## Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

## Citation:

Vos van Steenwijk, J.E. de, Investigation of the inequalities of approximately monthly period in the longitude of the moon according to the meridian observations at Greenwich. (Add.), in: KNAW, Proceedings, 16 II, 1913-1914, Amsterdam, 1914, pp. 890-892

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'
from which $\mathrm{O}=1.635$ and $\mathrm{H}=0.32$ is calculated. The value of H is of the former order of magnitude. But C has decreased to 0.8 of its former value. This appears still more clearly when benzene is compared with hexamethylene or cyclohexane. With this latter substance we have also the cyclic binding of 6 carbon atoms; ouly the coincidence of two valencies for caŕbon has disappeared. The formula is $\mathrm{C}_{8} \mathrm{H}_{12}$ and $\frac{T_{k}}{p_{k}}=13.9$. Hence the comparison with benzene gives the two following equations:

$$
6 \mathrm{C}+12 \mathrm{H}=13.9
$$

and $\quad 6 \mathrm{C}+6 \mathrm{H}=11.73$
or $\quad \mathrm{H}=0.3616$
and $\quad \mathrm{C}=1.59$ 3
I will still give a ferv ralues calculated in the meantime, viz. proprlbenzene, calculated with benzene and $\mathrm{CH}_{2}=2.76$, equal to 20.01, $\frac{T_{k}}{\psi_{k}}$ being equal to 19.772 , and chlorobenzene with $\mathrm{Cl}-\mathrm{H}=$ 2.185 calculated at 13.915 and found 14.18.

But all the nitriles appear to give much too high values of $\frac{T_{k}}{p_{k}}$, and so for $b$, and are associating in a high degree. Even benzonitril, but this nitril in a less degree than the others.

Astronomy. - "Investigation of the inequerlities of approximately monthly period in the longitude of, the moon according to the meridian observations at Greerwwich". Addendum. By J. E. de Vos van Stlinnifis. (Communicated by Prof. E. F. v. d. Sande Bakhuyzen).

Professor Battermann and Prof. Ernist Brown have both been so kind as to point out to me, in letters to Prof. Batnuyzen, that Brorrs's theoretical value, çuoted by me, for the motion of the moon's perigee (p. 140), which was taken from Monthl. Not. 64 532, does nol quite agree with his final result, which was published by him in Memoirs R.A.S. 59, 94 (comp. also Monthl. Not. 70, 3). If we use the valne assumed by me for the ellipticity of the earlh 1:297.5, then the theoretical result for the sidereal motion in a Julian year for 1850 becomes 146435 " 16 , so that my result from the observations 146435 " 31 is now only $0^{\prime \prime} 15$ greater, against $0^{\prime \prime} 26$ formerly.

We approach, therefore, the limits within which this difference might be ascribed to the errors of observation. However, I now think," that the difference which was found, small as it is, still deserves closer consuderation, and this especially with regard to the value which Nerfconb has deduced for this motion from the lung series of observed occultations discussed by him in his lately published posthumons paper Researches on the motion of the moon. He found (p. 225) $146435^{\prime \prime} 29 \pm 0^{\prime \prime} 02$, a rosult which appears to be very accurate and which agrees almost exactly with mine.

This induced me to consider in how far the small difierence might be ascriberl to inacenracies in the values,' deduced from obselvations, on which the theoretical calculations are founded. Such inaccuracies might occur in those parts of the motion of the perigee which depend upon the ligure of the earth and of the moon. The latter part is very small, but probably also very incertain. It must be calculated from the libration-phenomena and Brown deduced for it, from Hayn's resulis, $0^{\prime \prime} 03$.
Much greater ( 6 " 4 ) is the influence of the ellipticity of the earth, or more exactly of the difference between its polar and equatorial moment of incria, which can be deduced both from the results of gravily determinations and from measured terrestrial ares, by means of relations that are connected will Clairaut's theorem. However, these deductions are open to criticism, as Batternann also pomted out. Still we see that, when the ellipticity of the earth is calculated from the most reliable results, recently deduced from both classes of observations the results agree well with each other, and this makes it appear probable, thot' also the valnes deduced for the difference of the moments of inertia and thereby for the constant of the lunar perturbations would be fairly accurate.
From the gravity determinations Henarist deduced 1:298.3 a few years agu, and recently Hayford and Bowie deduced from determinations in the United States $1: 298.4^{1}$ ). On the other hand, Ilaypord, from his discussion of all the measured aresin the United States found 1:297.0, while in Europe, from the Russio-Scandinavian are of meridian. 1:298.6 was deduced. In the American. calculations reductions for isostalic compensation were applied.

According to these results the value adopted by me $1: 297.5$ wonld appear to be too large rather than too small. But now it is remarkable, that all lunar pertnrbations which are cansed by the

[^0]figure of the earth would indicate a greater value for the ellipticity. Anongst these perturbations there are four which lave a somewhat considerable coefficient:

1. a motion of the perigee;
2. a motion of the nodes;
3. a periodic inequality in the longitude;
4. a periodic inequality in the latitude.

The first of these, according to our results, would lead to 1:294.3, according to Newcomb's to $1: 294.6$; the second, according to Newcoin's results, would yield $1: 294.3$ and the $\ddagger^{\text {th }}$, according to Newcomb, $1: 293.7$, while the $3^{1 d}$ which has a period of 18 years cannot be used for our purpose on account of the unexplained inequalities of long period in the mean lougitude. Are these differences to be regarded as real and would therefore the measurements made on the surface of the earth not lead to an accurate determination of the difference in the moments of inertia?

On account of the possibility that other circumstances may exercise an influence upon the motions of the perigee and node, the periodic inequality in the latitude, which has a monthly period, wonld certainly be the most likely to yield a decisive answer to this question, if it were not that an error in the assumed obliquity of the ecliptic has precisely the same influence upon the declination of the moon as the inequality in the latitude. (See also Newcomb's very interesting Addendum to Chapter XI, p. 226).

Physics. - "Magnetic researches. XI. Moclification in the cryomagnetic apparatus of Kamerlingh Onnes and Perrier." By Dr..E. Oosterbuis. Communication $\mathrm{N}^{0} .1396$ from the Physical Laboratory at Leiden. (Communicated by Prof. H. Kamerlingh Onnes).
(Communicated in the meeting of Jazuary 31, 1914.)
In the researches on paramagnetism at low temperatures, described in Nos. VI, VII, and VIII of this series (Comm. $\mathrm{N}^{0} .129^{b}, 132^{c}, 134^{d}$ ), an apparatus was used, in the main the same as that constructed by Kameringh Onnes and Perrier, of which a complete description is found in Comm. $\mathrm{N}^{0} .139^{a}$.

In one particular, however, a change was made in the apparatus. The appaíatus so changed, which was briefly indicated in $\$ 1$ of Comm. $\mathrm{N}^{0}$. $129^{b}$, is here more fully described. The force acting


[^0]:    ${ }^{1}$ ) A division of the 89 stations into 2 groups, an eastern and a western, led to $1: 297.8$ and 1:299.6 respectively; the addtion to the 89 stations of 10 stations in Alaska gave, however, as the result from all 1:300.4.

