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10. Any coincidence of the Q4 is completed into a quadruple 
by two complemerttal'y points. The locus (f of those points which 
we shall call the complementa1'Y curve has apparently quacl1'uple 
'!Joints in Slc; fol' Lc3 has fom _coincidences. Of the fom coincidences 
of F3, four of the complementary points lie on d~; with this conic 
the curve ó has therefore 4 + 5 X 4 = 24 points in ('ommon. 
COllsequently the complementary CU1've is of order 12. 

The curves (>4, which touch the plane J. in tbe points of the 
cnrve of coincider..ces y 6, interseet J. moreover on the eomplementary 
curve ó12

; so tbey farm a surfaee of order 24, whieb pa&ses eight 
times through the eune !,u. 

This surface is intel'secied by a plane ),' along a curve of order 
24 with 5 oetuple points St... As the CUl've of coincidences 1"6 lying 
in ).' has double points in 8", the two CUl'ves Olltside 8k bave 
24 X 6 - 5 X 8 X 2 = 64 pointE, in common. OOl1sequently thel'e are 
64 curves (>4, touclting two given planes. 

The surface A 9 belonging to the straight line 1 intersects an 
ttl'bitrary plnne p along a CUl've pD, w hich has 5 triple points on 
r/. As the curve of coincidences (l lying in cp has 5 110des on (>6, 

it intersects pO moreover in 9 X 6 -'5 X 3 X 2 = 24 points. From 
this appeal's once more th at tbe rnrves (l4, wbieh touch a givell 
plane, farm a s~t11ace of onZel' 24. At the same time, the faet that 
the .!!omplementary cnrve is of order 12, is eonfil'mecl. 

Chemistry. - "l:'quilibl'irl zn te1'na1'y systmns". XII. By Prof. 
SCJHREINEl\fAKERS. 

We have seen in the pl'evious commnnication that the saluration­
curve undel' its own vaponr-pl'essure of the temp81'ature 1"H (the 
point of maximumtemperatul'e of the binal'Y system F + L + G) 
is either a point [fig. 5 (XI)J Ol' a curve [fig. 6 (XI)]. We shall now 
examine th is case IDOl'e in detail. 

If we calculate dy fol' this curve In the point H fi'om (6) and (7) 
dm 

(XI), then we find an infinitely great. vaille. The curve going throngh 
R in fig. 6 (XI) and the curve disappeal'ing in H of figure 5 (XI) 
come in contact, therefol'e, in H with the side BG. Now we take 
a temperatm'e somewhat lowel' than TH- The saturationcul'\'e under 
its own vapOUl'-pl'essure tel'minates then in two points n and h 
situated on different sides of and very close fa H. [n anel ft in fig. 
4-6 (XI) may be imagined very close to H.l As the satul'ationclU','e 
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tmder its own vapoul'-pressul'e touches BC in H, the tangent in~ 
n and the tangent hl h to the curve, going tht'ongh these points, 
will yet be almost parallel BG. 

Because the equilibria F + liquid n + vapour n l and F + liquid 
h + vapour hl differ but very little fl'om one another, the perspective 
concentratiolls S and 81 (sea the pl'evious communication) will be, 
on addition of a third sl1bstance, also approximately equal. Therefore, 
when in tbe one equilibrium 8> 8l> this is also the case in the­
other, Of course the same applies to S < Sl' Now we distinguish, 
according as the subslanee expands Ol' contracts on melting, two 
principal cases, -

1, P' expands on melting (V> v), The point H is then situ­
ated with respect to F as in fig, 4-6 (XI) viz. bet ween F and C, -
but close to F; L. V is negatÎ\Te between F and H, positive in_lhe 
othel' points of BG. Ft'om the situation of n and h with respect to 
F, it follows that 8 and Sl al'e both posilive, We distinguish 8> 81 

and 8< Sl' 
a, 8> 81 , As L. V is positive in. hand negati ve in n, it follows 

fl'om om' pl'evious communication tha,t the pressure decreases from 
h along the saturationcllrve under its own vapouI'-pl'essure and it 
incl'eases from n. In which direction shaU this curve now proceed 
from h? As the tangent in ft coincides almost with BG, the curve 
must go fl'oll1 heither almost in the dit'ection lowards nOL' alrriost 
in opposite <.hI'ection. We find the first in fig. 5, the second in 
fig. 6 (XI). 111 order to determine this direction, it is to be consi­
dered that [he region L-G shifts on decrease of pl'essl1re ti'om h 
towards 11., so that the pressure decreases in this direction. As 
the pressure along the saturationcnrve under its own vapour-pressure 
must also decl'ease from h, this cnrve must therefol'e, also go fL'om 
halmost in the direction towards n, lt has, therefore, from h a 
direction as in fig. 5 (XI). As the tangent in n coincides almost 
with Be, the curve must go fl'om n either almost in the direction 
towards It or almust in opposite direction. Oonsidering that the region 
L-G shifts on increase of pressure ti'om n towal'ds It, so that the 
pressure increases ft'om n towards hand further thai the pressure 
along the saturationcUl've under its own vapour-pressure must also 
increase from n, we see that this curve must. go, therefore, also_ 
ti'om n ,tlmost iJ) thc direction lowards lt. 

The saturationelll'Ve undel' Ïts own vnpom-pressnre has, therefore, 
n form as curve lm in fig. 5 (Xl); it is situated, therefore, close to 
the side Be and it disappears at TH in the point H. 

b. 8 < Slo In a similar way as above we find that the pressure 
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along the saturationcurve undel' its own vapolll'-pressure incl'eaSes 
from hand decl'eases frorn n. Further we tind that ihis curve must 
have in the vicinity o( n and h a direction as in fig. 6 (XI). As 
fUl'ther the pressure in h is greater than in 11" therefore on this 
curve as well·a point of maximum- as a point of minimumpl'essure 
must be situated. Oonsequently, we obtain a curve" n, as in fig. 6 (XI), 
this does not disappear at the temperature TH, but it forms a curve, 
touching the si de BG in H. 

2. F melts with decrease of volume (V < v). Now the points 
Hand Hl are no more situated, as in the previous case, bet ween 
F and G. From the binary equilibrium F + L + G it follows th at 
H is situated bet ween F and B; the point Hl may be imagined as 
weIl between F and G as between F and B. In the last case Hl 
should be situated between F and Hand thel'efore very close to H; 
the region L-G should then be very narrow in the vieinity of the 
side BG, whieh is only possible III very exC'cptional cases. Thel'efore 
we consider only the first case: H is situated between F and B, 
and Hl between F and G. _ 

If we take two points n and 11 close to Hand the corre­
sponding points n l and !tI close to IL. then we see that S and 81 

have an opposite sign. If furthel' we keep in mind that t::. TT is 
negative between Jj' and Hand Qositive in thc othel' points of BG, 
then it follows, in a similal' way as above, that curve nh must have 
a form as in fig. 5 (XT). Thel'efura, it disappears at T 11 in the point H. 
Oonsequently, we obtain a diageam fiS in fig. 5 (XI), but with tbis 
diffel'ence, that H Ï:S situated now between F and B. 

Oontemplating the boilingpointclll'ves of F, we obtain diagrams 
as fig. 5 and 6 (XT), the al'l'OWS must then howe\'er, indicate in 
opposite direction. Flll'ther we must imagine the point of maximum 
temperatme H fo be replaced by the point of maximum pressl1\'e 
Q of the binary equilibrium F + L + G, t::. W is negative between 
F and Q, positive in the other points of BG, From the position of 
Q and QI with respect to F, it follows that 8 and tBl n.re both 
positive. yv e distingnish two cases. 

a. 8> SI' We find that the boilingpointcurve /in has a f01'm as 
in fig. 5 (XI); thc arrows must, howe"e1', illdicate in opposite direction. 
TherefOl'e, th is curve disappears under the pressUl'e Pa in ti1e point Q, 

b. 8 < 81 , The boilingpointcurve ltn has a form as in fig. 6 (XI) ; 
the aL'rows must, ho wever, indicate in opposite diL'ection. Therefore 
the curve does not disappear in Q undeL' the pl'essure Pa. 

If we sum togethel' the results obtained above, we have; 
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1. P melts with increase of volume The saturatiollCUl'Ve undel' 
its own vapoul'-pl'essul'e disappeal's, when is raised the tempeI'atul'e~ 

in IJ [fig. 4 (XI)] when the concentl'atlOn of the new substance is 
gl'eatel' in ihe liqnid than in the vapour. Ti does not disappeal' in 
H [fig. 6 (XI)] when the concentt'ation of the new ::.ubstance is 
smaller in the liqnid than in the vapoul'. 

2. ]? melt::. with de('rease of vol urne. The satlll'<1,tioncul've under 
Hs own vapolll'-pl'cssure disappears, when is misecl the temperatul'e~ 
in H [Fig. 5 (Xl), Whel'elll howcvel' H must be situaLed between 
F and 13] 
. 3. The boilll1gpointcurve disappeal's, on incl'ease of p' in Q 

[fig. 5 (Xl)], when tbe cOllcentration of the new subslam'e is greatel' 
in the liqmd tban in the vapou!'. It does not dlSappeal' in Q [fig. 6 -
(XI)] when the concentmtiOll of tbe new subRtance is sm allel' in the 
liquid lhan III Lhe vapoul'. We mean of COllI'Se, with "concentration" 
abov€' "pel'spective concentl'ation". 

Now we wdl deduce in anothel' way the l'elations in the vicinity 
of thr point R Ol' Q. The saturationcul've undel' Hs own vapoul'­
pl'essnre IS fixed by the equations (1) (rr), when we put therein a=O 

r' àZ à2Z 
and when we keep 7. constant. As ~, ;:;--; , etc. become infinitely 

vlV ViVO 

gl'eat fol' x = 0, we shall put 

Z = U + RT,'IJ log .'IJ . (I) 

so that all differential quotients of U with respect to tC, remain finite. 
'Ye put in the same way : 

:tl = Ul + RTlIJl log ,'IJl' .. .. (2) 

so that the same applies to Dl' Then we have: 
àZ à U àZ à U àZ à U 
à,'IJ = à.'IJ -j- Rl' (1 + log .'ll) ; ày = ay ; àP= àP = V. (3) 

and similar 1'<,lations fol' Zl and UlO 
The equations j (II) then _ become : 

àU àF 
,'IJ~ + (y-~) ~ + R1:v-U +; = 0 

VlIJ vy 

a Ul ( R) à Ul Rrll TT' r 0 
,'IJl-a - + YI-P aT .L,'I\-u l -r ~ = . 

lIJ 1 Yl . 
. oU àUl - + Rl' (I + log ,'IJ) = ~ -r Rl' (1 + log ,v l ) 

àllJ V.'IJ1 

àU _ aUl 

oY - OYl 

(4) 

(5) 

. (6) 

(7) 
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ln the points Hand Hl of figs. 4-6 (Xl), the pressme is aqual 
to PH, X = 0 and Xl = 0; further we put Y = (1/)0 and Yl = (Yl)O' 
Fo!' a point in the vifinity of Be on this satllrationClll'Ve under i/s own 
vapour-pl'essure, the pressure is PH+clP, a..=S, Xl =61 , Y= (Y)o + 'I 
and Yl = (Yl)O + 111 

In the points Hand Hl themselves the binal'y equilIbrium F + L + G 
exists; to th~s applies: 

au oU _ oUl 

- (v - ~) OV - U + ; = 0 OV - OVl ., (8) 

wherein the pl'essure is equal to PH, Y = (Y)o, Yl = (Yl)O and U 
and UI are independent of IV and 'Vl' 

We now take the <,ondition (6), from this it follows: 

lVI au aUl 
RT log-=-a - -a- .. " . (9) 

.'IJ .'IJ tIJ 1 

Therefore, we obtain for vel'y smal! va]ue5 of X and Xl ~ 

log ~ =~ Lim (au _ au l
) • • •• (10) 

S Rl a,'I) o''V l 

or 
. . . (11) 

wherein J( is determined in (10). 
We now take the condition (7); in this we put the pressUl'e 

P equ~l to- PH+clP, :v=g, X1=;I'Y=(Y)0+'l and YI=(Yl)O+'ll' 
If we expand both terms of (7) into a series and consider th at 

in the point H (8) is satisfied, then we find: 

à V as at 02 V os 
8 g + t 1] + ay dP + t o.v . g2 + i ay . 1]2 + t ayop dp2 + a.'Vay 6"1 + 

02V 02 V (12) 
+ -a a g dP + -a - , 'tI dP + . , . LlI 

.'IJ y !/ 
a2 u a2 u 02U 

Herein l' = ~ S =-- t = -; these valLles must be kept, as 
a&~ otIJay oy2 

theyare in the point H. The second member of (12) is indicated by 
L Jl; tl~is means t~at we deduce the second membe)' from the {h'st by 
subslituting gu 'lil, Sp tI etc. for S, '11, 8, t etc. Now we expanà (4) 
into a series; if we keep in mind, that in the point H (8) is again 
satisfied, and th at ffJ and Xl must be put equal to zero, then we 
find a series, which we write in the following form: 

(
OV aV) 

RT.g + i· t1]2 - (V-v) dP - 1 oP - ap dp2 + R + ty-j3)L=O (13) 

lil 1l only let'ms occur, whieh are intinitely small with l'espect 
48 

Proceedings Royal Acad. Amslerdam. Vol. XVI. 

~ ~- ~---------
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to those, whi('h are already wl'itten down, viz. 62
, ;11, etc. r dI! 

and 11 elP are wanting. L represents the fil'st term of (12). For the 
sake of simplification (Yo) has been l'eplaced by y. 

If we expand (5) into a series, we find: 

RT 61 +ttl1112_(VI-V)d~-! (ào~ - ~~) dP2+.R1 +(Y1-t~)Ll=0 (14) 

Herein U1 contains only terms, mfinitely smal! with respect to-
I 

those preceding, L 1 represents the second term of (12); (Y1)O has 
been replaced by Y1' 

Now, in the point H the denominator of (8) (XI) is equal to zero, 
therefol'e : 

(Y1 - (J) V + (y - yJ v + «(J - y) V1 = O. 

We write this condition in the form: 

V-v V1-v VJ - V 
y-(J = Y1-(J = Y1-Y = tt .... (15) 

Now we have the four l'elations (11), (12), (13) and (14) between 
the five variables. If we lDllltiply (13) with Y1-(J and (14) with 
(y-fl) then follows: 

(Y1-(J) [RT 6 + i t1J2 - ! (~; - ~~ ) dr-J -t- ... = ( 

[ 

~ 2 (0 V1 av ) ] . (16) 
= (y-(J) RT 61 + t t11h -! ap - ap dp2 + ... 

These equations may be satisfied when we take g and 6
1 

of the 
order elp2 and 1/ and 1h of the order elP. From (12), (13) and (14) 
then follows: 

av aV
I 

t1j + -a dP = t11!t + -a - dP . . . . . (17) 
Y Y1 

tJ] = (tt - ~;) dP. ...... (18) 

( aV1) tI1h = tt - ay 1 dP. . . • .. (19) 

These last three equations are, as is seen immediately, dependent 
on one anotller. Substituting 1/ from (18) and 111 from (19) in ~16 
we find: 

2 RT [(Yl - [J) - (y - (:1) ~J g = a . dp2 

Hel'ein 61 : 6 is fixed by (11); f'lll'thel' is: 

. . (20) 
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. (22) 

From (22) it follows that the saturationcurve under its own 
vapour-pressure under cOllsidel'ation is in the vicinity of the pojnt 
H [fig. 4-6 (XI)] a parabola, which touches the side BG in H. 
From (18) and (20) follows the change of g and 11 along this curve 
at a smaIl change of pres su re dP. 

We ean find the meaning of a (22) in the following way. 
We represent the length of Gp Ol' Cq [fig. 1 (XI)l by Y, the 

Iengtll of the part, which is cut oft' by tile liquid curve of the _ 
region L - G from GB by y. Then we have: 

dY Vo-v avo dy VI-V av dYI VI - v aVI 
todP = Y [J- ayi t dP= YI __ Y -ay i tldP = YI_Y - fJYl (23) 

Herein to and Vo refer to the poipt of intel'seetion of the satlll'a­
tioncurve with BG. Now we put: 

Y-y=l 

dl d2l 
and we calculate - and - .. For this it may be eonsidcl (;,' that 

dP dp2 

Vo depends on Pand Y, V on Pand JI and VI Ol1,P [mJ YI' 
If now the saturatiOl1CLlI'Ve of F and the liqllid-curve of the l'egion 
L - G go both throllgh the point H, then (1.5) is satisfied; aIso at 
the same time Vo beeomes = V and to = t. Then we find : 

& d2l 
dP= 0 and a = t (y-[J)(YI-Y) dp2 . . . . (24) 

Sllbstitnting this vallle of a in (20), we find alter deduetion with 
the aid of (13) ~XI) and (11) 

( S) d2l 
2 RT. K 1,-SI g = t (Y-YI) dP2' dP~ . . (25) 

and 
, ( S) _ ta (y -YI) d2l - 2 

2 R'l .!C 1 - S) S - (fL _ aV)2' dp2 .11· . . (26) 

• fJy 

w herein t> 0; that there may be agreement with our figur~s, we 

tal{e Y - Yl > O. 
. We HOW distinguish two cases. 

48* 
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S d2l 
1. 1 - - and - have the same sign. E'rom (26) it follows 

S1 dp2 

that g is positive, so' that the parabola touches BG in Hand is 
fmther sitllated within the tt'iangle [fig. 6 (XI)]. This is apparent 
also yet from (25), as g becomes positive as weB for (~p positive 
as negative. 

S d2l 
2. 1- S] and dP' have an opposite sign. From (26) it foIlows_ 

that g is negative. Therefol'e the pal'abola touches BG in H, but is 
fUl'ther situated outside the tl'iangle. Therefore a simiJal' parabola 
may be imagined in fig. 5 (Xl). Then only its point H represents a 
liquid, its other points have no meaning. 

dl d'l 
From our deduction of dP and dP' in the point H, follows: 

d2l 
y - y = ! . d~P . dF'. 

Now, in the point H of fig. 4-6 (XI) Y - y, theref'ore al'so 
dl' 
dp2 becomes positive, as weIl on increase as on decrease of'pressure. 

When, ho wever, the point H is situated on the other side of F, 
d'l 

then Y - y and theref'ore also dp2 becomes negative. 

We 110W consider some cases. 
d'l 

1. F rrfelts with increase of volume (V> v). dP' > O. SandS1 

positive. 
a. S> S1' From (26) f'ollows: the satllrationcurve under its 

own vapourpl'essure is a pal'abola, which touches BG in H, but is 
situated fUl'ther outside the triangle [fig. 5 (Xl)]. 

b. S < S1' From (26) follows: the saturationcurve under its 
own vapourpressure is a parabo)a, which touches BG Ïn H, but is 
furthel' situated within the trianglë. [fig. 6 (XI)]. 

d2l 
2. F melt~ with de~rease of volume (V < Vl. dp2 < O. 

We take again S alld S1 with opposite sign, 
As sub 1. a. In fig. 5 (Xl) the point H must be imagined on the 

other side of F, therefol'e, bet ween F and Band Hl between F 
and C. 

From (18) it foIIows th at 11 changes- sign with dP, as in the 
point H the coefti~ient of elP is m'gath'e, 1] and dP must have the 
opposite slgn, TherefOl'e, tlle pl'eSSUl'e increases in the direction in 
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which 'tj decreases anti reversally. We see th at this iE> in agreement 
with tbe direction of the arrows in fig. 5 and 6 (XI). 

If it is desired to know the influence of ä small cbange of T 
on the position of rbe satl1rati~ncurve under its own vapour pressure 
going tbrough H, we must also include terms with dT in the 
previous expansions into a series. Now U = Z - RTx log ,dherefore, 
au aT = -" H - Rm log x, therefore in the point R (tV = 0) itselt' 

au =-H. 
aT 

aH 
In the l'ight member of (12), therefol'e, must be added - - dT oy 

and terms with gdT and 'tjdT; in the 1eft member _ dHl dT. 
OYl 

In (13) must be added (H-}lv) dl'; in (14) (Hl-'tjv) dl'; in order 
to distingllish the coordinate 11, the entropy of the solid substance 
F is .indicated by 'Ilv, 

In the tirst membel' of (16) must be added: (yl-{J) (H-'tjl') dl'; 
in the second member (y-{J) (H1-'tj·). 

From (13) follows: 

( df) 
tfl = (1 - oY dF + ... 

from (14) 

( dVl) -tl'tjl =~ -(1-- 0-- dP + ... 
Yl 

As we must substitute these values in (16), it is apparent that 
we may neglect the otber terms. As 

L::.W 
((J-Yl) H + (YI-Y) 'tjv + (y-{J) Hl = (y-{J) T 

we obtain: 

2 RT [Yl-{J-(V-{J) ~J S = a. dP + (y-{J). f::.~~. dT 

01', aftel' deduction : 

- (S) d2l t:. W 
2R7'.K I-SI" S=t(y-YJdPz·dP2_TdT . . (27) 

and: r S) t
3 

( ) d2l ,6.·W 
2Rl'.K',1- SI s=( Y-aY;)2'dP2''I12 -T· d1' . (28) 

«(1 ---_ oY~ 

From (28) it follows that not on]y the flatu1'ationcul've under its 

• 

" 
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own vaponr-pre'3sl1re, going tIn'ough H, but also those which ~al'e 
situated Ü1 the vicinity of Rare parabolas. 

In the point 11 of figs. 5--6 (XI) t:. IV is negative, when H is 
situated on the other side of F, 6. W is positive. From (21)) it now 
follows: 

when the curve, touching in H is situated outside the triangle 
Lfig. 5 (XI)l, it shifts on decrease of T, within the triangle [curve 
/m in fig. 5 (XI)] 

wh en the curve, touching in B is sitnated within the triangle 
[fig. 6 (XI)], it shifts on incl'ease of T within the triangle [the 
closed curve in fig. 6 (Xl)] and on decrease of T partly o1."!tside 
the triangle. Therefore, curve lm of fig. 6 (XI) must be imaginecl 
to be closed by a part hn sitnated outside the triangle; this part,­
however, has no physical meaning. 

In fig. 1 three curves are drawn through F; Fl is the liquid­
CUl've of tbe region L-() at the temperature TF and under the 
pI'es:mre PF, therefol'e at tile minimummellingpoint of F; FI( is 
t11e boilingpointcurve and Fs the saturationcurve under its own 
vapourpressure. The two fil'st curves are but partly drawn. We 
now construe in F a tangent to each of these curves. With the 
aid of the formllias from the previons communication, we find: 

for the tangent to the liqllidcurve (Ft) of the region LG: 

(
dY) (':1 - 1) Rl' + (Yl-ff) s 
- - - . (29) dtv l - (Yl-ff) t . 

fol' the tangent (FZI ) to the boilingpointcurve (pI(): 

(
.'/\ ) IJ 

(
dY) ;; - 1 R2' + (y 1-(j)S - R'l}j (dY) D RT 

d.'/} k = - (Yl-(j) t dx l+ ]3'(Yl-(j)t (30) 

and fol' the tangent (FZ2 ) to the saturationcllrve lInder its own 
vapOrll pressure (Fs): 

(
Xl _ 1) RT + (Yl-~) s-R'l'!!. 

(
d!J) _ __ X A _ (dY) + ~ R'l' (31) 
d.'/} s- ClJl-(j) t - d.'/} I A . (Yl-fl) t 

Now we take again the most pl'obable case thttt BG-AD is 
positive (communication 1I). That there may be agreement with the 
figs. 5 and 6 (XI) and fig. 1, we take V>v therefore A positive. 
As flll'ther Yl-(j is negative, we can deduce: 

(dY) (dY) (dY) -d ' > d-: > -, ... . . . (32) 
{IJ l [IJ Tc d,v s 
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The curves Fl, F!.. and Fs must, thel'efore, be situl1ted with 
respect to one anothel' as in fig. 1. 

When V < v, therefore A is negative, then it follows: 

(dY) (dY) > (dY) 
dm s > d.v I dm k' • 

. . (33) 

The point H· and therefore also the point s, must be imagined, 
however in this case, also in fig. 1 on the other side of F. In 
àgreement with (33) Fl comes then between the two other curves. 

Now we shall consider the solutionpath consisting of a straight line 
of F under its own vapourpressure or in short the solutionpath of F. 
We take viz. the system F + L + G, but we take care that the 
quantity of vapour is always very smalJ. On change of 1'the hquid 
traces a straight line going through F, which we have called the 
solution- or cristallisationpath of F. In fig. 1 three similar solution­
paths_ .. l?Z, FZ1 , and FZ2 ara drawn. 

Let us consider now the binary equilibrium F + L + G. In fig. 2 
its P,1'-('urve is represented by EFG~ Q is the point of maximum­
pressure, H the point of maximumtemperatul'E'; F is the minimum­
meltingpoint, f( the point of maximrimsnblimation of the compound. 
al( is the Rublimation-, Fel the meltingcurve. Cune EF D touches 
Fd in F and al( in l(. It is apparent from the direction of the 
meltingcurve that we assume V> v in agreement with fig. 1. 

p 
~---z 

Fig. 1. 

E 
t t 

T 

Fig. 2. 

When the solutionpath FZ in fig. 1 coincides with FU, its 
P,1'-curve in tig. 2 is, therefo1'e, 1'epresented by URF; when FZ 
coincides in fig. 1 with FE, it is represented in fig. 2 by EHF. 
When the solutionpath FZ in fig 1 turns ti'om the position FU 
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towal'ds FE, ijs cOl'l'esponding P,T-curve must therefore change 
from UKF into EHF. Now we sball examine this more ,in detail-; 

The '3aturatiollCUl'VeS nnder their own vapourpressllre bave, in the 
vicinity of Heithel' a form as in fig. 5 (XI) Ol' as in fig. 6- (XJ) ; 
we assume that they bave a form as in fig. 5 (XI). In fig. j the curve 
SUl'fOllnded' by Fs, and Fs, itself represent satlll'ationcurves under­
theit' own vapourpl'essure; the arrows indicate the direction of 
increasing pressure. _ 

The boilingpoint curves have also a position as in fig. 5 (XI); 
we must consider, ho wever, that R is replaced by the point ot 
maximnmpressure 0, and 1bat the arrows point in opposite dir'ec­
tion. Two of these curveS are drawn in fig. 1, one in the vicinity 
of 0, and curve Fk; the latter is indirated for a párt only. 

Now we imagine in fig. 1 a solutionpath between FE and I!'Z2' 
Imagining in this figllre still many other satnration-cllrves under 
their own vapourpressure to be drawn, then we see that some of 
these are n0t intersected by tbis path, other ones twice, and others 
again once. Further we see that one of these curves touches this 
path; we caU that point of contact H'. 

From this it follows: at ih'st the temperature increases along "this 
solutionpath from F up to H' and aftor that it decreases. Fllrther 
it follows: TH' is lower tl1an TH' 

Imagining yet many other boilingpoint-curves to be drawn in 
fig. 1, then we see that one of tbese touches the sollltionpath in 
n point that we shall caU 0,'. Now we dedllce: the pressnre in­
creases along this Sollltionpath from_ F up to 0,' and aftel' that it 
decreases. Further it follows: Pa' is smaller than Pa. 

Now it follows from this all that the P,T-curve belonging to this 
solutionpath has a form in fig. 2 as curve bF witb a point of 
maximumpresslll'e in Q' and a point of maximumtemperature in H'. 

As long as the solutionpath in fig. 1 is situated between FE and 
FZ2 , the P, T-curves retain a form as bF in fig. 2; according as 
the path, howevel', approaches closer to FZ2 , 'the points 0,' and H~ 
come closer to F. When the path coincides with FZ2 , H' coincides 
with F and the P, T-cul've has a form as Z2 F in fig. 2 with 11 

point of maximnmpressure Q". The tangent in E stands vertically. -
To see th is, it must be considel'ed that the line lJ'Z2 touches in 

F tlle saturationClll'Ve under its own vapourpressUl'e gOlllg through F 
(Fs in fig. 1). Going from li', along an infinitely small distance, along 
curve Ps and thel'efol'e 11180 along [he tangent FZ2 , the pressUl'e 
increaseb while the tempel'ature remains constant. As 'dP, therefore, 
is positive. :1nd dT is zero, the P, T-cu1'\'e therefore, in fig. '2, along 
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a smaH distance, mnst point vedirally npwal'ds, so tlmt it ha::. there 
a vel'tical tangent. Considering the satllrationclU'ves nnder their own 
vapourpl'essure, we see that FZ2 jnteraects only curves of tempe­
ratures 10wer than TH, so that the tempel'ature decreases along 
FZ2 from E. 

Considering the boilingpointcmvcs, we see that the same still 
applies to these as to a Rolutionpatb, situated between FE H,nd FZ2 • 

The pressnre, therefore, jncreases at first from F and aftel' that it 
decreases. From all th is lt follows that the P, T-curve has, therefol'e, 
a form as curve bF in fig. 2. 

Let us now take a solntionpath betvireen FZ1 and FZ2 • Tt is easy 
to see th at the P, T-curve I'etains a form as FZ2 in fig. 2, with 
this difference, however, that the tangent in F stands no longel' 
vel'tically. The curve prOéeeds viz. from F immediately towal'ds 
higher pressUl'es and lower temperatnres. According as the solution­
path in fig. 1 comes closer to Ji'~, in fig. 2 the point of maxi­
mumpressllre Q" approaches rioser to F. When the solutionpath 
coincides with F~, Q" coincides with F, and in figure 2 the 
P, T-curve obtains a form as ZlP wHh a horizontal tangent in F. 

In order to see this, we consider the soIutionpath FZl which 
touches the boilingpointcurve FI( in F. (tig. 1). Going from F along 
an infinitely small distance along curve F!{ and, therefore, also 
along the tangent FZl' the tempel'atlll'e dp-creases, while the pres­
sure remains constant. As elT, therefore, is negative and elP is zero, 
the P, T-curve_ must, therefore, from ·F over a small distance [oint 
horizontally towards the leTt; consequently it has a horizontal Jangent 
in F. 

We now take a solutionpath FZ, situated between FU and 
F Zl' -It follows from a consideration of the saturationrurves nnder 
their own vapoul'pl'essure and the boilingpointcurves in the Yicinity 
of F, th at pressure and temperature decrease fl'om F. The P, T­
curve is l'epresented in fig. 2 by F Z, it proceeds ti'om F t!Hvards 
Jowel' temperatm'es and pressures. 

At the deduction of fig. 2 jt is assllmed that the saturationcurves 
lUl der their own vapourpressllre and the boilingpointcul'ves have a 
form as in fig. 1. Curve Fs and Fk are drawn ,herein in .the 
vicinity of F, concave towards H. When in Fthey turn their convex 
smê towards H, ·then cur\'e Fs wW intersect its tangent F~ still 
in another point and rurve FK its 'tangent FZl • Althollgh tIJen in 
fig, 2 the tangent in IJ' to Zl F 'l'emains hOl'izontal and tbe tangent 
to Z~F vel'1ical, all curves wil! obtain a somewhat different 
form ,in the vicinity ,of F (we 'mar al80 compare tlle previouslr 



- 15 -

\ . 

752 

treated P, T diagl'ams for the case that F is a tel'IUtl'y compound). 
Aftel' the previous considerations, the reader can easily deduce­

the P, 1 diagram for the solutionpaths of F, when the curves are­
situated as in fig. 6 (XI). 

Formerly [5 (IV)] we have deduced for -a solutionpath -
dP DM-BN 

dT CM-AN 
• (34) 

now, as a = 0, herein is: 

M = ilJ2 1'+2.'v (y-[1) 8 + (lj-{1Y t 

N = lIJ (ilJ 1-.v) r + [.l! (YI-Y) + (.v1-.v) (y-{1)J 8 + (YI- y) (y-[1) t 

In the point F becomes x = 0 and y = {J, therefol'e}llJ . 0 and 
.N = O. Let us now conternplate a solution path ana let us caU the 
angle, which it forms with the X-axis, cp. If we imagine fol' tile 
sake of simplicity that the coordinatesystem is rectangular, t11en it 
follows: Galg. (p=x: (y-[1). We then obtain: 

M - .v r cot,q cp + 2 .V 8 + (Y-l~) t 
N (.vI - (v) l' cotg (P + [(y I - y) cotg (jJ + .v1-.v] 8 t (y I -y) t 

In the point F becomes x = 0 and y = [1 therefore: 
111 Rl' 

N 

The question now arises, what P, T curve touches the meltingline 
Fel in F. For this must, according to (34): 

DM-BN B 

CM-AN A 

, thel'efo:re, frl: N = O. It is apparent from (35) th at this is only the 
case when tg cp is infinitely great, consequently for (jJ = 90° and 
cp = 270°. Then the solntionpath coincides either with FE or with 
FU (fig. 1). Therefore, both the binary solutionpaths EF and UF 
only tquch in F the meltingline Fel; the ternary paths do not touch 
this meItingline. 

In order that the tangent to the P, T curve of a solutionpath mar 
be vertical in F we have, according to (34) CM--AN=O. As M:N 
is fixed by (35), it follows that this is the case, when 

--1 RT + (YI-{1) 8-Rl'-. (ilJl ) C 
, {p A 

tg (P =-
" , . (Yl-;[1) t 

From (31) it follows 'tllat in F th is solutionpath must touch the 
saturat,oncurve under "its own _ vapourpressure going through the 
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point F I curve Fs fig. ll, the l'equired s') ntionpa.th is, therefore, FZ2 • 

If we l'equil'e a solutionpath, whose .r,.J.. l Ul've has a hOl'izontal 
tangent in F, we must, as folJows from 34) put DM -BN = O. 
From this now follows: 

(
mI ) 1 1 D - - 1 Rl + (y 1 - (3) 8 - Rl -
m B 

tg (p = - (1/
1 

_ j3) t . (37) 

. From this it follows, in connection with (30) that in F tlle 
solutionpath muM touch the boilingpointcurve going through the !Joint 
F [curve FI" in fig. 1J i the wanted soIutionpath is, therefore, FZ1 • 

Now it follows from the previous considerations: in the P, T dia­
gram (fig. 2), none of the tel'nary solutionpaths touches the meltingline. 
Fel in Fi the soIutionpath, touching in F in the concentration­
diagram (fig. 1) the saturationcul've under its own vapour-pressul:e 
going through F, bas in the P, T diagram a vertical tangent in F i 
the sol u tionpath, in the concentratiolldiagram touching the boiling­
pointcurve going through F, has a horizontal tangent in F in the 
P, T diagram. 

Ir is evident that the above-mentioned l'ules apply quite geuerally 
no matter whether the relations ot' fig. 5 (XI) or 6 (Xl) occur Ol' 
the curves in F are concave or convex towards H. 

In fig. 1 Ft represents the liquidcul've of a l'egion LU, now we 
imagine a solutionpath, touching curve Fl in F. The dil'ection of 

dP 
t4is solutionpath is, therefore, fixed by (29). In order to find dl' 

in the point F of this path, we must, therefol'e, substitute the second 
term of (29) in (35) for ~q(p. We then find an infinitely great value 
for (35): From (34) now follows : 

aH 
dP D Hl - H + «(3 - y 1) dy 

T= c = avo (38) 
VI - V + «(3-yJ-a y 

The latter part of (38) indicates the direction of the P,T-cUl've 
of the evaporationline of the liquid F. This line is traced, when 
we melt the substance F and when we reglllate aftel' th at tlle 
temperature and the pressure in snch a way that the liquid remains 
in equilibrium with an infinitely small quantity ofvapour. Therefore 
the ~iquid retains the composition F dnring this. This curve is 
l'epresented in tig: 3 (lIl) by Fe. tile pl'essure and the temperature 
increase from F along this curve. 

Consequently we find: the solutioupath, touching in }j' in the 
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conC'entlatiol1-diagl'am the liquid curvtl of the l'egion L-G (curve Fl 
in tig. 1) going tbrougb F, bas in the P, T-diagram the same tangent" 
in F as the evaporationline of tbe liqnid F starting from F. 

If we cornpare the P, T-diagram of the~ solutienpaths of a binary 
compound F (fig. 2) witb tho~e of a ternary compound F [fig. 4 (IV) 
and 1 - 3 (V)], then we see very great differences in the vicinity 
of ibe point F. We find these dlfferences also in tbe concentratiop-­
diagl'ams. When viz. in fig. 1. in the point F we construct tangents 
io the curves FI, Fk and Fs going through the point F, three 
differeJlt tangents al'ise. If F is a ternal'Y compound, as e. g. in 
fig. 1 (IV), then these curves touch one another in .F' and th.e three 
tangents coincide in the line XFY. 

All this ib based on the fûllowing. When F is ti binary compound, 
à new substance must be added, in order to trace a ternary solution­
path from F. When, ho wever, F is a ternary compound, we add.nQ 
new substance in order to tl'ace a solutionpath, from F, but substances, 
whkh are already present in the melted F. 

(To be continued). 

Physics. "An appamtus f01' the dete1'mination ol gas isotlterms up 
to about 3000 atm~." VAN DER WAALs-fund researches N°. 5. 
By Prof. PH. KOHNSTAMM and K. W. W Al,STRA. (Communicated 
by Prof. VAN DER WAA1JS). 

(Commumcated in the meeting of December 27, 1913). 

As is known the malerial for testmg the theory of the equation 
of state at very high pressUl'es consists aimost exclusively of what 
AMAGAT has published in his famous papers. It seerns desirabie for 
different l:ea~ons tO extend this material. Quite apart from the desirability 
to get to know the bellaviour of other gases than those exarnined 
by AMA.&AT - we think in the first plaee of the mon-atomic gases -
AMAGAT'S work itself gives rise to different qnestions, which ean 
only be decided by means of new experirnents. 

First of all it is known that AMAGAT does not give the direct 
reslllts of his observalions; he only pubÜshes the results of a graphieal 
interpolation belween these observations. The question rises ·how 
great the deviations are between the interpolated and tlle real 
observations, :md whether anotber way of interpoltttion had been 
possible. Nor can tbe probable experimentaI error 'of 'AMAGAT'S 
observations be inferred from his experiments. l\.nd it has finally 


