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10. Any coincidence of the @' is completed into a quadruple
by two complementary points. The locus d of those points which
we shall call the complementary curve has apparently quadruple
points in S ; for I has four coincidences. Of the four coincidences
of I?, four of the complementary points lie on ¢*; with this conic
the curve dJ has therefore 4 4 5 < 4 = 24 points in common.
Consequently the complementary curve is of order 12.

The curves o¢f, which touch the plane 2 in the points of the
curve of coincidences #°, interseci 2 moreover on the complementary
curve d'*; so they form a surface of order 24, which passes eight
times through the curve ¢°.

This surface is intersecled by a plane A’ along a curve of order
24 with 5 octuple points S;. As the curve of coincidences ¥ lying
in A" has double points in ,S; the two curves outside S; have
24 56 —5X 8 X 2=64 poinls in common. Consequently there are
64 curves o', touching two given planes.

The surface A° belonging to the straight line [ intersects an
arbitrary plane ¢ along a curve ¢°, which has 5 triple points on
¢°. As the curve of coincidences ¢° lying in ¢ has 5 nodes on ¢,
it intersects p® moreover in 9 X 6 —5 X 3 X 2 = 24 points. From
this appears once more that the curves ¢*, which touch a given
plane, form a surface of order 24. At the same time, the fact that
the complementary cnrve is of order 12, is confirmed.

Chemistry. — “Zguilibric in ternary systems”. XII. By Prof.
SCHREINEMAKERS.

We have seen in the previous communication that the saluration-
curve under its own vapour-pressure of the temperature 7’z (the
point of maximumtemperature of the binary system '+ L -+ &)
is either a point [fig. 5 (XI)] or a curve [fig. 6 (XI)]. We shall now
examine this case more in detail.

If we calculate Z—Z— for this curve in the point H from (8) and (7)
(XI), then we find an infinitely great value. The curve going through
H in fig. 6 (XI) and the curve disappearing in A of figure 5 (XI)
come in contact, therefore, in A with the side BC. Now we take
a temperature somewhat lower than 7’g. The saturationcurve under
its own vapour-pressure terminates then in two poinis n and A
sitnated on different sides of and very close to H. [» and 4 in fig.
4—6 (XI) may be imagined very close to H.| As the saturationcurve
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under its own vapour-pressure touches BC in H, the tangent in_
n and the tangent in A to the curve, going through these points,
will yet be almost parallel BC.

Because the equilibria F - liquid n + _vapourn, and F hqmd
I+ vapour 4, differ but very little from one another, the perspective
concentrations S and S, (see the previous communication) will be,
on addition of a third substance, also approximately equal. Therefore,

when in the one equilibrium S>> 5,, this is also the case in the”
other. Of course the same applies to S < S,. Now we distinguish,

according as the subsiance expands or contracts on melting, two
principal cases. )

1. F expands on melting (V' >v). The point H is then situ-
ated with respect to /" as in fig. 4—6 (XI) viz. between /' and C,
but close to I7; AV is negative between F and H, positive in_the
other points of BC. From the situation of n» and % with respect to
F, it follows that .S and S, are both positive. We distinguish .S > S,
and S<S,.

a. S>8,. As AV is positive in . and negative in n, it follows
from our previous communication that the pressure decreases from
L along the saturationcnrve under its own vapour-pressure and it
increases from n. In which direction shall this curve now proceed
from 4? As the tangent in % coincides almost with BC, the curve
must go from % either almost in the direction towards n or almost
in opposite direction. We find the first in fig. 5, the second in
fig. 6 (XI). In order to determine this direction, it is to be consi-
dered that the region L—G shifts on decrease of pressurve from 7
towards n, so that the pressure decreases in this direction. As
the pressure along the saturationcurve under its own vapour-pressure
must also decrease from /4, this curve must therefore, also go from
/i almost in the direction towards =. It has, therefore, from / a
direction as in fig. 5 (XI). As the tangent in 7 coincides almost
with BC, the curve must go from 7n either almost in the direction
towards A or almoust in opposite direction. Considering that the region
L—@ shifts on increase of pressure from n towards 2, so that the
pressure increases from = towards A and further thal the pressure
along the saturationcurve under its own vapour-pressure must also

_ increase from n, we see that this curve must go, therefore, also

from n almost in the direction towards 4.

The saturationcorve under its own vapour-pressure has, therefore,
a form as curve An in fig. 5 (XI); it is situated, therefore, close to
the side BC and it disappears at T'g in the point H.

0. S S, In a similar way as above we find that the pressure
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along the saturationcurve under its own vapour-pressure increases
from /. and decreases from 7. Further we tind that this curve must
have in the vicinity of » and A a direction as in fig. 6 (XI). As
further the pressure in % is greater than in n, therefore on this
curve as well -a point of maximum- as a point of minimumpressure
must be situated. Consequently, we obtain a curve /i n, as in fig. 6 (XI),
this does not disappear at the temperature 7z, but it formsa curve,
touching the side BC in H.

2. F melts with decrease of volume (¥ < v). Now the points
H and H, are no more situated, as in the previous case, between
F and C. From the binary equilibrinm F 4 L -+ G it follows that
H is situated between F and B; the point H, may be imagined as
well between F and C as between F and B. In the last case H,
should be situated between F and H and therefore very close to H;
the region L—@G should then be very narrow in the vicinity of the
side BC, which is only possible in very exceptional cases. Therefore
we consider only the first case: H is situated between F and B,
and H, between F and C. )

If we take two points n and % close to H and the corre-
sponding points », and %, close to H, then we see that S and S,
bave an opposite sign. If further we keep in mind that AT is
negative between I and H and positive in the other points of BC,
then it follows, in a similar way as above, that curve n/4 must have
a form as in fig. 5 (XI). Therefore, it disappears at T in the point H.
Consequently, we obtain a diagram as in fig. 5 (XI), but with this
difference, that H is situated now between /' and B.

Contemplating the boilingpointcurves of F, we obtain diagrams
as fig. 5 and 6 (XI), the arrows must then however, indicate in
opposite direction. Further we must imagine the point of maximum
tempervature H to be replaced by the point of maximum pressure
Q of the binary equilibrium I L 4 G. AW is negative between
F and @, positive in the other points of BC. From the position of
Q and (@, with respect to F, it follows that S and 'S, are both
positive. We distingnish two cases.

a. 8> S,. We find that the boilingpointcurve /n has a form as
in fig. 5 (XI); the arrows must, however, indicate in opposite direction.
Therefore, this curve disappears under the pressure Pqin the point Q.

b. §<7S,. The boilingpointcurve /n has a form as in fig. 6 (XI);
the arrows must, however, indicate in opposite direction. Therefore
the cnrve does not disappear in Q under the pressure Pg.

If we sum together the results obtained above, we have:
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1. F melts with increase of volume The saturationcurve under
its own vapour-pressure disappears, when is raised the temperature’
in H [fig. 4 (XI)] when the conceniration of the new substance is
greater in the lignid than in the vapour. Ii does not disappear in
H [fig. 6 (XI)] when ibe concentration of the new substance is
smaller in the lignid than in the vapour.

2. 7 melts with decrease of volume. The saturationcurve under
its own vapour-pressure disappears, when is raised ihe temperature-
in H [Fig. 5 (X1}, wheremm howcever / must be situated between
I and B] i

- 3. The boilingpointcurve disappears, on increase of P in @
[fig. 5 (XI)], when the concentration of the new subslance is grealer
in the liquid than in the vapour. It does not disappear in Q [fig. 6 -
(XI)] when the concentration of the new substance is smaller in the
liquid than i the vapour. We mean of course, with “concentration”
above “perspectlive concentration”.

Now we will deduce in another way the relations in the vicinity
of the point H or . The saturationcurve under its own vapour-

pressure 18 fixed by the equations (1) (II), when we put therein a =0

0Z ¢*Z Lo
=, 3 , etc. become infinitely
@ Oa?

and when we keep 7 constant. As 5
great for # =0, we shall put
Z=U+ RTaloge . . . . . . . (1)
so that all differential quotients of U with respect to &, remain finite.
We put in the same way:
4, =U + RTz, logwe, . . . . . . . (9
so that the same applies to U,. Then we have:
0Z oU 0Z 0dU 0Z oU
——=— 4+ RT (14 loga) ; ~—=5— ; ——=—=
5o =3 PRI lga) 5 =500 557p

and similar relations for Z, and U,.
The equations 1 (II) then become :

oU o0
& — — = r‘t'-U = . . . . 4
o3+ G-B)g, + R U 4 =0 @

(3)

34 T
n3=+ B 5~ + Blo—U, +§=0. . . . ()
&y dy, .
'°U+Rz‘(1+zogw):a_%_; RT(1 -+ lga) . . . (6)
0z 0,
30 O,
== N ¢/
oy 0y, )
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In the points H and H, of figs. 4—6 (XI), the pressure is equal
to Pg, »=0 and «, =0; further we put y =), and y, = (y,),.
For a point in the vicinity of B( on this saturationcurve under its own
vapour-pressure, the pressure is Pg+4dP, a=3§, 2, =§, y=(), + %
and y, = (), + ™

In the points A and H, themselves the binavy equilibrium F4- L 4 G
exists ; to this applies :

~(y—ﬁ)g—yg—U+g:o g_yngf L@
wherein the pressure is equal to Pg, vy = (¥),, ¥, = (), and U
and U, are independent of z and <.

We now take the condition (6), from this it follows :

w, OoU oU
Tlog—+—=orv—— . e e
R log x Oz O, ' ®)
Therefore, we obtain for very small values of 2 and &, :
§ 1 _ ooU oU,
g —-=-—Lim|——=—] . . . . .
YETRT " \ s aml) (10)
or ,
E=K&. . . . . . . .. (11

wherein K is determined in (10).
We now take the condition (7); in this we put the pressure
P equal to Pg+dP, z=§, &, =&, y=(y),+n and y. =)+
If we expand Dboth terms of (7) inlo a series and consider that
in the point H (8) is satistied, then we find:

oV 0s o0t 0V 0s
5 — b Bl P t——dP &
aaV azv (12)
+~——8dP + — . qdP+...[],
0x0y 0y

2 2 2

Herein'r = %TZ s———a%a% t= 27? ; these values must be kept, as
they are in the point H. The second member of (12) is indicated by
| J.; this means that we deduce the second member from the first by
substituting §,, m,, $,, ¢, ete. for §, v, s, ¢ etc. Now we expand (4)
into a series; if we keep in mind, that in the point H (8) is again
satisfied, and that z and 2, must be put equal to zero, then we
find a series, which we write in the following form:

oV 0
RTE 4 b — (V—v)dP — § (@—é AP+ R+ y—f L =0 (13)

In R only terms occur, which are infinitely small with respect
48
Proceedings Royal Acad. Amsterdam. Vol. XVI,
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to those, which are already written down, viz. &, &, etc. £dpP
and 1 dP are wanting. L represents the first term of (12). For the
sake of simplification (y,) has been replaced by y.

If we expand (5) into a series, we find:

o, Y ..
BT84t —(Vim) P4 (57 = 55 ) AP+ Rt (=) B=0 (14

Herein [, contains only terms, nfinitely small with respect to-
those preceding, L, represents the second term of (12); (y,), has

been replaced by y,. .
Now, in the point A the denominator of (8)(XI) is equal to zero,

therefore : -
) —BV+E—y)oe+@—y V,=0.

We write this condition in the form:
Ve—v V,—v . V.—V
y—B n—B y—y
Now we have the four relations (11), (12), (13) and (14) between

the five variables. If we multiply (13) with y,—f8 and (14) with
(y—8) then follows:

oV o
#.—B) [RT S+ i — (6—1—5 aUP) dP“] o=

. 0V, v
=(y_ﬂ) [RTsl + ‘% 51"712 - '}i (“’a?l—’ﬁ) sz:, + 4
These equations may be satistied when we take & and & of the
order ¢P* and 7 and %, of the order dP. From (12), (13) and (14)
then follows:

=g . . . . . (15

(16)

tqg—}——dP_twl—}—a N ¢ 1))

oV
tn:y———(ﬂdP........(IS)

v,
t1"11=( a_/)dP S T 05%)]

These last three equations ave, as is seen immediately, dependent
on one another. Substituting % from (18) and %, from (19) in (16
we find:

§

2RT[(yl—m—(y——m—gi]gm.dz” C @)

Herei_n §,:§ is fixed by (11); further is:
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_y-B/ VY (yl—ﬁ)( v\ oV I o, .,
= () -2 (e  rep ) 6 g (2L
From (18) now foliows:

2RT[(y1—B)—(y—ﬁ)%]’s‘=

at? .
YA Y% L . (22)
(%)

From (22) it follows that the saturationcurve under its own
vapour-pressure under consideration is in the vicinity of the point
H [fig. 4—6 (XI)] a parabola, which touches the side B(C in H.
From (18) and (20) follows the change of § and % along this curve
at a small change of pressure dP.

We can find the meaning of a (22) in the following way.

We represent the length of Cp or (g [fig. 1 (XI)] by Y, the
length of the part, which is cut off by the liquid curve of the
region L — @G from CB by y. Then we have:

LAY _ Voo OV, dy ViV 3V dy, V=V 3,
F o R R TR A TR

Herein ¢, and V, refer to the point of intersection of the satura-
tioncurve with BC. Now we put:

Y—y=li
leal dl d ax
and we calculate 7P and ——.
V, depends on P and ¥, V on P and y and V, on. P and y,.
If now the saturationcurve of /' and the liquid-curve of the region
L — G go both through the point H, then (15) is satisfied; also at
the same time V, becomes == V and #,=1¢. Then we find :

dl d’l

Zi—P:() and a:t(y—ﬁ)(%—y)(ﬁ; *

Substituting this value of a in (20), we find after deduction with
the aid of (13) (XI) and (11)

For this it may be consideie” that

(24)

S &l
', —— | =t (y—y,) —. L.,
- em K(lt Sl)s (4—3:) 75 - 4P (25)
and
S B y-y) &L-
237‘.;{(1—8_)g_—__(?/._3_’i . .. @)
1

3v)\* " dP*
b3

wherein ¢>>0; that there may be agreement with our figures, we

take y —y, > 0.
- We now distinguish two cases.

4%
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S d?l
have the same sign. From (26) it follows

1. l—gl and

that § is positive, so that the parabola touches BC in H and is
further situated within the triangle [fig. 6 (XI)]. This is apparent
also yet from (25), as § becomes positive as well for &P positive
as negative.

S el L )

2. 1——-§1 and T have an opposite sign. From (26) it follows
that § is negative. Therefore the parabola touches BC in H, but is
further situated outside the triangle. Therefore a similar parabola
may be imagined in fig. 5 (XI). Then only its point H represents a

liquid, its other points have no meaning. -
2

dpP?

di
From our deduction of -— and in the point H, follows :

dP dpP?

B a
"dE?
Now, in the point H of fig. 4—6 (XI) ¥ —y, therefore also
di?
dF
When, however, the point H is situated on the other side of F,

then Y —y and therefore also 7P becomes negative.

We now consider some cases.

1. F nfelts with increase of volume (V> ).

. dF?,

becomes positive, as well on increase as on decrease of pressure.

ar
apP?

>0. Sand §,

positive.

a. S>S,. From (26) follows: the saturationcurve under its
own vapourpressure is a parabola, which touches BC in H, but is
situated further outside the triangle [fig. 5 (XI)].

b. S 8,. From (26) follows: the saturationcurve under its
own vapourpressure is a parabola, which touches BC in H, but is
further situated within the triangle. [fig. 6 (XI)].

2. F melts with decrease of volume (V < »\. ;Pl” < 0.

We take again S and S, with opposite sign.

As sub 1.a. In fig. 5 (XI) the point H must be imagined on the
other side of ZF, therefore, between F and B and H, between F
and C. . -

From (18) it follows that % changes sign with dP, as in the
point A the coefticient of P is negative,  and dP must have the
opposite sign. Therefore, the pressure increases in the direction in
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which 7 decreases and reversally. We see that this is in agreement
with the direction of the arrows in fig. 5 and 6 (XI).

If it is desired to know the influence of a small change of T
on the position of the saturationcurve under its own vapour pressure
going through H, we must also include terms with d7 in the
previous expansions into a series. Now U=2Z2— RTx logx therefore,

U

g—T = — H — Rz log =, therefore in the point H (z = 0) itself
oU

v

In the right member of (12), therefore, must be added——g_H dT
Y

d
and terms with §dT and %d7; in the left member ——agldT.
Y1

In (13) must be added (H—n,) d7’; in (14) (H,—,) dT’; in order
to distinguish the coordinate #, the entropy of the solid substance
F is indicated by ..

In the first member of (16) musi be added: (y,—g) (H—y,) dT’;
in the second member (y—p8) (H,—.).

From (13) follows:

av?
tn:(y——a—y—)dl’—}—...

from (14)
av,
4", = --— a—yT) dP + .
As we must substitute these values in (16), it is apparent that
we may neglect the other terms. As

AW
B-v) H+ (y,—3) 1 + (y—0) H, = (y—p) -7
we obfain:
2 RT [yl—ﬁ-(y—m %] s=a.dp 1 ). 2 ar

or, after deduction:
R S & AW
and :

i S e (y-y,) d% AW
T. —_— = —— . dT .
2R K(l Sl)g AT Y T al (28)
(w *—a—)
h P

From (28) it follows that not only the saturationcurve under its

-10 -
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own vapour-pressure, going through /A, but also those which -are
situated in the vicinity of H are parabolas. -

In the point H of figs. 5-—6 (XI) AW is negative, when H is
sitnated on the other side of F, AW is positive. From (28) it now
follows: -

when the curve, touching in A is sitnated outside the triangle
lfig. 5 (XI)], it shifts on decrease of T, within the triangle [curve
hn in fig. 5 (XT)] ~

when the curve, touching in H is situated within the triangle
[fig. 6 (XI)], it shifts on increase of 7" within the triangle [the
closed corve in fig. 6 (XD)] and on decrease of 7 partly outside
the triangle. Therefore, curve /An of fig. 6 (XI) must be imagined
to be closed by a part An situated outside the triangle; this part, -
however, has no physical meaning.

In fig. 1 three curves are drawn through F; F is the liquid-
curve of the region L—G at the temperature 77 and under the
pressure Pp, therefore at the minimummehingpoint of F; FK is
the boilingpointcurve and Fs the saturationcurve under its own
vapourpressure. The two first curves are but partly drawn. We
now construe in I a tangent to each of these curves. With the
aid of the formulas from the previous communication, we find:

for the tangent to the liguidcurve (Z7) of the region LG

(5= e 1

() --C
dw )i v, —B) ¢t S
for the tangent (F'Z)) to the boilingpointcurve (FK):

@y Y "D
dy) N (;—- 1>R1 +(y1—ﬁ)s—R7§_ d_y)+g RT o
(EZZ Eo (:—B)¢ “\&) 5= Y

and for the tangent (#Z,) to the saturationcurve under its own
vapoui pressure (Fs):

&, ,C
i )= Ty = dw)z A G—p: Y

Now we take again the most probable case that BC—AD is
positive (communication 1I). That there may be agreement with the
figs. 5 and 6 (XI) and fig. 1, we take ¥V >uv therefore A4 positive.
As further y,—f is negative, we can deduce:

dy dy dy
(E'")z>(d_w)k>(%)s' s s (39

-11 -
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The ecurves FI FL and Fs must, therefore, be sitnated with
respect to one another as in fig. 1.
When V<w, therefore 4 is negative, then it follows:

(%)s><%)1><‘%/’>k. Ce 69

The point H- and therefore also the point s, must be imagined,
however in this case, also in fig. 1 on the other side of F. In
agreement with (33) F/ comes then between the two other curves.

Now we shall consider the solutionpath consisting of a straight line
of /' under its own vapourpressure or in short the solutionpath of £
We take viz. the system F - L 4 G, but we take care that the
quantity of vapour is always very small. On change of 7 the hquid
traces a straight line going through #, which we have called the
solution- or cristallisationpath of F. In fig. 1 three similar solution-
paths FZ, FZ,, and FZ, are drawn.

Let us consider now the binary equilibrium F - L - @. In fig. 2
its P, T-curve is represented by EFU, @ is the point of maximum-
pressure, H the point of maximumtemperature; /' is the minimum-
meltingpoint, K the point of maximumsublimation of the compound.
a is the sublimation-, Fd the meltingcurve. Carve EFU touches
Fd in F and aK in K. It is apparent from the direction of the
meltingcurve that we assume V' > v in agreement with fig. 1.

Fig. 1. Fig, 2.

When the solutionpath FZ in fig. 1 coincides with FU, its
P,T-curve in fig. 2 is, therefore, represented by UKF; when FZ
coincides in fig. 1 with FZ, it is represented in fig. 2 by KHF.
When the solutionpath FZ in fig 1 turns from the position FU

-12 -
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towards FUE, its corresponding P,T-curve must therefore change
from UKF into EHF. Now we shall examine this more in detail

The saturationcurves under their own vapourpressure have, in the
vicinity of H either a form as in fig. 5 (XI) or as in fig. 6- (XI);
we assume that they have a form as in fig. 5(XI). In fig. 1 the curve
surrounded’ by Fs, and Fs, itself represent saturationcurves under’
their own vapourpressure; the arrows indicate the direction of
increasing pressure. -

The boilingpoint curves have also a position as in fig. 5 (XI);
we must consider, however, that H is replaced by the point ot
maximumpressure () and ‘that the arrows point in opposite direc-
tion. Two of these curves are drawn in fig. 1, one in the vicinity
of @ and curve F%; the latter is indicated for a pért only.

Now we imagine in fig. 1 a solutionpath between FE and FZ,.
Imagining in this figure still many other saturation-curves under
their own vapourpressure to be drawn, then we see that some of
these are not intersected by this path, other ones twice, and others
again once. Further we see that one of these curves touches this
path; we call that point of contact H'.

From this it follows: at first the temperature increases along -this
solutionpath from F up to A’ and after that it decreases. Further
it follows: 7'y is lower than T'g.

Imagining yet many other boilingpoint-curves to be drawn in
fig. 1, then we see that one of these touches the solutionpath in
a point that we shall call Q’. Now we deduce: the pressure in-
creases along this solutionpath from # up to @’ and after that it
decreases. Further it follows: Pg is smaller than Pgq.

Now it follows from this all that the P,7T-curve belonging to this
solutionpath has a form in fig. 2 as curve 0F with a point of
maximumpressure in Q' and a point of maximumtemperature in H’.

As long as the solutionpath in fig. 1 is sitnated between I and
FZ, the P,T-curves retain a form as 0F in (ig. 2; according as
the path, however, approaches closer to /.Z,, the points Q' and H-
come closer to #. When the path coincides with FZ,, H’ coincides
with # and the P,7-carve has a form as Z,I in fig. 2 with a
point of maximmmpressure Q'’. The tangent in [ stands vertically. -

To see this, it must be considered that the line #'Z, touches in
F the saturationcurve under its own vapourpressure going through F'
(Fsin fig. 1). Going from 7, along an infinitely small distance, along
curve Is and therefore also along the tangent F'Z,, the pressure
increases while the temperature remains constant. As dP, therefore,
is positive. and d71" is zero, the P,7-curve therefore, in fig. 2, along

-13 -
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a small distance, must point vertically npwards, so that it has there
a vertical tangent. Considering the saturationcurves under their own
vapourpressure, we see that JFZ, intersects only curves of tempe-
ratares lower than 7z, so that the temperature decreases along
FZ, from F.

Considering the boilingpointenrves, we see that the same still
applies to these as to a solutionpath, situated between FE and FZ,.
The pressure, therefore, increases at first from F and after that it
decreases. From all this it follows that the P,7-curve has, therefore,
a form as curve bF in fig. 2.

Let us now take a solutionpath between FZ, and FZ,. Tt is easy
to see that the /P, 7 curve retains a form as FZ, in fig. 2, with
this difference, however, that the tangent in # stands no longer
vertically. The curve proceeds viz. from 7 immediately towards
higher pressures and lower temperatures. According as the solution-
path in figz. 1 comes closer to FZ,, in fig. 2 the point of maxi-
mumpressure (' approaches closer to F. When the solutionpath
coincides with FZ,, " coincides with F, and in figure 2 the
P,T-curve obtains a form as Z,F with a horizontal tangent in Z.

In order to see this, we consider the solutionpath FZ, which
touches the boilingpointcurve FK in F. (ig. 1). Going from F along
an infinitely small distance along curve FX and, therefore, also
along the tangent FZ, the temperature decreases, while the pres-
sure remains constant. As d 7T, therefore, is negative and dP is zero,
the P, T-curve must, therefore, from /' over a small distance point
horizontally towards the left; consequently it has a horizontal tangent
in F.

We now take a solutionpath FZ, situated between FU and
F Z,. 1t follows from a consideration of the saturationcurves under
their own vapourpressure and the boilingpointcurves in the vieinity
of F, that pressure and temperature decrease from F. The P, T-
curve is represented in fig. 2 by F Z, it proceeds from F towards
lower temperatures and pressures.

At the deduction of fig. 2 it is assumed that the saturationcurves
under their own vapourpressure and the boilingpointcurves have a
form as in fig. 1. Curve Fs and Fi are drawn herein in .the
vicinity of F, concave towards H. When in F they turn their convex
sidé towards H, -then curve Is will intersect its tangent FZ, still
in another point and curve I'K its ‘tangent FZ,. Although then in
fig. 2 the tangent in ' to Z I remains horizontal and tbe tangent
to Z,I" vertical, all cavrves will obtain a somewhat different
form .dn the vicinity -of I’ (we -may also compare the previously
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trealed P, 7' diagrams for the case that F is a ternary compound).

After the previous considerations, the reader can easily deduce-
the P, T diagram for the solutionpaths of F, when the curves are-
sitnated as in fig. 6 (XI). )

Formerly [5(IV)] we have deduced for-a solutionpath

dP__ DM—BN

T~ CM—AN
now, as a = 0, herein is:
M=a"r{20@y—F)stG—p)t
N=a@—a)r + [¢(@(—y) + @—2) —B)]s + G- G—B ¢ _

In the point /' becomes # =0 and y =, therefore M =0 and
N = 0. Let us now contemplate a solution path and let us call the
angle, which it forms with the X-axis, . If we imagine for the
sake of simplicity that the coordinatesystem is rectangular, then it
follows: cotg. @ =: (y—B). We then obtain:

M- wrcotgp +2as+ (y—p) ¢
N (w, -a)reotgp + [(y,—y) cotg 9 + 2, —als + (y,—y) ¢
In the point F becomes 2 =0 and y = § therefore:

M RT
— ... (35)

N B
(h — 1) BT 4 (y,—B8) (s +tig )

&

(34)

The question now arvises, what P, 7’curve touches the meltingline
Fd in F. For this must, according to (34):
DM—BN B
CM—AN ~ 4
. therefore, M : N = 0. It is apparent from (35) that this is only the
case when fg ¢ is infinitely great, consequently for ¢ — 90° and
¢ = 270°. Then the solutionpath coincides either with F'E or with
FU (fig. 1). Therefore, both the binary solutionpaths EF and UF
only touch in F the meltingline F'd; the ternary paths do not touch
this meltingline.
In oyder that the tangent to the P, 7'curve of a solutionpath may
be vertical in F' we have, according to (34) CM—AN=0. As M:N
is fixed by (35), it follows that this is the case, when

(2-1)ar + gy e—rr
& A

tgop = -2
e (.'I/I_Tﬂ)t

From (31) it follows 'that in 7' this solutionpath must touch the
saturationcurve under “its own vapourpressure going through the
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point I [curve Fs fig. 17, the required so utionpath is, therefore, F.Z,.
If we require a solutionpath, whose r,. curve has a horizontal
tangent in F, we must, as follows from 34) put DM —BN =0.
From this now follows:
(B-1)ar+w—pa—rrg
tgp— — o B
I (v, — B) ¢

From this it follows, in connection with (30) that in F the
solutionpath must touch the boilingpointcurve going through the point
F [curve Ik in fig. 1]; the wanted solutionpath is, therefore, FZ,.

Now it follows from the previous considerations: in the P,7 dia-
gram (fig. 2), none of the ternary solutionpaths touches the meltingline.
Fd in F; the solutionpath, touching in # in the conceutration-
diagram (fig. 1) the saturationcurve under its own vapour-pressure
going through F, has in the P,7 diagram a vertical tangent in I;
the solutionpath, in the concentrationdiagram touching the boiling-
pointcurve going through #, has a horizontal tangent in # in the
P, T diagram.

It is evident that the above-mentioned rules apply quite generally
no matter whether the relations of fig. 5 (XI) or 6 (XI) occur or
the curves in I are concave or convex towards H.

In fig. 1 FI represents the liquideurve of a region LG, now we
imagine a solutionpath, touching curve F{ in F. The direction of

(37)

apP
this solutionpath is, therefore, fixed by (29). In order to find T

in the point /' of this path, we must, therefore, substitute the second
term of (29) in (35) for fyp. We then find an infinitely great value
for (35). From (34) now follows :
0H

H —HA+ B—y)
D_ % (38)
o 57

V,—V+ (B—"yx)"a—

Y

The latter part of (38) indicates the direction of the P,7T-curve
of the evaporationline of the liquid #. Tbis line is traced, when
we melt the substance F and when we regulate after that the
temperature and the pressure in such a way that the liquid remains
' in equilibrium with an infinitely small quantity of vapour. Therefore
the liquid retains the composition F during this. This curve is
represented in fig. 3 (III) by ZFe. the pressure and the temperature
increase from /' along this curve.

Consequently we find: the solutionpath, touching in F in the

dP
=
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concentration-diagram the liquid curve of the region L-G (curve FI
in fig. 1) going through Z, has in the P,7-diagram the same tangent
in F7 as the evaporationline of the liquid F starting from ZF.

If we compare the P,7T-diagram of the solutionpaths of a binary
compound ' (fig. 2) with those of a ternary compound #'[fig. 4 (IV)
and 1-3 (V)], then we see very great differences in the vicinity
of the point F. We find these differences also in the concentration- -
diagrams. When viz. in fig. 1. in the point / we construct tangents
to the curves F/, Fk and Fs going through the point F, three
different tangents arise. If # is a ternary compound, as e.g. in
fig. 1 (IV), then these curves touch one another in /" and the three
tangents coincide in the line XF'Y.

AN this is based on the following. When ZF is a binary compound,
a new substance must be added, in order to trace a ternary solution-
path from . When, however, F is a ternary compound, we addnog
new substance in order to trace a solutionpath, from #, but substances,
which are already present in the melted Z. B

(Zo be continued).

Physics. “An apparatus jfor the determination of gas isotherms up
to about 3000 atms.” VAN per Waars-fund researches N°. 5
By Prof. Pa. Kornstamm and K. W.Wawstra. (Communicated
by Prof. van pEr WaALs).

(Communicated in the meeting of December 27, 1918).

As is known the material for testing the theory of the equation
of state at very high pressures consists almost exclusively of what
AmacaT has published in his famous papers. It seems desirable for
different reasons to extend this material. Quite apart from the desirability
to get to know the behaviour of other gases than those examined
by AmacaT — we think in the first place of the mon-atomic gases —
Amacar’s work itself gives rise to different questions, which can
only be decided by means of new experiments.

First of all it is known that AmacaT does not give the direct
results of his observalions; he only pubhshes the results of a graphical
interpolation between these observations. The question rises how
great the deviations are between the interpolated and the real
observations, and whether another way of interpolation had been
possible. Nor can the probable experimental error -of ‘Amacar’s
observations be inferred from his experiments. And it has finally
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