more that the curves ¢*, which touch a given
plane, form a surface of order 24. At the same time, the fact that
the complementary cnrve is of order 12, is confirmed.

Chemistry. — “Zguilibric in ternary systems”. XII. By Prof.
SCHREINEMAKERS.

We have seen in the previous communication that the saluration-
curve under its own vapour-pressure of the temperature 7’z (the
point of maximumtemperature of the binary system '+ L -+ &)
is either a point [fig. 5 (XI)] or a curve [fig. 6 (XI)]. We shall now
examine this case more in detail.

If we calculate Z—Z— for this curve in the point H from (8) and (7)
(XI), then we find an infinitely great value. The curve going through
H in fig. 6 (XI) and the curve disappearing in A of figure 5 (XI)
come in contact, therefore, in A with the side BC. Now we take
a temperature somewhat lower than 7’g. The saturationcurve under
its own vapour-pressure terminates then in two poinis n and A
sitnated on different sides of and very close to H. [» and 4 in fig.
4—6 (XI) may be imagined very close to H.| As the saturationcurve




