Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

F.A.H. Schreinemakers, Equilibria in ternary systems. XII, in:

KNAW, Proceedings, 16 II, 1913-1914, Amsterdam, 1914, pp. 739-754

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'
10. Any coincidence of the Q^{4} is completed into a quadruple by two complementary points. The locus of those points which we shall call the complementary curve has apparently quadruple points in S_{k}; for $I_{k}{ }^{3}$ has four coincidences. Of the four coincidences of F^{3}, four of the complementary points lie on d^{2}; with this conic the curve \boldsymbol{d} has therefore $4+5 \times 4=24$ points in common. Consequently the complementary curve is of order 12.

The curves ρ^{4}, which touch the plane 2. in the points of the curve of coincidences γ^{6}, intersect λ moreover on the complementary curve d^{12}; so they form a surface of order 24 , which passes eight times through the curve 6^{6}.

This surface is intersected by a plane λ^{\prime} along a curve of order 24 with 5 octuple points S_{h}. As the curve of coincidences $\gamma^{\prime 6}$ lying in λ^{\prime} has double points in S_{k} the two curves outside S_{k} have $24 \times 6-5 \times 8 \times 2=64$ points in common. Consequently there are 64 curves ϱ^{4}, touching two given planes.

The surface $\boldsymbol{\Lambda}^{9}$ belonging to the straight line l intersects an arbitrary plane P along a curve \mathscr{P}^{p}, which has 5 triple points on φ^{6}. As the curve of coincidences φ^{6} lying in φ has 5 modes on ρ^{6}, it intersects i 2 moreover in $9 \times 6-5 \times 3 \times 2=24$ points. From this appears once more that the curves $\left(1^{4}\right.$, which touch a given plane, form a surface of order 24. At the same time, the fact that the complementary curve is of order 12 , is confirmed.

Chemistry. - "Equilibria in ternary systems". XII. By Prof. Schreinemakers.

We have seen in the previous communication that the salurationcurve under its own vapour-pressure of the temperature T_{H} (the point of maximumtemperature of the binary system $F+L+G$) is either a point [fig. $5(\mathrm{XI})$] or a curve [fig. $6(\mathrm{XI})$]. We shall now examine this case more in detail.

If we calculate $\frac{d y}{d x}$ for this curve in the point H from (6) and (7) (XI), then we find an infinitely great value. The curve going through H in fig. 6 (XI) and the curve disappearing in H of figure 5 (XI) come in contact, therefore, in H with the side $B C$. Now we take a temperature somewhat lower than T_{H}. The saturationcurve under its own vapour-pressure terminates then in two points n and h situated on different sides of and very close to H. [n and h in fig. 4-6 (XI) may be imagined very close to H. \rceil As the saturationcurve
under its own vapour-pressure tonches $B C$ in H, the tangent in, n and the tangent in h to the curve, going through these points, will yet be almost parallel $B C$.

Because the equilibria $F+$ liquid $n+$ vapour n_{1} and $F+$ liquid $h+$ vapour h_{1} differ but very little from one another, the perspective concentrations S and S_{1} (see the previous communication) will be, on addition of a third substance, also approximately equal. Therefore, when in the one equilibrium $S>S_{1}$, this is also the case in the other. Of course the same applies to $S<S_{1}$. Now we distinguish, according as the substance expands or contracts on melting, two principal cases.

1. \vec{F} expands on melting $(V>v)$. The point H is then situated with respect to F as in fig. $t-6$ (XI) viz. between F and C, but close to $F ; \Delta V$ is negative between F and H, positive in_the other points of $B C$. From the situation of n and h with respect to F, it follows that S and S_{1} are both posilive. We distinguish $S>S_{1}$ and $S<S_{1}$.
a. $S>S_{1}$. As ΔV is positive in h and negative in n, it follows from our previous communication that the pressure decreases from h along the saturationcurve under its own vapour-pressure and it increases from n. In which direction shall this curve now proceed from h ? As the tangent in h coincides almost with $B C$, the curve must go from h either almost in the direction towards n or almost in opposite durection. We find the first in fig. 5, the second in fig. 6 (XI). In order to determine this direction, it is to be considered that the region $L-G$ shifts on decrease of pressure from h towards n, so that the pressure decreases in this direction. As the pressure along the saturationcurve under its own vapour-pressure must also decrease from h, this curve must therefore, also go from h almost in the direction towards n. lt has, therefore, from h a direction as in fig. 5 (XI). As the tangent in n coincides almost with $B C$, the curve must go from n either almost in the direction towards h or almust in opposite direction. Considering that the region $L-G$ shifts on increase of pressure from n towards h, so that the pressure increases from n towards h and further that the pressure along the saturationcurve under its own vapour-pressure must also increase from n, we see that this curve must go, therefore, also. from n almost in the direction towards h.

The saturationcurve under its own vapour-pressure has, therefore, a form as curve $h n$ in fig. 5 (XI); it is situated, therefore, close to the side $B C$ and it disappears at T_{H} in the point H.
b. $S<S_{1}$. In a similar way as above we find that the pressure
along the saturationcurve under its own vapour-pressure increases from h and decreases from n. Further we tind that this curve must have in the vicinity of n and h a direction as in fig. 6 (XI). As further the pressure in h is greater than in n, therefore on this curve as well a point of maximum- as a point of minimumpressure must be situated. Consequently, we obtain a curve $h n$, as in fig. 6 (XI), this does not disappear at the temperature T_{H}, but it forms a curve, touching the side $B C$ in H.
2. F melts with decrease of volume ($V<v$). Now the points H and H_{1} are no more situated, as in the previous case, between F and C. From the binary equilibrium $F+L+G$ it follows that H is situated between F and B; the point H_{1} may be imagined as well between F and C as between F and B. In the last case H_{1} should be situated between F and H and therefore very close to H; the region $L-G$ should then be very narrow in the vicinity of the side $B C$, which is only possible in very exceptional cases. Therefore we consider only the first case: H is situated between F and B, and H_{1} between F and C.

If we take two points n and h close to H and the corresponding points n_{1} and h_{1} close to H_{1} then we see that S and S_{1} have an opposite sign. If further we keep in mind that ΔT is negative between F and H and positive in the other points of $B C$, then it follows, in a similar way as above, that curve $n h$ must have a form as in fig. 5 (XI). Therefore, it disappears at $T_{U L}$ in the point H. Consequently, we obtain a diagram as in fig. 5 (XI), but with this difference, that H is situated now between F and B.

Contemplating the boilingpointcurves of F, we obtain diagrams as fig. 5 and $6(\mathrm{XI})$, the arrows must then however, indicate in opposite direction. Further we must imagine the point of maximum temperature H to be replaced by the point of maximum pressure Q of the binary equilibrium $F+L+G . \Delta W$ is negative between F and Q, positive in the other points of $B C$. From the position of Q and Q_{1} with respect to F, it follows that S and S_{1} are both positive. We distinguish two cases.
a. $S>S_{1}$. We find that the boilingpointcurve $l m$ has a form as in fig. $5(\mathrm{XI})$; the arrows must, howerer, indicate in opposite direction. Therefore, this curve disappears under the pressure P_{Q} in the point Q.
b. $S<S_{1}$. The boilingpointcurve \ln has a form as in fig. 6 (XI); the arrows must, however, indicate in opposite direction. Therefore the curve does not disappear in Q under the pressure P_{Q}.

If we sum together the results obtained above, we have:

1. F melts with increase of volume The saturationcurve under its own vapour-pressure disappears, when is raised the temperature in H [fig. 4 (XI)] when the concentration of the new substance is greater in the liquid than in the vapour. It does not disappear in H [fig. 6 (XI)] when the concentration of the new substance is smaller in the liquid than in the vapour.
2. F melts with decrease of volume. The saturationcurve under its own vapour-pressure disappears, when is raised the temperaturein H [Fig. 5 (Xl), wherem however H must be situated between F and $B]$
3. The boilngpointcurve disappears, on increase of P^{\prime} in Q [fig. $5(\mathrm{XI})$], when the concentration of the new substance is greater in the liquid than in the vapour. It does not disappear in Q [fig. 6 (XI)] when the concentration of the new substance is smaller in the liquid than in the vapour. We mean of course, with "concentration" above "perspective concentration".

Now we will deduce in another way the relations in the vicinity of the point H or Q. The saturationcurve under its own vapourpressure is fixed by the equations (1) (II), when we put therein $\alpha=0$ and when we keep T constant. As $\frac{\partial Z}{\partial x}, \frac{\partial^{2} Z}{\partial x^{2}}$, etc. become infinitely great for $x=0$, we shall put

$$
\begin{equation*}
Z=U+R T x \log x \tag{1}
\end{equation*}
$$

so that all differential quotients of U with respect to x, remain finite. We put in the same way:

$$
\begin{equation*}
Z_{1}=U_{1}+R T x_{1} \log x_{1} \tag{2}
\end{equation*}
$$

so that the same applies to U_{1}. Then we have:

$$
\begin{equation*}
\frac{\partial Z}{\partial x}=\frac{\partial U}{\partial x}+R T(1+\log z) \quad ; \quad \frac{\partial Z}{\partial y}=\frac{\partial U}{\partial y} \quad ; \quad \frac{\partial Z}{\partial P}=\frac{\partial U}{\partial P}=V . \tag{3}
\end{equation*}
$$

and similar relations for Z_{1} and U_{1}.
The equations 1 (II) then become:

$$
\begin{array}{r}
x \frac{\partial U}{\partial x}+(y-\beta) \frac{\partial U}{\partial y}+R T x-U+\zeta=0 \\
x_{1} \frac{\partial U_{1}}{\partial x_{1}}+\left(y_{1}-\beta\right) \frac{\partial U_{1}}{\partial y_{1}}+R T x_{1}-U_{1}+\zeta=0 . \\
\frac{\partial U}{\partial x}+R T(1+\log x)=\frac{\partial U_{1}}{\partial x_{1}}+R T\left(1+\log v_{1}\right) \\
\frac{\partial U}{\partial y}=\frac{\partial U_{1}}{\partial y_{2}} \cdot \ldots \tag{7}
\end{array} .
$$

In the points H and H_{1} of figs. 4-6 (XI), the pressure is equal to $P_{H}, x=0$ and $x_{1}=0$; further we put $y=(y)_{0}$ and $y_{1}=\left(y_{1}\right)_{0}$. For a point in the vicinity of $B C$ 'on this saturationcurve under its own vapour-pressure, the pressure is $P_{H}+d P, a=\xi, x_{1}=\xi_{1}, y=(y)_{0}+\boldsymbol{\eta}$ and $y_{1}=\left(y_{1}\right)_{0}+\eta_{1}$

In the points H and H_{1} themselves the binary equilibrium $F+L+G$ exists ; to this applies :

$$
\begin{equation*}
-(y-\beta) \frac{\partial U}{\partial y}-U+\zeta=0 \quad \frac{\partial U}{\partial y}=\frac{\partial U_{1}}{\partial y_{1}} \tag{8}
\end{equation*}
$$

wherein the pressure is equal to $P_{\dot{H},} y=\left(y_{0}, y_{1}=\left(y_{1}\right)_{0}\right.$ and U and U_{1} are independent of x and v_{1}

We now take the condition (6), from this it follows:

$$
\begin{equation*}
R T \log \frac{x_{1}}{x}=\frac{\partial U}{\partial x}-\frac{\partial U_{1}}{\partial x_{1}} \tag{9}
\end{equation*}
$$

Therefore, we obtain for very small values of x and x_{1} :

$$
\begin{equation*}
\log \frac{\xi_{1}}{\xi}=\frac{1}{R T} \operatorname{Lim}\left(\frac{\partial U}{\partial x}-\frac{\partial U_{1}}{\partial x_{1}}\right) \ldots . . . \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
\xi_{1}=K \xi \tag{11}
\end{equation*}
$$

wherein K is determined in (10).
We now take the condition (7); in this we put the pressure P equal to $P_{H}+d P, x=\xi, x_{1}=\xi_{1}, y=(y)_{0}+\eta$ and $y_{1}=\left(y_{1}\right)_{0}+\eta_{1}$.

If we expand both terms of (7) into a series and consider that in the point $\dot{H}(8)$ is satistied, then we find:

$$
\begin{gather*}
s \xi+t \eta+\frac{\partial V}{\partial y} d P+\frac{1}{2} \frac{\partial s}{\partial x} \cdot \xi^{2}+\frac{\partial}{2} \frac{\partial t}{\partial y} \cdot \eta^{2}+\frac{1}{2} \frac{\partial^{2} V}{\partial y \partial P} d P^{3}+\frac{\partial s}{\partial x \partial y} \xi \eta+ \tag{12}\\
+\frac{\partial^{2} V}{\partial x \partial y} \xi d P+\frac{\partial^{2} V}{\partial y^{2}} \cdot \eta d P+\cdots\left[\mathrm{l}_{1}\right.
\end{gather*}
$$

Herein $r=\frac{\partial^{2} U}{\partial a^{2} .} s=\frac{\partial^{2} U}{\partial r \partial y} t=\frac{\partial^{2} U}{\partial y^{2}}$; these values must be kept, as they are in the point H. The second member of (12) is indicated by $\left]_{1}\right.$; this means that we deduce the second member from the first by substituting $\xi_{1}, \eta_{1}, s_{1}, t_{1}$ etc. for ξ, η, s, t etc. Now we expand (4) into a series; if we keep in mind, that in the point H (8) is again satisfied, and that x and x_{1} must be put equal to zero, then we find a series, which we write in the following form:
$R T \cdot \boldsymbol{\xi}+\frac{1}{2} \cdot t \eta^{2}-(V-v) d P-\frac{1}{2}\left(\frac{\partial V}{\partial P}-\frac{\partial v}{\partial P}\right) d P^{3}+R+(y-\beta) L=0$
In R only terms occur, which are intinitely small with respect

Proceedings Royal Acad. Amsterdam. Vol, XVI.
to those, which are already written down, viz. $\xi^{2}, \zeta \eta$, etc. $\xi^{\boldsymbol{\xi}} d P$ and $\eta d P$ are wanting. L represents the first term of (12). For the sake of simplification $\left(y_{0}\right)$ has been replaced by y.

If we expand (5) into a series, we find:

$$
\begin{equation*}
R T \xi_{1}+\frac{1}{2} t_{1} \boldsymbol{\eta}_{1}{ }^{2}-\left(V_{1}-v\right) d P-\frac{1}{2}\left(\frac{\partial V_{1}}{\partial P}-\frac{\partial v}{\partial P}\right) d P^{2}+R_{1}+\left(y_{1}-\beta\right) L_{1}=0 \tag{14}
\end{equation*}
$$

Herein R_{1} contains only terms, infinitely small with respect to ${ }^{-}$ those preceding, L_{1} represents the second term of (12); $\left(y_{1}\right)_{0}$ has been replaced by y_{1}.
Now, in the point H the denominator of $(8)(\mathrm{XI})$ is equal to zero, therefore:

$$
\left(y_{1}-\beta\right) V+\left(y-y_{1}\right) v+(\beta-y) V_{1}=0 .
$$

We write this condition in the form:

$$
\begin{equation*}
\frac{V-v}{y-\beta}=\frac{V_{1}-v}{y_{1}-\beta}=\frac{V_{1}-V}{y_{1}-y}=\mu \tag{15}
\end{equation*}
$$

Now we have the four relations (11), (12), (13) and (14) between the five variables. If we multiply (13) with $y_{1}-\boldsymbol{\beta}$ and (14) with $(y-\beta)$ then follows:

$$
\left.\begin{array}{l}
\left(y_{1}-\beta\right)\left[R T \xi+\frac{1}{2}+\eta^{2}-\frac{1}{2}\left(\frac{\partial V}{\partial P}-\frac{\partial v}{\partial P}\right) d P^{2}\right]+\cdots= \tag{16}\\
\quad=(y-\beta)\left[R T \xi_{1}+\frac{1}{2} t_{1} \eta_{1}{ }^{2}-\frac{1}{2}\left(\frac{\partial V_{1}}{\partial P}-\frac{\partial v}{\partial P}\right) d P^{2}\right]+\cdots
\end{array}\right\}
$$

These equations may be satisfied when we take ξ and ξ_{1} of the order $d P^{2}$ and η and η_{1} of the order $d P$. From (12), (13) and (14) then follows:

$$
\left.\begin{array}{l}
t \eta+\frac{\partial V}{\partial y} d P=t_{1} \eta_{1}+\frac{\partial V_{1}}{\partial y_{1}} d P \quad . \quad . \quad . \\
t \eta=\left(\mu-\frac{\partial V}{\partial y}\right) d P \cdot
\end{array}\right) \cdot .
$$

These last three equations are, as is seen immediately, dependent on one another. Substituting η from (18) and η_{1} from (19) in (16 we find:

$$
\begin{equation*}
2 R T\left[\left(y_{1}-\beta\right)-(y-\beta) \frac{\boldsymbol{\xi}_{1}}{\boldsymbol{\xi}}\right] \boldsymbol{\xi}=a \cdot d P^{2} \tag{20}
\end{equation*}
$$

Herein $\xi_{1}: \xi$ is fixed by (11); further is:
$a=\frac{y-\beta}{t_{1}}\left(\mu-\frac{\partial V_{1}}{\partial y_{1}}\right)^{2}-\frac{\left(y_{1}-\beta\right)}{t}\left(\mu-\frac{\partial V}{\partial y}\right)^{2}+\left(y_{1}-\beta\right) \frac{\partial V}{\partial P}+\left(y-y_{1}\right) \frac{\partial v}{\partial P}+(\beta-y) \frac{\partial V_{1}}{\partial P}$
From (18) now foliows:

$$
\begin{equation*}
2 R T\left[\left(y_{1}-\beta\right)-(y-\beta) \frac{\xi_{1}}{\xi}\right] \xi=\frac{a t^{2}}{\left(\mu-\frac{\partial V}{\partial y}\right)^{2}} \cdot \eta^{2} \tag{22}
\end{equation*}
$$

From (22) it follows that the saturationcurve under its own vapour-pressure under consideration is in the vicinity of the point B [fig. 4-6 (XI)] a parabola, which touches the side $B C$ in H. From (18) and (20) follows the change of ξ and η along this curve at a small change of pressure $d P$.

We can find the meaning of a (22) in the following way.
We represent the length of $C p$ or $C q$ [fig. 1 (XI)] by Y, the length of the part, which is cut off by the liquid curve of the region $L-G$ from $C B$ by y. Then we have:
$t_{0} \frac{d Y}{d P}=\frac{V_{0}-v}{Y-\beta}-\frac{\partial V_{0}}{\partial Y} ; t \frac{d y}{d P}=\frac{V_{1}-V}{y_{1}-y}-\frac{\partial V}{\partial y} ; t_{1} \frac{d y_{1}}{d P}=\frac{V_{1}-V}{y_{1}-y}-\frac{\partial V_{1}}{\partial y_{1}}$
Herein t_{0} and V_{0} refer to the point of intersection of the saturationcurve with $B C$. Now we put:

$$
Y-y=l
$$

and we calculate $\frac{d l}{d P}$ and $\frac{d^{2} l}{d P^{s}}$. For this it may be considere' that V_{0} depends on P and Y, V on P and y and V_{1} on, P and y_{1}. If now the saturationcurve of F and the liquid-curve of the region $L-G$ go both through the point H, then (15) is satisfied; also at the same time V_{0} becomes $=V$ and $t_{0}=t$. Then we find:

$$
\begin{equation*}
\frac{d l}{d P}=0 \quad \text { and } \quad a=t(y-\beta)\left(y_{1}-y\right) \frac{d^{2} l}{d P^{3}} \ldots . \tag{24}
\end{equation*}
$$

Substituting this value of a in (20), we find after deduction with the aid of (13) (XI) and (11)

$$
\begin{equation*}
2 R T^{\prime} \cdot K\left(1-\frac{S}{S_{1}}\right) \xi=t\left(y-y_{1}\right) \frac{d^{2} l}{d P^{2}} \cdot d P^{2} \quad . \quad . \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
2 R T \cdot K\left(1-\frac{S}{S_{1}}\right) \xi=\frac{t^{3}\left(y-y_{1}\right)}{\left(\mu-\frac{\partial v}{\partial y}\right)^{2}} \cdot \frac{d^{2} l}{d P^{2}} \cdot \eta^{2} . . \tag{26}
\end{equation*}
$$

wherein $t>0$; that there may be agreement with our figures, we take $y-y_{1}>0$.

- We now distinguish two cases.

1. $\quad 1-\frac{S}{S_{1}}$ and $\frac{d^{2} l}{d P^{2}}$ have the same sign. From (26) it follows that $\boldsymbol{\xi}$ is positive, so that the parabola touches $B C$ in H and is further situated within the triangle [fig. $6(\mathrm{XI})$]. This is apparent also yet from (25), as $\boldsymbol{\xi}$ becomes positive as well for $d P$ positive as negative.
2. $1-\frac{S}{S_{1}}$ and $\frac{d^{2} l}{d P^{2}}$ have an opposite sign. From (26) it follows that $\boldsymbol{\xi}$ is negative. Therefore the parabola touches $B C$ in H, but is further situated outside the triangle. Therefore a similar parabola may be imagined in fig. 5 (XI). Then only its point H represents a liquid, its other points have no meaning.

From our deduction of $\frac{d l}{d P}$ and $\frac{d^{2} l}{d P^{2}}$ in the point H, follows :

$$
Y-y=\frac{1}{2} \cdot \frac{d^{2} l}{d F^{2}} \cdot d F^{2} .
$$

Now, in the point H of fig. 4-6 (XI) $Y-y$, therefore also $\frac{d l^{2}}{d P^{2}}$ becomes positive, as well on increase as on decrease of pressure. When, however, the point H is situated on the other side of F, then $Y-y$ and therefore also $\frac{d^{2} l}{d P^{2}}$ becomes negative.

We now consider some cases.

1. F melts with increase of volume $(V>v) \cdot \frac{d^{2} l}{d P^{2}}>0 . S$ and S_{1} positive.
a. $S>S_{1}$. From (26) follows: the saturationcurve under its own vapourpressure is a parabola, which touches $B C$ in H, but is situated further outside the triangle [fig. 5 (XI)].
b. $S<S_{1}$. From (26) follows: the saturationcurve under its own vapourpressure is a parabola, which touches $B C$ in H, but is further situated within the triangle. [fig. 6 (XI)].
2. F melts with decrease of volume $(V<v) . \frac{d^{2} l}{d P^{2}}<0$.

We take again S and S_{1} with opposite sign.
As sub 1. a. ln fig. 5 (XI) the point H must be imagined on the other side of F, therefore, between F and B and H_{1} between F and C.

From (18) it follows that η changes sign with $d P$, as in the point H the coefficient of $d P$ is negative, η and $d P$ must have the opposite sign. Therefore, the pressure increases in the direction in
which η decreases and reversally. We see that this is in agreement with the direction of the arrows in fig. 5 and 6 (XI).

If it is desired to know the influence of a small change of T on the position of the saturationcurve under its own vapour pressure going through H, we must also include terms with $d T$ in the previous expansions into a series. Now $U=Z-R T a \log x$ therefore, $\frac{\partial U}{\partial T}=-H-R x \log x$, therefore in the point $H(x=0)$ itself $\frac{\partial U}{\partial T}=-H$.

In the right member of (12), therefore, must be added $-\frac{\partial H}{\partial y} d T$ and terms with $\boldsymbol{\xi} d T$ and $\eta d T$; in the left member $-\frac{d H_{1}}{\partial y_{1}} d T$.

In (13) must be added $\left(H-\eta_{v}\right) d T$; in (14) $\left(H_{1}-\eta_{v}\right) d T^{\prime}$; in order to distinguish the coordinate η, the entropy of the solid substance F is indicated by η_{0}.

In the first member of (16) must be added: $\left(y_{1}-\beta\right)\left(H-\eta_{1}\right) d T$; in the second member $(y-\beta)\left(H_{1}-\eta\right.$. .

From (13) follows :

$$
t \eta=\left(\mu-\frac{d V}{\partial y}\right) d P+\ldots
$$

from (14)

$$
t_{1} \boldsymbol{\eta}_{1}=\left(\mu-\frac{d V_{1}}{\partial y_{1}}\right) d P+\ldots
$$

As we must substitute these values in (16), it is apparent that we may neglect the other terms. As

$$
\left(\beta-y_{1}\right) H+\left(y_{1}-y\right) \eta_{v}+(y-\beta) H_{1}=(y-\beta) \frac{\Delta W}{T}
$$

we obtain:

$$
2 R T\left[y_{2}-\beta-(y-\beta) \frac{\boldsymbol{\xi}_{1}}{\boldsymbol{\xi}}\right] \xi=a \cdot d P^{2}+(y-\beta) \cdot \frac{\Delta W}{T} \cdot d T
$$

or, after deduction:

$$
\begin{equation*}
2 R T . K\left(1-\frac{S}{S_{1}}\right) \xi=t\left(y-y_{1}\right) \frac{d^{2} l}{d P^{2}} \cdot d P^{s}-\frac{\Delta W}{T} d T . \tag{27}
\end{equation*}
$$

and :

$$
\begin{equation*}
2 R T \cdot K\left(1-\frac{S}{S_{1}}\right) \xi=\frac{t^{3}\left(y-y_{1}\right)}{\left(\left(\mu-\frac{\partial V}{\partial y}\right)^{2}\right.} \cdot \frac{d^{2} l}{d P^{2}} \cdot \eta^{2}-\frac{\Delta W}{T} \cdot d T \tag{28}
\end{equation*}
$$

From (28) it follows that not only the saturationcurve under its
own vapour-pressure, going through H, but also those which are situated in the vicinity of A are parabolas.

In the point H of figs. $5-6(\mathrm{XI}) \Delta W$ is negative, when H is siluated on the other side of $F, \Delta W$ is positive. From (28) it now follows:
when the curve, touching in H is situated outside the triangle [fig. 5 (XI)], it shifts on decrease of T, within the triangle [curve $h n$ in fig. 5 (XI)]
when the curve, touching in A is situated within the triangle [fig. 6 (XI)], it shifts on increase of T within the triangle [the closed curve in fig. 6 (XI)] and on decrease of T partly outside the triangle. Therefore, curve $h n$ of fig. 6 (XI) must be imagined to be closed by a part $h n$ situated outside the triangle; this part, however, bas no physical meaning.

In fig. 1 three curves are drawn through $F ; F l$ is the liquidcurve of the region $L-G$ at the temperature T_{F} and under the pressure P_{F}, therefore at the minimummelingpoint of $F ; F K$ is the boilingpointcurve and $F s$ s the saturationcurve under its own vapourpressure. The two first curves are but partly drawn. We now construe in F a tangent to each of these curves. With the aid of the formulas from the previons communication, we find:
for the tangent to the liquidcurve $(F l)$ of the region $L G$:

$$
\begin{equation*}
\left(\frac{d y}{d x}\right)_{l}=-\frac{\left(\frac{x_{1}}{x}-1\right) R T+\left(y_{1}-\beta\right) s}{\left(y_{1}-\beta\right) t} \ldots \tag{29}
\end{equation*}
$$

for the tangent $\left(F Z_{1}\right)$ to the boilingpointcurve $(F K)$:
$\left(\frac{d y}{d x}\right)_{k}=-\frac{\left(\frac{x_{1}}{x}-1\right) R T+\left(y_{1}-\beta\right) s-R T \frac{D}{B}}{\left(y_{1}-\beta\right) t}=\left(\frac{d y}{d x}\right)_{l}+\frac{D}{B} \cdot \frac{R T}{\left(y_{2}-\beta\right) t}$
and for the tangent $\left(F Z_{2}\right)$ to the saturationcurve under its own vaporip pressure (F_{s}):

$$
\begin{equation*}
\left(\frac{d y}{d v}\right)_{s}=-\frac{\left(\frac{x_{1}}{a^{2}}-1\right) R T+\left(y_{2}-\beta\right) s-R T \frac{C}{A}}{\left(y_{1}-\beta\right) t}=\left(\frac{d y}{d x}\right)_{l}+\frac{C}{A} \cdot \frac{R T}{\left(y_{1}-\beta\right) t} \tag{31}
\end{equation*}
$$

Now we take again the most probable case that $B C-A D$ is positive (communication II). That there may be agreement with the figs. 5 and 6 (XI) and fig. 1, we take $V>v$ therefore A positive. As further $y_{1}-\boldsymbol{\beta}$ is negative, we can deduce:

$$
\begin{equation*}
\left(\frac{d y}{d x}\right)_{l}>\left(\frac{d y}{d x}\right)_{k}>\left(\frac{d y}{d x}\right)_{s} \ldots \ldots \ldots \tag{32}
\end{equation*}
$$

The curves $F l$, $F h$ and $F s$ must, therefore, be situated with respect to one another as in fig. 1.
When $V<v$, therefore A is negative, then it follows:

$$
\begin{equation*}
\left(\frac{d y}{d x}\right)_{s}>\left(\frac{d y}{d x}\right)_{l}>\left(\frac{d y}{d x}\right)_{k} \ldots \ldots . \tag{33}
\end{equation*}
$$

The point H and therefore also the point s, must be imagined, however in this case, also in fig. 1 on the other side of F. In agreement with (33) $F l$ comes then between the two other curves.

Now we shall consider the solutionpath consisting of a straight line of F under its own vapourpressure or in short the solutionpath of F. We take viz. the system $\vec{F}+L+G$, but we take care that the quantity of vapour is always very small. On change of T the liquid traces a straight line going through F, which we have called the solution- or cristallisationpath of F. In fig. 1 three similar solutionpaths $F Z, F Z_{1}$, and $F Z_{2}$ are drawn.
Let us consider now the binary equilibrium $F+L+G$. In fig. 2 its P, T-curve is represented by $E F U, Q$ is the point of maximumpressure, H the point of maximumtemperature; F is the minimummeltingpoint, K the point of maximumsublimation of the compound. $a K$ is the sublimation-, $F d$ the meltingcurve. Curve EFO touches $F d$ in F and $a K$ in K. It is apparent from the direction of the meltingcurve that we assume $V>v$ in agreement with fig. 1 .

Fig. 1.

Fig. 2.

When the solutionpath $F Z$ in fig. 1 coincides with $F U$, its P, T-curve in tig. 2 is, therefore, represented by $C K F$; when $F Z$ coincides in fig. 1 with $F E$, it is represented in fig. 2 by EHF. When the solutionpath $F Z$ in fig 1 turns from the position $F U$
towards $F E$, its corresponding P, T-curve must therefore change from UKF into $E H F$. Now we shall examine this more in detail-

The saturationcurves under their own vapourpressure have, in the vicinity of H either a form as in fig. 5 (XI) or as in fig. $6^{-(X I)}$; we assume that they have a form as in fig. 5 (XI). In fig. 1 the curve surrounded by $F s$, and $F s$, itself represent saturationcurves under ${ }^{-}$ their own vapourpressure; the arrows indicate the direction of increasing pressure.

The boilingpoint curves have also a position as in fig. 5 (XI); we must consider, however, that H is replaced by the point of maximnmpressure Q and that the arrows point in opposite direction. Two of these curves are drawn in fig. 1, one in the vicinity of Q and curve $F k$; the latter is indirated for a part only.

Now we imagine in fig. 1 a solutionpath between $F E$ and $F Z_{2}$. Imagining in this figure still many other saturation-curves under their own vapourpressure to be drawn, then we see that some of these are not intersected by this path, other ones twice, and others again once. Further we see that one of these curves touches this path; we call that point of contact H^{\prime}.

From this it follows: at ifirst the temperature increases along this solutionpath from F up to H^{\prime} and after that it decreases. Further it follows: $T_{H^{\prime}}$ is lower than T_{H}.

Imagining yet many other builingpoint-curves to be drawn in fig. 1, then we see that one of these touches the solutionpath in a point that we shall call Q^{\prime}. Now we deduce: the pressure increases along this solutionpath from F up to Q^{\prime} and after that it decreases. Further it follows: $P_{Q^{\prime}}$ is smaller than P_{Q}.

Now it follows from this all that the P, T-curve belonging to this solutionpath has a form in fig. 2 as curve $b F$ with a point of maximumpressure in Q^{\prime} and a point of maximumtemperature in H^{\prime}.

As long as the solutionpath in fig. 1 is situated between $F E$ and $F Z_{2}$, the P, T-curves retain a form as $b F$ in fig. 2; according as the path, however, approaches closer to $F Z_{2}$, the points Q^{\prime} and H^{\prime}. come closer to F. When the path coincides with $F Z_{2}, H^{\prime}$ coincides with F and the P, T-curve has a form as $Z_{2} F$ in fig. 2 with a point of maximumpressure $Q^{\prime \prime}$. The tangent in E stands vertically.

To see this, it must be considered that the line $E Z_{2}$ touches in F the saturationcurve under its own vapourpressure going through F (F s, in fig. 1). Going from F, along an infinitely small distance, along curve $F s$ and therefore also along the tangent $F Z_{2}$, the pressure increases while the temperature remains constant. As d $d P$, therefore, is positive. and $d T$ is zero, the P, T-curve therefore, in fig. 2 , along
a small distance, must point vertically upwards, so that it has there a vertical tangent. Considering the saturationcurves under their own vapourpressure, we see that $E Z_{2}$ intersects only curves of temperatures lower than T_{H}, so that the temperature decreases along $F Z_{2}$ from F.

Considering the boilingpointenrves, we see that the same still applies to these as to a solutionpath, situated between $F E$ and $F Z_{8}$. The pressure, therefore, increases at first from F and after that it decreases. From all this it follows that the P, T-curve has, therefore, a form as curve $b F$ in fig. 2.

Let us now take a solutionpath between $F Z_{1}$ and $F Z_{2}$. It is easy to see that the P, T-curve retains a form as $F Z_{3}$ in fig. 2, with this difference, however, that the tangent in F stands no longer vertically. The curve proceeds viz. from F immediately towards higher pressures and lower temperatures. According as the solutionpath in fig. 1 comes closer to $F Z_{1}$, in fig. 2 the point of maximumpressure $Q^{\prime \prime}$ approaches closer to F. When the solutionpath coincides with $F Z_{1}, Q^{\prime \prime}$ coincides with F, and in figure 2 the P, T-curve obtains a form as $Z_{1} F$ with a horizontal tangent in F.

In order to see this, we consider the solutionpath $F Z_{1}$ which touches the boilingpointcurve $F K$ in F. (ng. 1). Going from F along an infinitely small distance along curve $F K$ and, therefore, also along the tangent $F Z_{1}$, the temperature decreases, while the pressure remains constant. As $d T$, therefore, is negative and $d P$ is zero, the P, T-curve must, therefore, from F over a small distance foint horizontally towards the left ; consequently it has a horizontal tangent in F.

We now take a solutionpath $F Z$, situated between $F U$ and $F Z_{1}$. It follows from a consideration of the saturationcurves under their own vapourpressure and the boilingpointcurves in the ricinity of F, that pressure and temperature decrease from F. The P, T curve is represented in fig. 2 by $F Z$, it proceeds from F towards lower temperatures and pressures.
At the deduction of fig. 2 it is assumed that the saturationcurves under their own vapourpressure and the boilingpointcurves have a form as in fig. 1. Curve $F s$ and $F k$ are drawn herein in the vicinity of F, concave towards H. When in F they turn their convex sidee towards H, then curve F_{s} will intersect its tangent $F Z_{2}$ still in another point and curve $F K$ its tangent $F Z_{1}$. Although then in fig. 2 the tangent in F to $Z_{1} F$ remains horizontal and the tangent to $Z_{2} F^{F}$ vertical, all curves will obtain a somewhat different form in the vicinity of F (we may also compare the previously
treated P, T diagrams for the case that F is a ternary compound).
After the previous considerations, the reader can easily deducethe P, I diagram for the solutionpaths of F, when the curves are situated as in fig. 6 (XI).
Formerly [5 (IV)] we have deduced for-a solutionpath

$$
\begin{equation*}
\frac{d P}{d T}=\frac{D M-B N}{C M-A N} \tag{34}
\end{equation*}
$$

now, as $\alpha=0$, herein is:
$M=v^{2} r+2 x(y-\beta) s+(y-\beta)^{2} t$
$N=x\left(x_{1}-v\right) r+\left[u\left(y_{1}-y\right)+\left(x_{1}-x\right)(y-\beta)\right] s+\left(y_{1}-y\right)(y-\beta) t$
In the point F becomes $x=0$ and $y=\beta$, therefore $M \doteq 0$ and $N=0$. Let us now contemplate a solution path and let us call the angle, which it forms with the X-axis, φ. If we imagine for the sake of simplicity that the coordinatesystem is rectangular, then it follows: cotg. $\varphi=x:(y-\beta)$. We then obtain:

$$
\frac{M}{N}=\frac{x r \operatorname{cotg} \varphi+2 x s+(y-\beta) t}{\left(x_{1}-x\right) r \operatorname{cotg} \varphi+\left[\left(y_{1}-y\right) \operatorname{cotg} \varphi+x_{1}-x\right] s+\left(y_{1}-y\right) t}
$$

In the point F becomes $x=0$ and $y=\beta$ therefore:

$$
\begin{equation*}
\frac{M}{N}=\frac{R T}{\left(\frac{x_{1}}{x}-1\right) L T+\left(y_{1}-\beta\right)(s+t \operatorname{tg}(\rho)} \tag{35}
\end{equation*}
$$

The question now arises, what P, T curve touches the meltingline $F d$ in F. For this must, according to (34):

$$
\frac{D M-B N}{C M-A N}=\frac{B}{A}
$$

therefore, $M: N=0$. It is apparent from (35) that this is only the case when $\operatorname{tg} \varphi$ is infinitely great, consequently for $\varphi=90^{\circ}$ and $\varphi=270^{\circ}$. Then the solutionpath coincides either with $F E$ or with $F U$ (fig. 1). Therefore, both the binary solutionpaths $E F$ and $U F$ only tquch in F the meltingline $F d$; the ternary paths do not touch this meltingline.

In order that the tangent to the P, T curve of a solutionpath may be vertical in F we have, according to (34) $C M-\Lambda N=0$. As $M: N$ is fixed by (35), it follows that this is the case, when

$$
\operatorname{tg} \rho=-\cdot \frac{\cdot\left(\frac{x_{1}}{\mu}-1\right) R T+\left(y_{1}-\beta\right) s-R T \frac{C}{A}}{\left(y_{1}-\beta\right) t}
$$

From (31) it follows that in F this solutionpath must touch the saturationcurve under "its own vapourpressure going through the
point F [curve $F s$ fig. 1], the required so utionpath is, therefore, $F Z_{2}$.
If we require a solutionpath, whose r, e curve has a horizontal tangent in F, we must, as follows from 34) put $D M-B N=0$. From this now follows:

$$
\begin{equation*}
\operatorname{tg} \varphi=-\frac{\left(\frac{x_{1}}{2}-1\right) R T+\left(y_{1}-\beta\right) s-R T \frac{D}{B}}{\left(y_{1}-\beta\right) t} . . . \tag{37}
\end{equation*}
$$

From this it follows, in connection with (30) that in F the solutionpath must touch the boilingpointcurve going through the point F [curve $F K$ in fig. 1]; the wanted solutionpath is, therefore, $F Z_{1}$.

Now it follows from the previous considerations: in the P, T diagram (fig. 2), none of the ternary solutionpaths touches the meltingline$F d$ in F; the solutionpath, touching in F in the concentrationdiagram (fig. 1) the saturationcurve under its own vapour-pressure going through F, has in the P, T diagram a vertical tangent in \dot{F}; the solationpath, in the concentrationdiagram touching the boilingpointcurve going through F, has a horizontal tangent in F in the P, T diagram.

It is evident that the above-mentioned rules apply quite generally no matter whether the relations of fig. 5 (XI) or 6 (XI) occur or the curves in F are concave or convex towards H.

In fig. 1 Fl represents the liquidcurve of a region $L G$, now we imagine a solutionpath, touching curve $F l$ in F. The direction of this solutionpath is, therefore, fixed by (29). In order to find $\frac{d P}{d T}$ in the point F of this path, we must, therefore, substitute the second term of (29) in (35) for tgip. We then find an infinitely great value for (35). From (34) now follows:

$$
\begin{equation*}
\frac{d P}{T}=\frac{D}{C}=\frac{H_{1}-H+\left(\beta-y_{1}\right) \frac{\partial H}{\partial y}}{V_{1}-V+\left(\beta-y_{1}\right) \frac{\partial V}{\partial y}} \tag{38}
\end{equation*}
$$

The latter part of (38) indicates the direction of the P, T-curve of the evaporationline of the liquid F. This line is traced, when we melt the substance F and when we regulate after that the temperature and the pressure in such a way that the liquid remains in equilibrium with an infinitely small quantity of vapour. Therefore the liquid retains the composition F during this. This curve is represented in fig. 3 (III) by $F e$. the pressure and the temperature increase from F along this curve.

Consequently we ind: the solutionpath, touching in F in the
concentration-diagram the liquid curve of the region $L-G$ (curve $F l$ in tig. 1) going through F, has in the P, T-diagram the same tangent in F as the evaporationline of the liquid F starting from F.

If we compare the P, T-diagram of the solutienpaths of a binary compound F (fig. 2) with those of a ternary compound F [fig. 4 (IV) and 1-3(V)], then we see very great differences in the vicinity of the point F. We find these differences also in the concentrationdiagrams. When viz. in fig. 1. in the point F we construct tangents to the curves $F l, F k$ and $F s$ going through the point F, three different tangents arise. If F is a ternary compound, as e.g. in fig. 1 (IV), then these curves touch one another in F and the three tangents coincide in the line $X F Y$.

All this is based on the following. When F is a binary compound, a new substance must be added, in order to trace a ternary solutionpath from F. When, however, F is a ternary compound, we add no new substance in order to trace a solutionpath, from F, but substances, which are already present in the melted F.
(To be continued).

Physics. "An apparatus for the determination of gas isotherms up to about 3000 atmes." Van der Walls-fund researches $\mathrm{N}^{0} .5$. By Prof. Ph. Kohnstamm and K. W.Walstra. (Communicated by Prof. van der Walis).
(Communicated in the meeting of December 27, 1913).
As is known the material for testing the theory of the equation of slate at very high pressures consists aimost exclusively of what Amagat has published in his famous papers. It seems desirable tor different reasons to extend this material. Quite apart from the desirability to get to know the behaviour of other gases than those examined by Amagat - we think in the first place of the mon-atomic gases Amagat's work itself gives rise to different questions, which can only be decided by means of new experiments.

First of all it is known that Amagat does not give the direct results of his observations; he only publishes the results of a graphical interpolation between these observations. The question rises how great the deviations are between the interpolated and the real observations, and whether another way of interpolation had been possible. Nor can the probable experimental error of 'Amagat's observations be inferred from his experiments. And it has finally

